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In this paper, we propose and simulate a deterministic model for a vector-borne dis-
ease in the presence of a vaccine. The model allows the assessment of the impact of an
imperfect vaccine with various characteristics, which include waning protective immu-
nity, incomplete vaccine-induced protection and adverse events. We find three threshold
parameters which govern the existence and stability of the equilibrium points. Our sta-
bility analysis suggests that the reduction in the mosquito fertility theoretically is the
most effective factor of reducing disease prevalence in both low and high transmission
areas. To illustrate the theoretical results, the model is simulated by the example of
yellow fever. We also perform sensitivity analyses to determine the importance of both
vaccine-induced mortality rate and disease-induced mortality rate for determining a con-
trol strategy. We found that there is an optimum vaccination rate, above which people
die by the vaccination and below which people die by the disease.

Keywords: Mathematical Models; Vaccination; Vector–Borne; Yellow Fever.

1. Introduction

Frequently unnoticed by practicing physicians, arthropod-borne diseases account
for a huge proportion of the spectrum of human maladies worldwide, and the
problem appears to be growing.1 Despite the enormous effort of the medical and
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scientific community, controlling disease agents transmitted by arthropod vectors
has proven to be difficult.2–5 The list of emerging and re-emerging infections is
enormous but it is worth citing just a few: dengue, malaria, yellow fever, various
mosquito-borne encephalitis, leishmaniasis and Lyme disease. Most of the tech-
niques used for the control and eradication of vector-borne diseases were developed
in the early 20th century. Rules for source reduction, insecticides, biological con-
trol, vaccination, chemotherapy and personal protection were all laid down nearly a
century ago.6 Many of these techniques are still effective, others succeeded initially
but failed later for a variety of reasons. Investigators must now incorporate new
approaches that will allow them to move to the next level of control to alleviate the
effects of vector-borne diseases on human and animal health.6

Public health measures to control infectious diseases have relied on the use of
vaccines, insecticides and the various types of drugs and, understandingly, most of
the literature cited above addresses the evolutionary implications of such control
measures.7

Vaccination, one of the most successful development in controlling diseases,
raises the classical Public Health dilemma of collective versus individual interests:
on one hand it is of greatest interest of individuals not to being vaccinated provided
that everybody else is protected by the vaccine; on the other hand, it is of greatest
interest the entire community that every individual receives the vaccine.8–17 As all
vaccines have adverse effects varying from the simple annoying shot to deaths,18,19

there would be an optimum level of vaccination that would minimize the negative
aspects of vaccination.

In this paper, we present a mathematical model that addresses the effects of vac-
cination against vector-borne diseases illustrated by the example of yellow fever.
This paper is organized as follows. In Sec. 2, we develop the model based on bio-
logical features of the transmission of vector-borne diseases where the human and
vector populations are in course; Sec. 3 presents the analysis of the trivial and the
endemic equilibrium (EE) points, the study is to address the question whether vac-
cination could ever completely stop the spread of infection in a population and in
some rare circumstances could lead to adverse events; Sec. 4 presents the numerical
results and epidemiological implications for the case of yellow fever; finally, in Sec. 5
are the conclusion.

2. Model Formulation

The model presented here monitors the temporal dynamics of both human and
vector (mosquito) populations. The model is an extension of the model given in
Refs. 17, 20 and 21, by incorporating the death induced by the vaccine. The main
objective of this study is to carry out a qualitative analysis of the model and
determine the impact of a vaccine on the vaccine-induced mortality rate.

It is assumed that the human and vector populations have constant and vari-
able sizes, respectively, and all vectors are born susceptible, so that no verti-
cal transmission is allowed.22 The total human population size, denoted by NH ,
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is partitioned into four subpopulations of unvaccinated (SH), vaccinated (V H),
infected (IH) and recovered (RH) humans, so that NH = SH + V H + IH + RH .
The winged form and aquatic form (comprising eggs, larvae and pupae) are rep-
resented by NM and SE , respectively. The total population NM is split into
uninfected vectors (SM ), latent vectors (LM ) and infectious vector, (IM ), so that
NM = SM + LM + IM ; whereas the total aquatic population is SE .

In addition, a homogeneous mixing is incorporated, so that each mosquito has
equal chance of either transmitting the virus to the susceptible human in the popu-
lation or acquiring infection from an infected human. Since λH = abIM represents
the rate of transmission, the incidence in the human population is given by the mass
term λHSH/NH . Likewise, since λV = acIH is the rate of infection in the vector
population that become infected after biting an infected human, the incidence is
given by λV SM/NH .

The model will include the vital dynamics, that is, the natural mortality (µH)
together with mortality induced by both vaccine (αv) and disease (αD), and a
positive and constant recruitment rate so that it balances deaths, for the total
human population to be of constant size NH . The unvaccinated susceptible sub-
population, SH is increased by recruitment at a rate

∏
E = µHNH +αDIH +αvV H ;

while the non-infected aquatic forms population follows a classical logistic growth
at a rate

∏
E = rMNM (1 − SE

κE
). It is further assumed that the uninfected vector

population is generated by emerging from pupae (cSSE).
We assume that all susceptible humans SH are vaccinated at a constant per

capita rate, νH , where fH is the degree of vaccine efficacy. From now on we make
the realistic assumption that vaccination elicit immune response, but at a certain

Fig. 1. The flow diagram for the model (2.1).
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efficacy, that is, 0 < fH < 1. The vaccine-induced immunity is assumed to be lost at
per-capita rate, ωH . In the case ωH = 0, the vaccine is long lasting, the immunolog-
ical memory developed against infection does not wane over time; whereas ωH > 0,
implies that vaccine is imperfect and confers a temporary protection for vaccinated
humans. Therefore, ωH is the rate at which the vaccine protection wanes. The
vaccinated human population V H is decreased by the waning of vaccine-induced
immunity, that is, the vaccinated humans can either reenter the SH class, or die at
the natural death and vaccine-induced. Vaccinated individuals engage in increased
risk of death compared to unvaccinated individuals. This last point is one of the
great interest here.

