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A B S T R A C T

In this paper we propose an ecological resilience point of view on cancer. This view is based on the

analysis of a simple ODE model for the interactions between cancer and normal cells. The model presents

two regimes for tumor growth. In the first, cancer arises due to three reasons: a partial corruption of the

functions that avoid the growth of mutated cells, an aggressive phenotype of tumor cells and exposure to

external carcinogenic factors. In this case, treatments may be effective if they drive the system to the

basin of attraction of the cancer cure state. In the second regime, cancer arises because the repair system

is intrinsically corrupted. In this case, the complete cure is not possible since the cancer cure state is no

more stable, but tumor recurrence may be delayed if treatment is prolongued. We review three

indicators of the resilience of a stable equilibrium, related with size and shape of its basin of attraction:

latitude, precariousness and resistance. A novel method to calculate these indicators is proposed. This

method is simpler and more efficient than those currently used, and may be easily applied to other

population dynamics models. We apply this method to the model and investigate how these indicators

behave with parameters changes. Finally, we present some simulations to illustrate how the resilience

analysis can be applied to validated models in order to obtain indicators for personalized cancer

treatments.

� 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The ecological resilience perspective is an emerging approach
for understanding the dynamics of social-ecological systems
(Holling, 1973; May, 1977; Scheffer et al., 2001; Folke, 2006;
Menck et al., 2013; Meyer, 2016). While the stability point of view
emphasizes the equilibrium and the maintenance of present state,
the resilience point of view focus on shifts between alternative
basins of attraction, thresholds, uncertainty and unexpected
disturbances. External forces or random events may cause state
variable perturbations that drive a nonlinear system, which is
initially near a stable state, to enter an undesirable basin of
attraction. In this case, the resilience of the original steady state is
related with the size and shape of its basin of attraction, and the
capacity of the system to persist in this basin of attraction when
subject to state variable perturbations. Three different indicators
are established in the literature as measures of the resilience of a
* Corresponding author.

E-mail addresses: fassoni@unifei.edu.br (A.C. Fassoni),

hyunyang@ime.unicamp.br (H.M. Yang).

Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
Ecol. Complex. (2016), http://dx.doi.org/10.1016/j.ecocom.2016.10.0

http://dx.doi.org/10.1016/j.ecocom.2016.10.003

1476-945X/� 2016 Elsevier B.V. All rights reserved.
stable state with respect to state variable perturbations (Walker
et al., 2004; Mitra et al., 2015): latitude, which is a measure of the
volume of its basin of attraction; precariousness, which is related
with the minimal state space disturbance needed to drive the
system outside its basin of attraction; and resistance, which is a
measure of the deepness of its basin of attraction.

On the other hand, changes in system parameters occur in a
slow time scale, due to evolutionary forces or by modifying the
intensities of interactions and forces governing such system. In this
case, parameters modify the resilience of the system with respect
to state variable perturbations. Further, when parameters do
change enough, the system may undergo several bifurcations and
the phase portrait may change substantially. In this case, one can
measure the resilience of the system with respect to parameters
changes as the distance to the threshold values for which
bifurcations occur. As a consequence of such bifurcations, an
undesirable alternative stable state may be created, and its basin of
attraction can be achieved by state variable perturbations, as
commented above. A more dramatic outcome happens when
parameters changes lead to loss of stability of the original steady
state or even its disappearance. In this case, a regime shift occurs
and the system moves to another state. Now, the question of
ical resilience perspective on cancer: Insights from a toy model.
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reversibility takes place. Of first importance is the question
whether it is possible or not to return the parameters to their
original values. When parameters change due to evolutionary
factors, it is more likely that this change cannot be undone.
Changes due to external forces can be undone more easily through
the correct manipulation of those forces (if possible). However,
even if the original values can by restored, the reversal to the
original stable state may not be completely achieved if the system
exhibits hysteresis.

In this paper we illustrate how these concepts of ecological
resilience can be applied to cancer, a complex disease whose
causes are far from being well understood and whose cure is far
from being achieved. Indeed, despite the intense efforts that led the
elucidation of many biochemical mechanisms developed by cancer
cells to survive (Hanahan and Weinberg, 2011), there is a current
debate on which are the major factors that allow the onset of
cancer cells. While some argue that alterations in intrinsic cellular
processes are the main reasons that some tissues become
cancerous (Tomasetti and Vogelstein, 2015), others defend the
view that most cases of cancer result from extrinsic factors such as
environmental exposure to toxic chemicals and radiation (Wu
et al., 2016). With respect to cancer treatment, although the
development of new drugs and strategies to treat cancer in the last
fifty years achieved good results in many cases, another large
portion of cancer patients did not respond well to treatments, or
presented tumor recurrence, indicating that there is still a long
road in the fight against cancer (Kerbel and Kamen, 2004; Benzekry
et al., 2015).

We propose a simple model for tumor growth and apply the
above concepts to suggest a framework for viewing the arising of
cancer and its effective treatment as critical transitions between
two alternative stable states. In this framework, tumor growth and
tumor treatment depend ultimately on ecological resilience
questions. Further, we briefly review the three resilience indicators
commented above, propose a method to calculate these indicators
and apply this method to the model. As far as we know, this novel
method we propose is simpler and more efficient than those
currently used, and can be applied to other population dynamics
models to improve their analysis through this resilience perspec-
tive.