Furthermore, it is also assumed that the uninfected vectors population (SM )
is diminished by infection which is acquired by contact with infected humans and
by natural death at a rate µM . Latent vectors develop symptoms of disease and
become infected at rate γM . The aquatic population, and infected and latent vectors
population die at a rate µE and µM , respectively.

The flow diagram of the model is depicted in Fig. 1.
Using these assumptions and definitions the model is then governed by the

following system of nonlinear ordinary differential equations:


dSM

dt
= µHNH + αDIH + (αv + ωH)V H − abIM

SH

NH

− µHSH − fHυHSH

dV H

dt
= fHυHSH − (µH + ωH + αv)V H

dIH

dt
= abIM

SH

NH

− (µH + αD + γH)IH

dRH

dt
= γHIH − µHRH

dSM

dt
= csSE −

(
µM + ac

IH

NH

)
SM

dLM

dt
= acSM

IM

NM

− (γM + µM )LM

dIM

dt
= γMLM − µMIM

dSE

dt
= rMNM

(
1 − SM

κE

)
− (µE + cs)SE ,

(2.1)

with generic initial conditions SH(0) ≥ 0, V H ≥ 0, IH ≥ 0, RH ≥ 0, SM ≥ 0,
LM ≥ 0, IM ≥ 0, SE ≥ 0. The total human population given by NH = SH +V H +
IH + RH is constant, due to dNH

dt = 0; while the total adult vectors population,
NM = SM + LM + IM is given by

dNM

dt
= csSE − µMNM . (2.2)
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Table 1. Model’s variables and their biological meaning.

Variable Description

SH Population of susceptible humans

IH Population of infected humans

RH Population of recovered humans

V H Population of vaccinated humans

NH Population of total human population

SM Population of uninfected vectors

LM Population of latent vectors

IM Population of infected vectors

NM Population of total vectors population

SE Population of aquatic forms

Table 2. Model’s parameters and their biological meaning.

Parameter Description

a Average daily biting rate
b Fraction of actually infective bites
µH Humans natural mortality rate
αV Vaccine-induced mortality rate for vaccinated humans
αD Disease-induced mortality rate for infected humans
γH Humans recovery rate
ωH Waning rate of vaccine
υH Vaccination rate
fH Vaccine efficacy
γM Vectors latency rate
µM Vectors natural mortality rate
rM Oviposition rate
κE Aquatic carrying capacity
µE Aquatic natural mortality rate
c Vectors susceptibility
cS Emerging rate

In order to assess the mortality due to disease and vaccine, the compartments
for both disease-induced mortality and vaccine-induced mortality are included in
the system (2.1) by

dΛD

dt
= αDIH and

dΛV

dt
= αV V H . (2.3)

The variables and parameters are described in Tables 1 and 2, respectively.

3. Analysis of the Model

3.1. Basic properties

Before analyzing model (2.1), it is instructive to explore its basic qualitative fea-
tures. Because system (2.1) monitors the dynamics of human, vector and aquatic
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populations, all parameters of the model are assumed to be non-negative. Further-
more, it can be shown that all state variables in the system are also non-negative
for all time t ≥ 0. It is a simple matter to show that Eq. (2.1) are well-posed, in
the sense, that if the initial data are in the feasible region

Ω = {(SH , V H , IH , RH , SM , LM , IM , SE) ∈ R8 : SH ≥ 0, V H ≥ 0,

IH ≥ 0, RH ≥ 0, SM ≥ 0, LM ≥ 0, IM ≥ 0, SE ≥ 0},
then the solutions will be defined for all time t ≥ 0 and remain in this region. Since,
NH is constant, we write λM = abIM/NH = abIM , and the following result can
be proven.

Theorem 3.1. If the initial conditions of system (2.1) lie in region Ω, then there
exists a unique solution for (2.1) that remains in Ω for all time t ≥ 0.

The proof of Theorem 3.1, based on using a standard proof by contradiction,23

is given in Appendix A.
To simplify the mathematical analysis of this study, and without loss of gener-

ality, we can introduce the proportions

SH =
SH

NH

, VH =
V H

NH

, IH =
IH

NH

, RH =
RH

NH

, SM =
SM

kE
,

LM =
LM

kE
, IM =

IM

kE
, NM =

NM

kE
, SE =

SE

kE
.

By using the relation SH = 1 − VH − IH − RH , SM = NM − LM − IM , the
equation for SH and SM in (2.1) can be eliminated and the equation for NM can
be then introduced. Hence, the system (2.1) can be then written as the equivalent
seven-dimensional nonlinear system of ordinary differential equations:



dVH

dt
= fHυH(1 − VH − IH − RH) − (µH + ωH + αv)VH

dIH

dt
= ab

κE

NH

IM (1 − VH − IH − RH) − (µH + αD + γH)IH

dRH

dt
= γHIH − µHRH

dLM

dt
= acIH(NM − LM − IM ) − (γM + µM )LM

dIM

dt
= γMLM − µMIM

dNM

dt
= csSE − µMNM

dSE

dt
= rMNM (1 − SE) − (µE + cs)SE .

(3.1)
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Finally, it is important to point out that the region of biological interest

Ω1 = {(VH , IH , RH , LM , IM , NM , SE) ∈ R7 : 0 ≤ VH + IH + RH ≤ 1,

0 ≤ SM + LM + IM = NM ≤ 1, SE ≤ 1}
is positively invariant under the flow induced by Eq. (3.1), as the vector field on
the boundary does not point to the exterior. Since solutions approach, enter or
stay in finite time Ω in they are eventually bounded and hence exist for t ≥ 0.
Therefore, the model (3.1) is mathematically and epidemiologically well posed. It
is therefore sufficient to consider solutions in Ω1. In this region, the usual existence
and uniqueness results hold for the system. Hence, the model (2.1) will be, from
now on, represented by system (3.1) only. In this way, our next result concerns the
existence and stability of equilibrium points of system (3.1).

3.2. The existence of equilibria

In this section, we present the results of the equilibrium solutions of system (3.1)
which are biologically feasible as well as the reproductive number. In Appendix B,
it is shown the possible equilibrium solutions the system (3.1) can have. However,
it is worth to highlight Eqs. (B.11) and (B.12) given by

Rvac = R0[1 − ρvac], where 0 < ρvac =
fHνH

fHνH + µH + ωH + αV
< 1

and

R0 =
a2bcγMκE

(µH + αD + γH)(µM + γM )µM

NM

NH

,

since, epidemiologically speaking, they state the effort to effectively to control the
disease.

Note that since 0 < ρvac < 1, Rvac < R0, and Rvac can be interpreted as the
average total number of new infections caused by a single infected individual, intro-
duced into a susceptible population in which some individuals have been vaccinated.
Thus, in the absence of vaccination (so that, vH = 0, and hence ρvac = 0), the vac-
cination reproductive number Rvac reduces to R0, which is the basic reproduction
number (see Refs. 24–29 for more details) in the absence of any control measure.

It is also worth mentioning that from Eq. (B.11) it is possible to evaluate the
threshold biting rate, (athres), by writing

Rvac =
( a

athres

)2

, (3.2)

where

athres = µM

√
(µH + αD + γH)(µM + γM )rM

bcγMcsκE(rM − rthres
M )(1 − ρvac)

(3.3)

Notice that Rvac = 1, when a = athres.
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In what follows, the analysis present in Appendix B, indicates the possibility of
the existence of the following positive equilibrium points for system (3.1):

(1) for rM < rthres
M , the disease-free equilibrium (DFE) is defined by the human

population PH
0 = (ρvac, 0, 0, 0, 0, 0, 0),

(2) for rM > rthres
M and Rvac < 1, the DFE is defined by both human and vector

populations, PHM
0 = (ρvac, 0, 0, 0, 0, N∗

M , S∗
E),

(3) for rM > rthres
M and Rvac > 1, the EE point is given by PHM

1 = (V ∗
H , I∗H ,

R∗
H , L∗

M , I∗M , N∗
M , S∗

E),

where

V ∗
H = ρvac

[
1 − (µH + γH)

µH
I∗H

]
, R∗

H =
γH

µH
I∗H , I∗H =

Rvac − 1

Rvac

(
1 + γH

µH

)
+ ac

µM

,

L∗
M =

µM

γM
I∗M , N∗

M =
cs

µM
S∗

E , S∗
E =

[
1 − rthres

M

rM

]
,

I∗M =
(µH + αD + γH)I∗H

abκE

NH
(1 − ρvac)

[
1 −

(
1 + γH

µH

)
I∗H

] . (3.4)

Quite apart from this, the existence of the positive equilibrium points for system
(3.1) given in Appendix B, can be summarized as follows.

Theorem 3.2. The model (3.1) has the DFE PH
0 whenever rM < rthres

M . Otherwise,
model (3.1) has the DFE PHM

0 and the EE PHM
1 . For rM > rthres

M , if Rvac < 1 (or
a < athres), the unique equilibrium that exists is the DFE PHM

0 ; if Rvac > 1 (or
a > athres), the unique equilibrium that exist is the EE PHM

1 .

Having found the scenarios in which there exist the equilibria for system (3.1), it
is instructive to analyze whether or not these equilibria are stable under any of these
scenarios. Moreover, together with the vaccination rate, vH , and the reproduction
number, Rvac, we will see that each scenario can be used as a check for the existence
and the stability of all equilibria. This is explored below.

3.3. Stability of equilibrium points

In the absence of disease (i.e., I0
H = 0), model (3.1) has two DFEs given by PH

0 and
PHM

0 . To establish the stability of both equilibria, the Jacobian of system (3.1) is
computed and evaluated at both PH

0 and PHM
0 . We will discuss the properties of

both equilibrium points making an elementary row-transformation for the Jacobian
matrix.

Evaluating the system’s Jacobian at PH
0 , the local stability of PH

0 is straight-
forward evaluated by the five eigenvalues given by τ1 = −µM , τ2 = −µH ,
τ3 = −(µM +γM ), τ4 = −(µH +αD +γH) and τ5 = −(fHvH +µH +αv +γH). The
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other eigenvalues are expressed as the roots of the following submatrix,

MP H
0 =

[−µM cs

rM −(µE + cs)

]
. (3.5)

It is easy to verify that the traces of the matrices tr(MP H
0 ) and tr(MP H

0 ) are
always negative. Moreover, the determinant of the matrix, det(MP H

0 ), is positive if
and only if rM < rthres

M . In other words, it means that the two eigenvalues of matrix
MP H

0 are either negative or have negative real part whenever rM < rthres
M .

Therefore, all the eigenvalues of the characteristic equation associated with the
system (3.1) at PH

0 have negative real parts if and only if rM < rthres
M . We state

then the following result:

Theorem 3.3. The DFE PH
0 of the model (3.1) exists and it is locally asymptoti-

cally stable if rM < rthres
M . Otherwise, PH

0 is unstable.

Furthermore, by using the Routh–Hurwitz criteria, it can also be established
for system (3.1) that the DFE PHM

0 exists and it is locally asymptotically stable.
This result is summarized below (the proof is given in Appendix C).

Theorem 3.4. For rM > rthres
M the disease-free equilibrium of the model (3.1),

PHM
0 , exists and it is locally asymptotically stable if Rvac < 1. Otherwise, PHM

0 is
unstable.

Having found the scenarios in which the DFEs of the model (3.1) exhibit local
asymptotic dynamics, to ensure that disease elimination is independent of the initial
sizes of the sub-populations, a global stability proof for the DFE, PHM

0 , using a
comparison theorem is presented in Appendix D.