The paper is organized as follows. In Section 2 the model is
presented. In Section 3 the analysis of the model is performed. In
Section 4, the results are discussed in the ecological resilience
perspective. In Section 5, the method to calculate resilience
indicators is presented and applied to the model. Finally,
conclusions are presented in Section 6.

2. A toy model for tumor growth

We present a simple model consisting of a system of ODEs
describing tumor growth and its effect on normal tissue, together
with the tissue response to tumor. Our goal is not to consider the
several aspects of tumor growth and to reproduce quantitative
behavior with high accuracy, but to use the model to give some
insights through a resilience point of view. The model equations
are given by

dN

dt
¼ rN�mNN�b1NA; (1a)

dA

dt
¼ rAA 1� A

KA

� �
�b3NA�ðmA þ eAÞA; (1b)

where N and A stand for normal and tumor cells, respectively. This
system is a limit case of a three-dimensional model for oncogenesis
encompassing mutations and genetic instability (Fassoni, 2016).
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
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Parameter rN represents the total constant reproduction of
normal cells, and mN is their natural mortality. A constant flux
for normal cells is considered in the vital dynamics, and not a
density-dependent one, like the logistic growth generally
assumed (Gatenby, 1995; Gatenby and Gawlinski, 1996; de
Pillis and Radunskaya, 2001; McGillen et al., 2014). The reason
for this choice is that at a normal and already formed tissue the
imperative dynamics is not the cells intraspecific competition by
nutrients, but the maintenance of a homeostatic state, through
the natural replenishment of old and dead cells (Simons and
Clevers, 2011).

On the contrary, cancer cells have a certain independence on
growth signals released by the tissue and keep their own growth
program, like an embrionary tissue in growth phase (Fedi et al.,
1997). Thus a density dependent growth is considered. Several
growth laws could be used, such as the Gompertz, generalized
logistic, Von Bertanlanfy and others (Sarapata and de Pillis, 2014).
We choose the logistic growth due to its simplicity, and a natural
mortality mA. An extra mortality rate eA due to apoptosis (Danial
and Korsmeyer, 2004) is also included.

Several models for tumor growth consider the phenomena of
tumor angiogenesis, i.e., the formation of new blood vessels to feed
the tumor, in response to signals released by tumor cells (Kerbel,
2008; Yang, 2012). In order to keep the model as simple as possible,
we do not consider angiogenesis here.

Parameter b3 encompasses, in the simplest way, all negative
effects imposed to cancer cells by the many cell types in the normal
tissue. These interactions include the release of anti-growth and
death signals by host cells (Hanahan and Weinberg, 2011), the
natural response of normal cells to the presence of cancer cells, the
competition by nutrients with tumor cells and so on. Similarly,
parameter b1 covers all mechanisms developed by tumor cells
which damage the normal tissue, like increasing local acidity
(Gatenby et al., 2006), supression of immune cells (Facciabene
et al., 2012), release of death signals (Hanahan and Weinberg,
2011), and competition with normal cells.

System (1) is similar to the classical Lotka–Volterra model of
competition (Fassoni et al., 2014), commonly used in models for
tumor growth (Gatenby, 1995; Gatenby and Gawlinski, 1996; de
Pillis and Radunskaya, 2001; McGillen et al., 2014) and biological
invasions (Fassoni and Martins, 2014), but has a fundamental
difference. The use of a constant flux instead a logistic growth to
normal cells breaks the symmetry observed in the classical Lotka–
Volterra model, so that no equilibrium with N = 0 will exist. Thus,
normal cells will never be extinct, on the contrary to those models.
We believe that this is not a problem, but, on the contrary, is a
realistic outcome. Indeed, roughly speaking, cancer ‘wins’ not by
the fact that it kills all cells in the tissue, but by the fact that it
reaches a dangerous size that disrupts the well functioning of the
tissue and threatens the health of the individual. A constant flux
term was already taken in other well-known models for cancer,
specifically, to describe the growth of immune cells (Kuznetsov
et al., 1994; de Pillis et al., 2005; Eftimie et al., 2011).

Let us comment on some resemblance of system (1) with the
well-known system of Kuznetsov et al. (1994), which describes the
interaction between immune cells and cancer cells. In that system,
equation for immune cells has two production terms: a constant
production term (analog to rN here) and a Michaelis–Menten term
representing the recruitment of immune cells due to the presence of
cancer cells. If we remove this second term (letting p = 0 in their
notation), that system becomes equivalent to system (1). Thus, the
immune cells of that model have basically the same behavior of
normal cells in this model, and the unique difference is the
recruitment term. In our model, as the population N is considered as
a pool of many different cell types, from which the immune cells are
a small fraction, it is natural to include in its dynamics only the
ical resilience perspective on cancer: Insights from a toy model.
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common behavior of all these types, disregarding the particularities
of each type.

3. Analysis of the model

We now present the analysis of system (1). Biological
implications are discussed in Section 4.

3.1. Equilibrium points

System (1) has a trivial equilibrium

P0 ¼
rN

mN

; 0

� �
;

and up to two nontrivial equilibria

Pi ¼ ðNi; AiÞ ¼ rN

mN þ b1Ai
; Ai

� �
; i ¼ 1; 2:

Here, A1 and A2 are the roots of the second degree equation

aA2 þ bA þ c ¼ 0; (2)

with coefficients

a ¼ b1rA

KA
> 0; b ¼ lA bth

1 �b1

� �
; c ¼ rN b3�bth

3

� �
:

where

bth
1 ¼

mNrA

lAKA
; bth

3 ¼
mN

rN
lA; and lA ¼ rA�ðmA þ eAÞ: (3)

When A1 and A2 are real, we label them in the order A1 < A2.
Conditions for having positive equilibria P1 and P2 are obtained by
Descartes’ Rule of Signs. Together with the trivial equilibrium P0,
the results are summarized as follows:

(I) If b3 > bth
3 and b1 < bth

1;D, the unique nonnegative equilibrium
is the trivial equilibrium P0.

(II) If b3 > bth
3 and b1 > bth

1;D, three nonnegative equilibria are P0, P1

and P2.
(III) If b3 < bth

3 , the nonnegative equilibria are P0 and P2.
The threshold bth

1;D, defined for b3 > bth
3 , is the value of b1 > bth

1 for
which the discriminant D = b2 � 4ac is zero, and is given by

bth
1;D ¼ bth

1 þ 2h þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðbth

1 þ hÞ
q

; (4)

where h ¼ rArNðb3�bth
3 Þ=ðKAl2AÞ.

The threshold bth
3 can be written as bth

3 ¼ lA=N0, where N0 = rN/
mN is the number of normal cells in the absence of tumor cells. As
we will see, condition b3 > bth

3 implies on more difficult regimes for
cancer to arise. Thus, favorable regimes for tumor growth occur for
larger values of net reproduction rate lA of tumor cells and for
smaller values of carrying capacity of normal cells N0. The
threshold bth

1 for tumor aggressiveness increases as the mortality
mN of normal cells increases, and decreases as the effective carrying
capacity of tumor cells lAKA/rA increases.

3.2. Local stability

Stability of P0 is easily determined. The eigenvalues of the
Jacobian matrix of system (1) evaluated at P0 are given by

l1 ¼ �mN; and l2 ¼
rN

mN

ðbth
3 �b3Þ:
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
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Thus, P0 is locally asymptotically stable if b3 > bth
3 , and is a saddle

otherwise.
We now study the local stability of Pi, i = 1, 2. Using the fact that

Ni and Ai satisfy

lA�
rA

KA
Ai�b3Ni ¼ 0; (5)

we find that the Jacobian matrix of system (1) evaluated at Pi is
given by

JðPiÞ ¼
�b1Ai�mN �b1

b3

lA�
rA

KA
Ai

� �

�b3Ai � rA

KA
Ai

2
664

3
775:

Whenever Pi is a positive equilibrium, the trace of J(Pi) is negative.
Thus, when Pi is positive, both eigenvalues of J(Pi) will have
negative real part if det(J(Pi)) > 0, and will have opposite signs in
the other case. Calculating the determinant we obtain

detðJðPiÞÞ ¼ Ai 2
b1rA

KA
Ai þ

mNrA

KA
�b1lA

� �
¼ Aið2aAi þ bÞ;

where a and b are the coefficients of (2). We have that
A1;2 ¼ ð�b�

ffiffiffiffi
D
p
Þ=2aÞ, with A1 < A2, where D is the discriminant

of (2). Thus, whenever Pi is a positive equilibrium, i = 1, 2,

detðJðP1ÞÞ ¼ �A1

ffiffiffiffi
D

p
< 0; and detðJðP2ÞÞ ¼ A2

ffiffiffiffi
D

p
> 0:

Thus, P1 will be a saddle point whenever it is positive (case II
above), and P2 will be stable whenever it is positive (cases II and III
above).

3.3. Asymptotic behavior and global stability

Let us show the boundedness of trajectories of (1). By noting
that

dN

dt
�rN�mNN;

and

dA

dt
�lAA 1� rA

lAKA
A

� �
;

we may apply classical comparison principles (Cantrell and Cosner,
1996) and conclude that all solutions (N(t), A(t)) with non-negative
initial values remain restricted in the box

B ¼ 0;
rN

mN

� �
� 0;

lA
rA

KA

� �
(6)

when t ! 1.
In order to rule out periodic orbits for system (1) we apply the

Dulac Criterion (Strogatz, 2001) with u(N, A) = 1/NA, obtaining

r� 1

NA

dN

dt
;
dA

dt

� �� �
¼ � rANA þ KArN

KAAN2
< 0

for (N, A) 2 B. Thus, system (1) has no periodic orbits.
By the Poincaré–Bendixson Theorem we conclude that all

trajectories converge to an equilibrium point (Strogatz, 2001). It
implies that equilibria P0 and P2 are globally stable in cases I and III,
respectively (in the latter, P2 is globally stable for initial conditions
ical resilience perspective on cancer: Insights from a toy model.
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Fig. 1. Left: Regions I, II and III in the b3 � b1 plane of parameters space, together with equilibria behavior. If b1 < bth
1 , a direct transition from III to I occurs as b3 increases, with

a transcritical bifurcation between P0 and P2 when b3 ¼ bth
3 . If b1 > bth

1 , a transition from III to II and a transcritical bifurcation between P0 and P1 occurs at b3 ¼ bth
3 ; a second

transition, from II to I, occurs when b3 ¼ bth
3;D , with a saddle-node bifurcation between P1 and P2 (for an expression and details about bth

3;D , see Section 4). Right: bidimensional

diagram of the A coordinates of equilibria P2 (red, stable), P1 (orange, unstable) and P0 (blue, stable for b3 > bth
3 ), when b3 and b1 vary. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of the article.)