Theorem 3.5. For rM > rthres
M , the DFE PHM

0 is globally asymptotically stable
whenever Rvac < 1.

It should also be mentioned that the consequence of the above result is that
for Rvac > 1 the disease will establish itself in the population and, clearly, this
is a situation where the disease elimination would depend upon the vaccination.
Thus, it will be possible to eliminate the disease from the population whenever the
vaccination (although imperfect) results in making (and keeping) Rvac < 1.

In this way, it is instructive to determine the elimination conditions in terms of
the fraction of the population that are vaccinated at equilibrium. The basic problem
is to find out the optimum value of vaccination (υH) necessary to eradicate the
disease. To find the critical value of υH , one sets Rvac = 1, and solving Eq. (3.2)
for υH , the threshold vaccination rate is found to be

υthres
H =

1
ε
(R0 − 1), (3.6)

where ε = fH

(µH+ωH+αv) .
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Table 3. Conditions of existence and stability of the positive equilibria of model (3.1).

Existence and stability conditions Positive equilibrium points

rM < rthres
M P H

0 = (V 0
H , 0, 0, 0, 0, 0, 0)

rM > rthres
M , υH > υthres

H , Rvac < 1 P HM
0 = (V 0

H , 0, 0, 0, 0, N∗
M , S∗

E)

rM > rthres
M , υH > υthres

H , Rvac > 1 P HM
1 = (V ∗

H , I∗H , R∗
H , L∗

M , I∗M , N∗
M , S∗

E)

It is worth remembering that R0 > 0 whenever rM > rthres
M . From Eq. (3.6),

two scenarios emerge: one for the case where R0 < 1, which implies υthres
H < 0

and Rvac < 1 (from Theorem 3.4, PHM
0 is the unique DFE locally asymptotically

stable in this case); the other for R0 > 1, which implies in υthres
H > 0, and either

Rvac < 1 or Rvac > 1. In such scenarios, we can, therefore, conjecture that PHM
0

could be globally asymptotically stable for Rvac < 1, while PHM
1 could be globally

asymptotically stable for Rvac > 1. Thus, it is necessary to determine the vaccine
effort (υH) to reduce Rvac below one, which corresponds to a decrease in the number
of infected humans to ensure the conditions under which the disease dies out or at
least reduce its prevalence. Thus, if υH > υthres

H , vaccination will eliminate the
disease from the community, that is, Rvac will be reduced below one. In contrast, if
υH < υthres

H , vaccination will fail to eliminate the disease from the community, that
is, Rvac could not be reduced below one and the disease will then persist.

In summary, in the light of the aforementioned considerations together with
extensive numerical simulations, we can establish the following conjecture for
system (3.1):

Conjecture . For rM < rthres
M the DFE PH

0 is globally asymptotically stable. If
rM > rthres

M , then PHM
0 is globally asymptotically stable if υH > υthres

H and Rvac < 1;
if υH < υthres

H and Rvac > 1, then PHM
1 is globally asymptotically stable.

All the existence and stability results for model (3.1) are summarized in Table 3.
The numerical results (see Table 3) show that the unique EE point, to which the
simulations did converge, supports the Conjecture above.

4. Numerical Illustration: The Case of Yellow Fever

Yellow fever (YF) is a hemorrhagic fever caused by a Flavivirus, family Flaviri-
dae,30,31 and is characterized by fever, chills, loss of appetite, nausea, muscle pains
particularly in the back, and headaches.32 More than 200,000 infections and 30,000
deaths are reported every year,32 of which about 90% the cases occur in Africa.33 In
addition, a billion people live in an area of the world where the disease is reported.32

YF also affects tropical areas of South America, but has never been reported in
Asia.32,34,35 The incidence of YF has been increasing in the last years,32,36 proba-
bly due to fewer people being immune, more people living in cities, people moving
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frequently, and changing climate.32 The probable origin of the disease is Africa, from
where it spread to South America through the slave trade in the 17th century.37–39

An effective vaccine against YF exists and some countries require vaccinations
for travelers.32 In rare cases (less than one in 200,000–300,000 doses), the vacci-
nation can cause YF vaccine-associated viscerotropic disease (YEL-AVD), which
is fatal in 60% of cases, probably due to the genetic morphology of the immune
system. Another possible side effect is an infection of the nervous system, which
occurs in one in 200,000–300,000 cases, causing YF vaccine-associated neurotropic
disease (YEL-AND), which can lead to meningoencephalitis, fatal in less than 5%
of cases.35 In some rare circumstances, however, the fatality rate of vaccine induced
diseases can reach alarming proportions, as observed recently by Mascheretti et al.
(see Ref. 40 for more details), who found 1 death per million doses applied in a
Southeastern Brazilian region.17

To illustrate the results theoretically contained in this paper, model (3.1) is
simulated using baseline parameters values/ranges summarized in Table 4 (unless
otherwise stated). The parameter values are mostly taken from the literature,17

except for vaccine-induced mortality rate for vaccinated humans41 (αv). Further-
more, the average daily biting rate (a), vaccination rate (υH) and disease-induced
mortality rate for infected humans (αD) are chosen for simulations purposes only,
so we can illustrate our theoretical results. From now on, all the simulations are
carried out for rM > rthres

M , in accordance with the fact that both PHM
0 and PHM

1

play an important role to assess the control of the disease in a community. Note
that for the baseline parameters values in Table 4, rthres

M = 0.2186 days−1.
In the previous sections, we obtained the parameter restrictions for disease per-

sistence and eradication. Our stability analysis showed that reducing the mosquito
fertility, rM is “theoretically” the most effective way of reducing disease prevalence

Table 4. YF baseline values for model (3.1).

Parameter Value Reference

a Variable guessed
b 0.6 17
µH 3.5 × 10−5 days−1 17
αV 2.1 × 10−10 days−1 41
αD 1.0 × 10−2 days−1 guessed
γH 0.143 days−1 17
ωH 0.1 days−1 17
υH variable (days−1) guessed
fH (0–1)
γM 0.143 days−1 17
µM 0.09 days−1 17
rM 50 days−1 17
kE 1 guessed
µE 0.1 days−1 17
c 0.8 17
cS 0.07 days−1 17
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since it has an important effect on disease transmission in both low and high trans-
mission areas (as measured by Rvac > 1 and Rvac � 1, respectively). It is not,
however, possible to directly reduce the mosquito fertility. The unique and viable
way to reduce effectively rM , is to reduce the biting rate (using insect repellent or
mosquito nets). It is worthwhile here to highlight the fact that rM = f(a), that
is, the mosquitoes need the blood meal (biting hosts) to mature their eggs. In this
way, the reduction in the biting rate have, therefore, a positive impact in reducing
mosquito fertility. This model, however, does not include this biological reality. In
a future work, we will include this fact into a new model.

In addition, to estimate the importance of the biting rate and the number of
“effective” mosquito–human contacts, we would need to know the values of other
population demographic parameters. For one such example, we expect that strate-
gies that reduce the number of “effective” contacts, such as vaccine, would have
effect on the disease prevalence. As a consequence, we should also expect that any
change in vaccination rate (υH) could have two opposite effects. On one hand,
increasing υH , the proportion of infected humans decrease, but the number of
deaths of vaccinated humans (αv) would increase. On the other hand, decreasing
υH increases the number of “effective” contacts between humans and mosquitoes
which tends to increase Rvac and the proportion of infected humans. These points
are of a great deal of interest here.

In summary, from now on, we will explore the implications of the biting rate (a),
the vaccination rate (υH) and the mortality rate for vaccinated humans (αv) for
low and high (Rvac > 1 and Rvac � 1) transmission areas, whenever rM > rthres

M .
From the discussion above, it is worth mentioning that the vaccinated repro-

duction number, Rvac, increases as both average daily biting rate (a) and vaccine-
induced mortality rate in humans (αv) increase [see Eqs. (3.3), (B.3) and (B.11)].
For Rvac < 1 (or a < athres), PHM

0 is globally asymptotically stable. For Rvac > 1
and Rvac � 1 (or a > athres), the proportion of vaccinated humans (V ∗

H) decreases
while the proportion of both infected humans and infected vectors (I∗H �= 0, I∗M �= 0)
increase. If υH < υthres

H , PHM
1 is then globally asymptotically stable. To numerically

illustrate this fact, the simulations are carried out for rM > rthres
M , υH = 0.00001

(see Ref. 41), with υH < υthres
H , a > athres as increases. The results are shown in

Figs. 2(a) and 2(b).
In contrast, the vaccinated reproduction number, Rvac < 1, decreases as the

vaccination rate (υH) increases, showing the benefits of vaccination in the control
of the epidemic. Thus, if the average daily biting rate (a) is sufficiently low and
it has not overcome its threshold value, athres, the epidemic is controlled and the
vaccine does not have any impact. On the other hand, if a > athres, then the
epidemic could emerge (and persist) and the vaccine will have a positive impact
in terms of reducing YF prevalence. Clearly, this is a scenario where vaccination is
beneficial to the community. This scenario is illustrated numerically in Fig. 3. The
simulations show the profile of populations of both infectious humans and vectors.
Thus, if υH < υthres

H , then I∗H �= 0, I∗M �= 0; hence PHM
1 globally asymptotically
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Fig. 2. Effect of daily biting rate (a) on the prevalence of YF. Simulation of model (3.1) as
increases, with a ≥ athres = 0.27 (or Rvac > 1). All parameters values used are given in Table 4,
except for fH = 0.1 and υH = 0.00001. (a) The prevalence of vaccinated humans decreases as
the average daily biting rate increases. (b) Proportion of both infected humans and mosquitoes
populations increase as the average daily biting rate increases.

stable, so that the disease persist into the population [Fig. 3(a)]. If υH > υthres
H ,

then I∗H = 0, I∗M = 0, hence PHM
0 is globally asymptotically stable, so that the

disease is eradicated from population [Fig. 3(b)].
However, the challenge is to find out the optimum value of vaccination cover-

age (υH) where there is still high enough control of the disease and, sometimes
minimizes the vaccine adverse effects.

Figure 4 illustrates the benefits of vaccination in the control of the epidemic
showing that whenever υH > υthres

H , vaccination will have a positive impact in
controlling the disease, but in contrast, it can increase mortality in humans due
to the vaccine adverse effects. It is possible to find such a condition by simulating
the model with increasing values of vaccination rate, υH , while keeping the other
parameters fixed. As it was expected, we observed that the proportion of vaccinated
humans V ∗

H always increases, as υH increases. Moreover, while υH < υthres
H , Rvac > 1
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(a) (b)

Fig. 3. For rM > rthres
M , a > athres, fH = 0.1. The other parameters values used are given in

Table 4. Profile of populations of both infected humans (I∗H) and mosquitoes ((I∗M )). (a) For

υH < υthres
H , the disease persists into the population (P HM

1 , is globally asymptotically stable).

(b) For υH > υthres
H , the disease is eradicated from population (P HM

0 is globally asymptotically
stable).

(or a > athres), and PHM
1 is the unique equilibrium globally asymptotically stable,

such that both the proportions of infected humans (I∗H) and the total mortality
(µtot) decrease with increasing values of υH . When υH ≥ υthres

H , then Rvac ≤ 1 and
I∗H = 0, such that PHM

0 is the unique equilibrium globally asymptotically stable,
but the total mortality (µtot) increases with increasing values of υH . Therefore,
making the vaccine effort slightly above the threshold value υthres

H , it is still possible
to control the disease with a minimum for µtot. This scenario is due to the smaller
contribution from αv (αV � αD, see Table 4 and sensitivity analysis).