Fig. 2. Solutions of system (1) when parameters correspond to regimes II (A) and III (B), using values in Table 1. Initial conditions are N(0) = rN/mN � A0 and A(0) = A0,

representing that the tissue was initially at its homeostatic state when A0 cells have become cancerous. The values of A0 are: (A) A0 = 0.06 � 108 cells and A0 = 0.07 � 108 cells;

(B) A0 = 1 cell and A0 = 0.07 � 108 cells. In the left panel, the gray dotted curve represents the separatrix between the basins of attraction of P0 and P2. The green and blue

numbers indicate the time (in years) corresponding to the trajectory. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of the article.)
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A(0) > 0, since the N axis is the stable manifold of P0). In case II, the
plane N � A is divided in the basins of attraction of P0 and P2. The
stable manifold of P1 is the separatrix between these basins. All
these results are summarized in Theorem 1.

Theorem 1. System (1) has the following behavior:

I) If b3 > bth
3 and b1 < bth

1;D, then P0 is globally stable.

II) If b3 > bth
3 and b1 > bth

1;D, then P0 and P2 are locally stable.

Equilibrium P1 is a saddle point whose stable manifold is the

separatrix between the basins of attraction of P0 and P2.

III) If b3 < bth
3 , then P2 is globally stable for initial conditions A(0) > 0.

The division of the b1 � b3 plane into regions I, II and III is
showed in Fig. 1.

3.4. Numerical simulations

We now present numerical simulations in order to stimulate
discussions in next sections. Fig. 2 shows simulations of system (1)
in cases II and III. Parameters values were based on data from the
literature, specially for breast cancer, according to the procedure
below. A summary of the parameter values is presented in Table 1.

We assume that the lifetime of a normal cell is 100 days, thus
mN = 1/100 days�1. The number of normal cells in the breast cannot
pass N0 = 108 cells (Spencer et al., 2004). Thus, in order to adjust the
equilibrium rN/mN of normal cells in the absence of cancer to be
108 cells, we consider rN = 106 cells/day. For cancer cells, we
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
Ecol. Complex. (2016), http://dx.doi.org/10.1016/j.ecocom.2016.10.0
assume the same natural mortality, mA = 1/100 days�1. For the
apoptotic rate of A cells, we use eA = 1/100 days�1. The ratio birth

rate/death rate is 1 for a normal tissue, in order to maintain a
homeostatic state. Following Spencer et al. (2004), we assume that
cancer cells have increased this ratio by a factor of five. Thus, we
have rA = 5/100 days�1. In order to have the maximum number of
cancer cells being 75% of the normal cells, we consider
KA = 7.5 � 107. The values of interacting parameters b1 and b3,
in units of cell�1 day�1, are unknown a priori but, by substituting
the values of other parameters, we obtain the thresholds for b1 and
b3: the threshold bth

3 which separates cases II and III has the value
bth

3 ¼ 0:30�10�9. So, we assume two possible values for b3:
bIII

3 ¼ 0:28�10�9, and bII
3 ¼ 0:32�10�9. Each of these values will

originate a different behavior of system (1) (see Fig. 1). If b3 ¼ bIII
3

we are in case III, for every value of b1. If b3 ¼ bII
3, we have

bth
1;D ¼ 0:37�10�9, so we assume b1 ¼ 0:40�10�9 > bII

3, which is
reasonable since cancer cells are supposed to cause more damage
to normal cells than the contrary. With these values we are in case
II. In all numerical simulations in this paper, we use these
parameter values, and b3 ¼ bIII

3 or b3 ¼ bII
3, depending on the

interest to simulate cases III or II.

4. An ecological resilience perspective on cancer

We now discuss the biological implications of the previous
analysis. Our look to system (1) as being a simple cartoon, a toy
model of the underlying system governing tumor growth in a
cancer patient and thus we apply the perspective of ecological
resilience to discuss the above results. Although this is a rough
approximation, it may be instructive illustration on our
ical resilience perspective on cancer: Insights from a toy model.
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Table 1
Parameters description and values adopted in simulations.

Parameter Description Value

mN 1/mN is the lifetime of a normal cell 0.01 day�1

rN Total constant reproduction of normal cells 106 cell day�1

rA Tumor cells growth rate 0.05 day�1

KA Tumor carrying capacity 0.75 � 108 cells

mA Natural mortality rate of cancer cells 0.01 day�1

eA Extra mortality rate of cancer cells 0.01 day�1

b1 Cancer cells aggressiveness 0.40 � 10�9 cell�1 day�1

bII
3 Tissue response to cancer cells – case II 0.28 � 10�9 cell�1 day�1

bIII
3 Tissue response to cancer cells – case III 0.32 � 10�9 cell�1 day�1
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understanding of cancer onset and cancer treatment. By cartoon or
an approximation, we mean that the underlying system of cancer
in real life, despite being very complex, may present three
qualitative distinct regimes, corresponding to regimes I, II and III of
system (1). In this analogy, an equilibrium state corresponding to
the presence of a tumor is not necessarily a static equilibrium, but a
state of the system where a tumor is growing and developing. Let
us discuss the differences between these regimes.