Although the above result is intuitively expected, it is very difficult to reach
the vaccination rate υH needed to control YF, without a significant increase in
the number of deaths of vaccinated humans. In such a situation, it is pertinent to
ask, what is the benefit of a limited vaccination? It is known that a low coverage
of vaccination still confers protection to each individual vaccinated, who in turn
provides some protection to the others, since the vaccinated individual would have
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Fig. 4. Effect of vaccination rate (υH) on total mortality, µtot = αvV ∗
H + αDI∗H . Simulations

of model (3.1) depicting the total mortality µtot plotted versus V ∗
H , with increasing values of

average daily biting rate (a), as υH increases. From left to right: a = 0.3(p∗ = 0.034); and
a = 0.5(p∗ = 0.7585); a = 1.0(p∗ = 0.9396) and a = 2.0(p∗ = 0.9849). All other parameters as in
Table 4, with fH = 0.1. The inset shows the case where a = 0.5 showing that µtot decreases if
υH < υthres

H , and increases if υH > υthres
H . The optimal proportion of the population that needs

to be immunized is indicated by p∗ = 1 − 1/R0.

infected is less likely to develop the disease. This is known as herd immunity (see
Refs. 22, 42 and 43 for more details).

In this way, using model (3.1) we observe that the effects of vaccination are linear
(see Fig. 4), and, even if the vaccination rate, υH , is smaller than critical value,
this still reduces the level of infection in the population because the proportion of
infected humans I∗H decreases. This implies that it is always better to vaccinate some
individuals, even if the vaccination rate υH cannot achieve its threshold value, υthres

H

for eradication. Thus, the degree of protection offered by the vaccine still works to
protect the population due to the herd immunity. In such a case, the threshold
value can be then be measured by the optimal proportion of the population that
needs to be immunized (given immunity) p∗ = 1− 1/R0 which take the same value
of the minimum proportion of vaccinated humans (V min

H ).

5. Sensitivity Analysis

In this section, we perform the sensitivity analysis of the total mortality,
µtot =αvV ∗

H +αDI∗H to relevant parameters: the vaccine-induced mortality rate for
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vaccinated humans (αv) and the disease-induced mortality rate for infected humans
(αD). The sensitivity analysis is used to measure the relative change in a variable
when a given parameter is varied. To carry out local sensitivity analysis, we use a
simple approach to compute the sensitivity index, which is a partial derivative of
the output variable with respect to the input parameters (see Refs. 17, 44 and 45
for more details). Measuring the total mortality µtot sensitive indices is important
since the total number of people who will die should be the best indicator to be
minimized by any control strategy.

The normalized sensitivity index of µtot with respect to the Ω = αD = αv, at a
fixed value Ω0 = α0

D = α0
v, is given by

�µtot

µtot
=

Ω
µtot

∂µtot

∂Ω
�Ω
Ω

∣∣∣∣Ω0, (5.1)

where �Ω
Ω = 0.01.

The numerical simulations were carried out for rM > rthres
M , Rvac > 1 or

a > athres, where PHM
1 is the unique equilibrium locally asymptotically stable.

All parameters values used are given in Table 2 (baseline values), except for
vH = 0.0001. Applying (5.1) to estimate the sensitivity for the vaccine-induced
mortality rate for vaccinated humans (αv) and the disease-induced mortality rate
for infected humans (αD), we verified that an increase of 1% in the value of αv

augments 2.735301992886937e-8% the value of µtot, and an increase of 1% in the
value of αD augments 0.006933549243922 the value of µtot.

6. Summary and Conclusions

In this paper, we have formulated a deterministic model for the transmission of
vector-borne infections in a community in the presence of an imperfect vaccine.
The model is intended to investigate the existence and stability of the associated
equilibria. We found three threshold parameters, which address the restrictions for
disease persistence and eradication of YF based on the question whether vaccina-
tion could completely interrupt the spread of infection in a community without
increasing the number of deaths of vaccinated humans. The main findings of the
study are summarized below:

(i) the reduction in the mosquito fertility, rM , is “theoretically” the most effective
factor in reducing disease prevalence since it has an important effect on disease
transmission in both low and high transmission areas (as measured by Rvac >

1 and Rvac � 1, respectively),
(ii) if the mosquito fertility is less than the threshold, rM < rthres

M , then the disease
is naturally (without intervention) eradicated from the population (PH

0 is the
unique equilibrium globally asymptotically stable),

(iii) if, in contrast, the mosquito fertility is greater than the threshold, rM > rthres
M

and a > athres (Rvac > 1 and Rvac � 1 ) the disease could be eliminated
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from the community if υH > υthres
H (PHM

0 is the unique equilibrium globally
asymptotically stable),

(iv) in case υH < υthres
H , the low coverage of vaccination will fail to eliminate the

disease from the community, the disease will then persist (PHM
1 is the unique

equilibrium globally asymptotically stable),
(v) it is still possible to control the disease and minimize the negative aspects of

vaccination making the vaccine effort (υH) slightly above the threshold value
υthres

H ,
(vi) the total mortality µtot is more sensitive to the disease-induced mortality rate

for infected humans than the vaccine-induced mortality rate for vaccinated
humans,

(vii) finally, it is important to emphasize that in this model we do not make rM

explicit function of the biting rate. In a future work, we will include this fact
into a new model.
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Públ 47(5):1–9, 2013.

41. Ribeiro AF, Tengan C, Sato HK et al., A public health risk assessment for yellow fever
vaccination: A model exemplified by an outbreak in the state of São Paulo, Brazil,
Mem Inst Oswaldo Cruz, Rio de Janeiro 110(2):230–234, 2015.

42. Dietz K.Transmission and control of arbovirus diseases, in Ludwig D, Cooke KL (eds.),
Epidemiology, pp. 104–121, SIAM, Philadelphia, 1975.

43. Fine P, Eames K, Heymann DL, “Herd immunity”: A rough guide, Vaccines
52(7):911–916, 2011.

44. Lutambi AM, Penny MA, Smith T, Citnis N, Mathematical modelling of mosquito
dispersal in a heterogeneous environment, Math Biosci 241(2):198–216, 2013.