4.1. Cancer onset as a critical transition

Initially, we look to cancer onset as a critical transition. Let us
first comment on the ‘natural repair system of the patient’, a
mechanism which is operated at a variety of levels and by many
agents. In the tissue level, it is operated by the immune system,
through lymphocytes and natural killer cells for example (Vivier
et al., 2012). The presence of cancer cells at a given site stimulate
the locomotion of immune system cells to that site in order to
eliminate the cancer cells. At the cellular level, many cell
components watch some parameters of the own cell and its
neighbors, as DNA integrity, the products of cellular metabolism,
the concentration of growth factors, etc. When abnormal condi-
tions are detected, the cell may kill itself through apoptosis (Danial
and Korsmeyer, 2004), or the normal cells may release death or
inhibitor factors to control the undesired growth (Hanahan and
Weinberg, 2011). In system (1), these mechanisms are roughly
described by parameters b3 and eA. These are the parameters most
subject to changes in a slow-time scale, through the multistep
process of genetic alterations which transform the descendants of
a normal cell into a malign tumor (Hanahan and Weinberg, 2011).
Parameter b1 is also thought to be a varying parameter in this slow-
time scale, since it encompasses the many types of negative
interactions which cancer cells impose to the host tissue, especially
due to changes in their metabolism which increase local acidity or
lead to starvation of oxygen and nutrients for normal cells.

In the first regime (region I), we have a healthy person, since P0

is globally stable. In this case, we have an efficient tissue repair
system, since condition b3 > bth

3 can be written as

b3 þ eA
mN

rN
>

mN

rN
ðrA�mAÞ:

Further, we have a limited aggressiveness of cancer cells, b1 < bth
1;D.

This condition depends also on b3, because bth
1;D depends on b3 (see

Fig. 1, left). Therefore, for a fixed b1, condition b1 < bth
1;D is

equivalent to b3 > bth
3;D, where bth

3;D is the inverse function of bth
1;D.

Thus, for each level of aggressiveness of cancer cells, i.e., for each
fixed b1, we have a second threshold, bth

3;D, that the tissue response
b3 must be above in order to completely eliminate the chance of
cancer. The more aggressive are the cancer cells, the higher is the
threshold bth

3;D. Thus, region I corresponds to parameters such that,
although new mutant cells may arise all the time, they are not so
much aggressive and the intrinsic repair system is capable to
eliminate them.
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
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In the second regime (region II), we have the possibility of
having cancer, since P0 and P2 are both stable. Condition b3 > bth

3

implies that the tissue response is efficient, but condition b1 > bth
1;D,

which is equivalent to b3 < bth
3;D, implies that this response is not

completely capable to face the aggressiveness of cancer cells. Thus,
region II corresponds to a partially corrupted repair system due to
the aggressiveness of cancer cells. In this region, the resilience of
the cancer cure equilibrium P0 plays an important role. The
survival and installation of a tumor mass depend on factors which
favor the mutations from normal to cancer cells, such as increased
genetic instability and/or exposure to external carcinogenic agents
(Negrini et al., 2010). These factors can lead to an increase in the
initial conditions of cancer cells and allow them to surpass the
threshold separating the basins of attraction of P0 and P2 (see Fig. 2
left). Therefore, it is important to analyze how the resilience of P0

behave as key parameters are changed. In the next section we
develop this ‘resilience analysis’. We refer to Fassoni (2016) for a
model that comprises an intermediary pre-cancer population that
continuously ‘feed’ the population A with new individuals.

Finally, case III represents a dramatic corruption of the repair
system, b3 < bth

3 . Now, the cancer equilibrium P2 is globally stable,
and the onset and development of cancer are possible for any
initial number of cancer cells. However, distinct quantitative
behaviors may be observed, depending on the initial number of
cancer cells. In Fig. 2 we see that the time at which the tumor
reaches a detectable size (approximately 106 cells (Schabel, 1975))
is more than ten years if a single mutant cell arises. As the number
of initial cancer cells increases, this time decreases.

We present in Fig. 3 bifurcation diagrams when b3 and b1 vary.
When b3 varies with b1 fixed, two different cases occur (Fig. 3, top
panels). In the case (i), the tumor is not much aggressive to normal
cells, b1 < bth

1 , and we have a transition between regimes I and III
through a transcritical bifurcation. In case (ii), the tumor is very
aggressive, b1 > bth

1 , and we have transitions from regimes I to II
(saddle-node bifurcation) and from II to III (transcritical bifurca-
tion). Before entering in regime III, there is a previous and
additional interval, bth

3 < b3 < bth
3;D that allows cancer onset

depending on initial conditions (regime II). The comparison of
cases (i) and (ii) contributes to the debate of whether intrinsic or
extrinsic factors are the major responsible for cancer onset (Wu
et al., 2016; Tomasetti and Vogelstein, 2015). Due to the possibility
of a direct transition from regime I to II when b1 > bth

1 , we conclude
that extrinsic factors appear to be the major cause of aggressive
tumors, but combined with small contribution of intrinsic factors
(b3 < bth

3;D). On the other hand, the possibility of direct transition
from I to III in case (i) implies that non-aggressive tumors may arise
due to intrinsic factors only.