45. Chitnis N, Hyman JM, Cushing JM, Determining important parameters in the spread
of malaria through the sensitivity analysis of a mathematical model, Bull Math Biol
70:1272–1296, 2008.

46. Diekmann O, Heesterbeek JAP, Mathematical Epidemiology of Infectious Diseases:
Model Building, Analysis and Interpretation, Wiley, New York, 2000.

47. Van den Driessche P, Watmough J, Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission, Math Biosci 180:29–48,
2002.

48. Lashmikantham V, Leela S, Martynyuk AA, Stability Analysis of Nonlinear Systems,
Marcel Dekker Inc., New York, 1989.

Appendix A. Proof of Theorem 3.1

The Uniqueness and the Positiveness of the Solution.

Proof. Consider the resulting reduced model (2.1). The right-hand sides of system
(2.1) are continuous with continuous partial derivatives in Ω, therefore system (2.1)
has a unique solution that exists for all time t ≥ 0. Next we show that SH , V H , IH ,
RH , SM , LM , IM , and SE are positive for t ∈ (0, τ ]. Suppose not, then there must
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be a first time t1 ∈ (0, τ ] such that SH(t1)V H(t1)IH(t1)SM (t1)LM (t1)SE(t1) = 0,
which yields

(i) SH(t1) = 0 and V H(t) ≥ 0, IH(t) ≥ 0, SM (t) ≥ 0, LM (t) ≥ 0, SE(t) ≥ 0,
(ii) V H(t1) = 0 and SH(t) ≥ 0, IH(t) ≥ 0, SM (t) ≥ 0, LM (t) ≥ 0, SE(t) ≥ 0,
(iii) IH(t1) = 0 and SH(t) ≥ 0, V H(t) ≥ 0, SM (t) ≥ 0, LM (t) ≥ 0, SE(t) ≥ 0,
(iv) SM (t1) = 0 and SH(t) ≥ 0, V H(t) ≥ 0, IH(t) ≥ 0, LM (t) ≥ 0 SE(t) ≥ 0,
(v) LM (t1) = 0 and SH(t) ≥ 0, V H(t) ≥ 0, IH(t) ≥ 0, SM (t) ≥ 0, SE(t) ≥ 0, or
(vi) SE(t1) = 0 and SH(t) ≥ 0, V H(t) ≥ 0, IH(t) ≥ 0, SM (t) ≥ 0, LM (t) ≥ 0, for

t ∈ [0, t1].

For case (i),

dSH

dt
= µHNH + αDIH + (αv + ωH)V H − (λM (t) + µH + fHυH)SH

≥ µHNH − (λM (t) + µH + fHυH)SH ,

which can be re-written as

d

dt

[
SH(t) exp

{∫ t

0

λM (u)du + (µH + fHυH)t
}]

≥ µHNH exp
{∫ t

0

λM (u)du + (µH + fHυH)t
}

.

Hence,

SH(t1) exp
{∫ t1

0

λM (u)du + (µH + fHυH)t1

}
− SH(0)

≥
∫ t1

0

µHNH exp
{∫ x

0

λM (τ)dτ + (µH + fHυH)x
}

dx,

and, since NH is constant,

SH(t1) ≥ SH(0) exp
{
−

∫ t1

0

λM (u)du + (µH + fHυH)t1

}

+ exp
{
−

∫ t1

0

λM (u)du + (µH + fHυH)t1

}

×
∫ t1

0

µHNH exp
{∫ x

0

λM (τ)dτ + (µH + fHυH)x
}

dx > 0,

which is in contradiction with SH(t1) = 0. In the same way, we can show that
V H(t1) ≥ 0, IH(t1) ≥ 0, SM (t1) ≥ 0, LM (t1) ≥ 0, IM (t1) ≥ 0, SE(t1) ≥ 0. To
sum up, in a similar fashion, it can also be shown that SH(t), V H(t), IH(t), RH(t),
SM (t), LM (t), IM (t), SE(t), are positive for t > 0.
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Appendix B. Proof of Theorem 3.2. The Existence of Equilibria

Proof. Consider the resulting reduced model (3.1). From the first and third equa-
tions of (3.1) with the right-hand side equal to zero, it can be seen that the equi-
librium points must satisfy, respectively, the following relations:

V ∗0
H = ρvac

[
1 − (µH + γH)

µH
I∗H

]
, (B.1)

R∗
H =

γH

µH
I∗H , (B.2)

where

0 < ρvac =
fHvH

fHvH + µH + ωH + αv
< 1. (B.3)

Substituting (B.1) and (B.2) in the second equation of system (3.1), we obtain

I∗M =
(µH + αD + γH)I∗H

ab kE

NH
(1 − ρvac)

[
1 −

(
1 + γH

µH

)
I∗H

] . (B.4)

From fifth and sixth equations of system (3.1), we obtain

L∗
M =

µM

γH
I∗M , 0 < L∗

M < 1, (B.5)

and

N∗
M =

cs

µM
S∗

E . (B.6)

Substituting (B.6) in the seventh equation of system (3.1), we get either
S∗

E = 0 or

S∗
E = 1 − rthres

M

rM
, (B.7)

with rthres
M = (µE+cs)µM

cs
and 0 ≤ S∗

E ≤ 1 From expression (B.7) it follows that

S∗
E ≥ 0 ⇔ rM ≥ rthres

M . (B.8)

Substituting (B.5) in the fourth equation of system (3.1), we obtain

I∗M =
acN∗

MI∗H
(acI∗H + µM )

(
1 + µM

γM

) . (B.9)

From Eqs. (B.4) and (B.9) we obtain either I∗H or

I∗H =
Rvac − 1

Rvac

(
1 + γH

µH

)
+ ac

µM

, (B.10)
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where

Rvac = R0[1 − ρvac], (B.11)

and

R0 =
a2bcγMκE

(µH + αD + γH)(µM + γM )µM

NM

NH

. (B.12)

From expression (B.10), it should be noted that for Rvac > 1, I∗H > 0. Therefore,
for I∗H > 0 the system (3.1) could reach an EE point. Moreover, when Rvac → ∞,
I∗H(∞) → µH/(µH + γH), such that 0 ≤ I∗H ≤ I∗H(∞) implies V ∗

H > 0 and I∗M > 0
[see Eqs. (B.1) and (B.9)].