When b1 varies while b3 is kept constant, we have a different
effect (Fig. 3, bottom panels). In the case when the tissue response
to tumor is low, b3 < bth

3 , no bifurcation occurs and we remain in
regime III for all b1. In the second case, the tissue response is high,
b3 > bth

3 , and a transition between regimes I and II occurs through a
saddle-node bifurcation. We remain in regime II for all values of
ical resilience perspective on cancer: Insights from a toy model.
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Fig. 3. Top: bifurcation diagrams of coordinate A of equilibrium points when b3 varies, with b1 < bth
1 (left), and b1 > bth

1 (right). Down: bifurcation diagrams when b1 varies,

with b3 < bth
3 (left), and b3 > bth

3 (right). Continuous plot corresponds to stable equilibrium, while dashed plot corresponds to unstable equilibrium. These diagrams are

particular cases (horizontal sections i and ii and vertical sections a and b) of the bidimensional one, shown in Fig. 1.
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b1 > bth
1;D, and no transition to regime III occurs, on the contrary to

case (b) when b3 varies with a high aggressiveness of tumor.
Comparison of diagrams (ii) and (b) lead to an interesting
conclusion. While normal cells are able with their own character-
istics (strong repair system) to guarantee tissue integrity against
aggressive tumors, aggressive cancer cells, on the other hand,
depend on genetic instability (initial conditions) when fighting
aggressive normal cells.

4.2. Cancer treatment as an attempt to allow a critical transition

Now, let us consider cancer treatment. We focus on application
of chemotherapy due to its wide use, but some of the general
results may be extended to other types of treatment, like
radiotherapy or surgery. A simple way to include chemotherapy
Fig. 4. Solutions of system (7) when parameters correspond to regime II, with the numb

(dotted). Initial conditions were (A(0), N(0)) = P2, representing that the treatment was in

(large blue) numbers on phase portrait indicate the time in months (weeks) in which the 

separatrix between the basins of attraction of P0 and P2. (For interpretation of the refer

article.)
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in system (1) is to consider the following equations:

dN

dt
¼ rN�mNN�b1NA�aNgNND (7a)

dA

dt
¼ rAA 1� A

KA

� �
�ðmA þ eAÞA�b3NA�aAgAAD (7b)

dD

dt
¼ vðtÞ�gNND�gAAD�tD: (7c)

Here, D is the chemotherapeutic drug. It is administered
according to a treatment function vðtÞ, and has a clearance rate t.
The terms gNND and gAAD describe drug absorption by normal and
cancer cells, while the killing terms aAgAAD and aNgNND follow the
log-kill hypotheses. This is based on an analogy with the mass
er of doses given by n = 4 (continuous), n = 5 (dashed), n = 6 (dot-dashed) and n = 7

itiated only after the tumor reached the steady state P2. In panel (A), the small black

solution was at each point. In panels (A) and (B) the gray dotted curve represents the

ences to color in this figure legend, the reader is referred to the web version of the
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Fig. 5. Solutions of system (7) when parameters correspond to regime III, with the number of doses given by n = 4 (continuous), n = 5 (dashed), n = 6 (dot-dashed) and n = 7

(dotted). Initial conditions were (A(0), N(0)) = P2, representing that the treatment was initiated only after the tumor reached the steady state P2. In panel (A), the small black

(large blue) numbers on phase portrait indicate the time in months (weeks) in which the solution was at each point. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of the article.)
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action law, and states that the exposure to a given amount of drug
kills a constant fraction of the cell population (Benzekry et al.,
2015). The treatment function can be described as a finite sum of
Dirac Deltas,

vðtÞ ¼
Xn

i¼1

rdðt�iTÞ;

which represents n doses of r mg of drug each, each T days. Figs. 4
and 5 show simulations of system (7) in cases II and III respectively.
In these simulations, we assumed the values t = 2.5 day�1,
gA = 0.3 � 10�8 cell�1 day�1, and aA = 0.5 � 108 cell mg�1 and
gN = 0.6gA and aN = 0.6aA, since the chemotherapeutic agent is
supposed to be more specific to cancer cells than normal cells. The
values for gA and aA were taken arbitrarily, but with a order of
magnitude coherent with other parameters and with the expected
behavior for system (7). The treatment parameters were r = 10 mg,
T = 7 days, and n = 4, 5, 6, and 7 doses.

More important than the form used to modeling the treatment
vðtÞ, the general property is that all chemotherapeutic treatments
cease after some time tf > 0, i.e., vðtÞ ¼ 0 for all t > tf. Thus,
D(t) � � tD and so D ! 0 when t ! 1. Therefore all solutions of

system (7) approach solutions of system (1) when t ! 1. This fact
have an important consequence in our ecological perspective. In
the real system underlying tumor growth, the treatment would
have only the effect of state space disturbance, without altering the
intrinsic dynamics. This important feature reveals that the
possibility of cure, above all, concerns questions of stability and
resilience. Figs. 4 and 5 provide an illustration of this fact.

If tumor growth in a patient is described by some underlying
dynamical system which does not have a cancer cure stable
equilibrium, then a complete cure is not possible. This is what
happens in case III, due to the weakness of the repair system,
and it is illustrated in Fig. 5. After getting near this equilibrium
through the treatment, the system moves back to the cancer
equilibrium, even if it takes a long time. Thus, it is necessary a
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
Ecol. Complex. (2016), http://dx.doi.org/10.1016/j.ecocom.2016.10.0
systemic change that alters the dynamics permanently. Howev-
er, as also shown in Fig. 5, even in this regime of instability of
the cure equilibrium, treatment may lead to large time survival.
Indeed, the closer the system approaches the cure equilibrium,
the longer it takes to tumor recurrence be observable. This fact is
related with the large time necessary to pass through a saddle-
point.

On the other hand, even if the system has a cancer cure stable
equilibrium, as in case II here, the treatment may be ineffective if
the solution does not achieve the basin of attraction of the cure
equilibrium. It is the case of simulation with n = 4 in case II, shown
in Fig. 4. In other words: a necessary condition to a treatment be
effective is that the underlying system must have a stable cancer
cure equilibrium; and the sufficient condition for the treatment be
effective is that the treatment must move the trajectory to the
basin of attraction of this equilibrium (simulations with n = 5, 6,
and 7 in case II). Once it has been reached, the treatment can stop,
since the patient own repair system will eliminate the reminiscent
cancer cells, and move the trajectory in direction to the cure
equilibrium. Thus, the resilience of cancer equilibrium plays an
important role: if this equilibrium has a large and deep basin, and is
located at a large distance from the basin boundary, then more
doses, or more intense doses, will be necessary in order to make the
treatment to be effective. Further, it also suggests a mechanism
through which two individuals with similar diagnosis and
treatments may have different fates: some of those treatments
which end very near the separatrix (simulation with n = 5 in Fig. 4)
may become ineffective due to stochastic fluctuations which can
drive the system to the cancer basin again, while other may
continue in the cure basin. This indicates that truly effective
treatments should drive the system to a safe distance from the
boundary of the basin. This rationale agrees with the fact that
treatments which consist of single surgery or radiotherapy (which
would correspond to large state space disturbances) must be
reinforced by subsequent adjuvant treatment in order to preclude
tumor relapse (Stupp et al., 2005).
ical resilience perspective on cancer: Insights from a toy model.
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Fig. 6. An ecological view on cancer onset and treatment as the switching between two states, a cancer cure state (positions of blue balls) and a cancer state (positions of red

balls). Perturbations on state variables are due to exposure to external carcinogenic factors and genetic instability (small red arrows), which favor the moving in the direction

to the cancer state, or to chemotherapy, radiotherapy and surgery (small blue arrows), which move the system towards the cancer cure equilibrium. Perturbations in

parameters (large arrows) lead to transitions between the three different regimes (I, II and III), and may create or destroy equilibria, or lead to changes of stability in these

equilibria, what can make impossible either the cure or the onset of cancer. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of the article.)

A.C. Fassoni, H.M. Yang / Ecological Complexity xxx (2016) xxx–xxx8

G Model

ECOCOM-608; No. of Pages 13
5. Resilience analysis

The ecological point of view on cancer discussed above is
illustrated through the stability landscape in Fig. 6. In this
stability landscape, the creation of the cancer equilibrium and
the loss of stability by the cancer cure equilibrium (large red and
orange arrows) is achieved by the sequential acquiring of
genetic alterations that improve the fitness of cancer cells (the
hallmarks of cancer (Hanahan and Weinberg, 2011)), both by
deregulating mechanisms of control or by creating mechanisms
which favor cancer cell functions. The transition from I to III
(large orange arrow) occurs only if tumor aggressiveness is low.
Destruction of cancer equilibrium and creation of stability of the
cancer cure equilibrium (opposite directions of large red and
orange arrows) will be achieved only by a permanent change in
the intrinsic system, through, for instance, restoring the control
systems (immunostimulation for example) or by limiting cancer
cells functions (continuous anti-angiogenic treatments for
example, which would decrease the value of KA in theory).
Finally, combination of small changes in parameters with
perturbations on state variables also have a fundamental role,
since the former can diminish the basin of attraction while the
latter push the system to cross the basin boundary.

Let us analyze the effect of parameters changes on the
resilience of stable equilibria of system (1), i.e., on size and shape
of their basins of attraction. To perform this analysis we briefly
review the measurements which may be of importance when
analyzing the resilience of an equilibrium (Mitra et al., 2015;
Meyer, 2016; Walker et al., 2004; Menck et al., 2013). As far as we
know, very few papers have dealt with this kind of analysis for
population dynamics models (Mitra et al., 2015; Fassoni et al.,
2014; Fassoni and Martins, 2014), although it is not an uncommon
approach for systems modeling power grids (Menck et al., 2013).
Recently, Mitra et al. applied these measures to the nonlinear
pendulum, the daisy-world model, and to an one-dimensional
model of desertification in Amazon forest (Mitra et al., 2015). Also,
as far as we know, the methods provided here to calculate these
measures are novel and more efficient than the currently used
ones, which consist in integrating the system at many points of the
phase space, assigning each point to some basin of attraction.
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
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Throughout this section, we represent a point with coordinates N

and A by X = (N, A).