In contrast, from Eqs. (A.1), (A.2), (A.5) and (A.9), I∗H = 0 leads to

I∗M = 0, L∗
M = 0, R∗

H = 0, V ∗
H = ρvac. (B.13)

Thus, for I∗H = 0 only the DFE exist for system (3.1). To be more specific,
for S∗

E �= 0 and N∗
E �= 0 the trivial equilibrium is described by the population of

humans and vectors, whereas for S∗
E = 0 and N∗

M = 0 the equilibrium is given by
the human population.

Appendix C. Proof of Theorem 3.4. Local Stability of the DFE

Proof. Consider the resulting reduced model (3.1). The local stability of the DFE
PHM

0 , which is examined by linearizing the system (3.1) around PHM
0 , is governed

by the Jacobian matrix

MP HM
0 =

[
AP HM

0 0

0 BP HM
0

]
, (C.1)

where

AP HM
0 =



−(µH + γH + αD) 0

abκE(1 − V ∗
H)

N∗
H

acN∗
M

(
1 − rthres

M

rM

)
−(γM + µM ) 0

0 γM −µM


 (C.2)

and

BP HM
0 =

[ −µM cs

rM (1 − S∗
E) −rMN∗

M − (µE + cs)

]
. (C.3)

From (C.3) it is easy to verify that the trace of matrix tr(BP HM
0 ) is always

negative; the determinant of matrix det(BP HM
0 ) is always positive if and only if
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rM > rthres
M . Therefore, the two eigenvalues of matrix BP HM

0 are either negative or
have negative real parts if and only if rM > rthres

M .
Moreover, the characteristic equation of the matrix AP HM

0 is given by

Λ3 + η2Λ2 + η1Λ + η0 = 0, (C.4)

where

η2 = µH + γH + αD + µM + (µM + γM )µM ,

η1 = (µH + γH + αD)(µM + γM ) + (µH + γH + αD)µM + (µM + γM )µM ,

η0 = (µH + γH + αD)(µM + γM )µM (1 − Rvac). (C.5)

By using the Routh–Hurwitz criteria for the polynomial (C.4), it follows that
η2 > 0, η1 > 0, η0 > 0 if only if Rvac < 1 and η1η2 − η0 > 0. Thus, the polynomial
(C.4) has negative (or has negative real part) roots if Rvac < 1. Therefore, all the
eigenvalues of the matrix MP HM

0 are negative or have negative real parts if and
only if Rvac < 1 and rM > rthres

M .

Appendix D. Proof of Theorem 3.5. Global Stability of the DFE

Proof. Consider the resulting reduced model (3.1). The equations for the vari-
ables IH , RH , LM , IM , NM , SE of system (3.1) satisfy the following linear differen-
tial inequality 



I ′H(t)

R′
H(t)

L′
M (t)

I ′M (t)

N ′
M (t)

S′
E(t)



≤ (K − F )




IH(t)

RH(t)

LM (t)

IM (t)

NM (t)

SE(t)




, (D.1)

where ′ = d
dt . The matrices K (the non-negative matrix of the infections terms)

and F (the non-singular M-matrix of the transitions terms) evaluated at the DFE,
PHM

0 , are given by

K =




0 0 0 K14 0 0

0 0 0 0 0 0

k31 0 0 0 0 0

0 0 K43 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, (D.2)
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where k14 = abkE

NH
(1−ρvac), k31 = ac cs

µM
(1− rthres

M

rM
), which is positive for rM > rthres

M ,
k43 = γM , and,

F =




f11 0 0 0 0 0

0 f22 0 0 0 0

0 0 f33 0 0 0

0 0 0 f44 0 0

0 0 0 0 f55 0

0 0 0 0 f65 f66




, (D.3)

where f11 = (µH + αD + γH), f22 = µH , f33 = (γM + µM ), f44 = f55 = µM ,
f65 = −rM (1 − rthres

M

rM
) and f66 = rM cs

µM
(1 − rthres

M

rM
) + (µE + cs). Following the next

generation operator approach given in Refs. 26 and 46. Rvac is equal to the spectral
radius (dominant eigenvalue) of KF−1, i.e., Rvac = ρ(KF−1), where KF−1 is
equal to 



0 0 0
abkE

NH

(1 − ρvac) 0 0

0 0 0 0 0 0
acNM

µH + αD + γH
0 0 0 0 0

0 0
γM

γM + µM
0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, (D.4)

and its eigenvalues are zero of multiplicity three, and φ = 3
√

Rvac with Rvac given
by the expression (3.2). Thus, if Rvac < 1, then ρ(KF−1) < 1 which is equivalent
to K − F having all its eigenvalues in the left-half plane.46,47 It follows that the
linear ODE system

y′ = (K − F )y (D.5)

is stable whenever Rvac < 1. Therefore, the solutions y approach (0, 0, 0, 0, N∗
M , S∗

E),
as t → ∞. Then using a standard comparison theorem (Ref. 48, p. 31),

(IH(t), RH(t), LM (t), IM (t), NM (t), SE(t)) → (0, 0, 0, 0, N∗
M , S∗

E),

for Rvac < 1. As a consequence, dvH(t)/dt → fHυH(1− VH)− (µH + ωH + αv)VH ,
which implies vH → ρvac. This proves that

(VH(t), IH(t), RH(t), LM (t), IM (t), NM (t), SE(t)) → (ρvac, 0, 0, 0, 0, N∗
M , S∗

E),

and hence, for rM > rthres
M the DFE, PHM

0 is globally asymptotically stable when-
ever Rvac < 1.
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