5.1. The latitude L(P) of an equilibrium point

The latitude of an equilibrium point corresponds to the
volume of the basin of attraction. It measures the resilience of
that equilibrium with respect to state-space perturbations. The
larger the latitude of an equilibrium, the smaller is the chance
that external or probabilistic events will drive the system
outside the basin of attraction. For two-dimensional systems,
the latitude corresponds to the area of the basin of attraction.
However, as it may happen that the basin of attraction has
infinite area, it may be the case to consider its area inside a
relevant bounded region. In the case of system (1), all
trajectories remain in the box B given in (6). This box could
be this bounded region of interest. However, biological relevant
perturbations of P2 = (N2, A2) will diminish the value of both
coordinates, and relevant perturbations of P0 = (rN/mN, 0) will
diminish the first coordinate and increase the second one. Thus,
we consider the smallest box C which contains P0 and P2 as our
bounded region of interest. It is clear that C = [0, rN/mN] � [0,
A2] . Thus, if AðPÞ denotes the basin of attraction of P, then the
latitude of P in our case is defined by

LðPÞ ¼ Area AðPÞ \ Cð Þ
Area Cð Þ : (8)

We divide by the total area of C to obtain a non-dimensional
quantity normalized between 0 and 1. In the case when system
presents bistability (region II of parameters space) it is clear that

LðP0Þ þ LðP2Þ ¼ 1:

Extreme cases are regions I and III. In region I, when P0 is globally
stable, we have

LðP0Þ ¼ 1; LðP2Þ ¼ 0;

In region III, when P2 is globally stable,
ical resilience perspective on cancer: Insights from a toy model.
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LðP0Þ ¼ 0; LðP2Þ ¼ 1:

We present a simple and efficient method to calculate L(P) for
two dimensional systems. It consists of two steps. The first step is
to obtain the terms of a series expansion for a parametric
representation for the stable manifold of saddle point in a two-
dimensional system. The second step involves the use of Green’s
Theorem to transform the area of the basin of attraction in a line
integral calculated along the stable manifold approximated in the
first step.

Summary of first step Let X* be a saddle point of the two-
dimensional system

X0 ¼ FðXÞ; X 2 R2;

where F is a C1 vector field. In the vicinity of X*, this system can be
re-written as

X0 ¼ JðX�X�Þ þ GðXÞ;

where GðXÞ ¼ OðjjX�X�jj2Þ and J = F0(X*) is the Jacobian matrix
evaluated at X*. Let J = MKM�1 its Jordan decomposition, with

K ¼ k11 0
0 k22

� �
;

where k11 and k22 are the eigenvalues of J and satisfy k11 < 0 < k22,
since X* is a saddle-point. With the change of coordinates

U ¼ M�1ðX�X�Þ;

the previous system becomes

U0 ¼ KU þ RðUÞ;

where RðUÞ ¼ M�1GðX� þ MUÞ ¼ OðjjUjj2Þ. This system can be
written in coordinates U ¼ ðu; vÞ as

u0 ¼ f ðu; vÞ; v0 ¼ gðu; vÞ:

The origin is a saddle point for this system. Its stable manifold is
tangent to v ¼ 0, and is locally the graph of a function v ¼ pðuÞ.
Substituting it into v0 ¼ gðu; vÞ we obtain a nonlinear ODE for p(u):

p0ðuÞf ðu; pðuÞÞ ¼ gðu; pðuÞÞ:

Although this ODE cannot be solved in general, we can write a
series expansion

pðuÞ ¼ c2u2 þ c3u3 þ � � �

and solve term by term, obtaining the coefficients cj recursively.
For large k, the truncated polynomial pk(u) = c2u2 + � � � + ckuk

provides a good approximation manifold near the origin. Returning
to the original coordinates,

skðuÞ ¼ X� þ M u; pkðuÞð ÞT

is a parametric approximation of the stable manifold of X*, for small
jjujj.

Summary of the second step Now we explain how to calculate

LðPÞ ¼ Area AðPÞ \ Cð Þ
Area Cð Þ ¼

RR
AðPÞ \ CdAdNRR

CdAdN
: (9)

The infinitesimal area element is denoted by dAdN. The integral in
the denominator is easy to calculate in general; in our case C is a
rectangle. The difficulty lies in calculating the integral in the
numerator. However, it can be easily calculated by using the
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
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approximation of the stable manifold obtained in the previous step
and Green’s Theorem. Indeed, the boundary of the region R ¼
AðPÞ \ C is formed by four curves, @R ¼ S [ L1 [ L2 [ L3, where S is
the part of the stable manifold of P1 which is contained in C, and Li,
i = 1, 2, 3, are line segments contained in the boundary of C. By
Greens’ Theorem, the integral can be written as

Z Z
AðPÞ \ C

dAdN ¼
I

@R
NdA ¼

Z
S
NdA þ

X3

i¼1

Z
Li

NdA;

with the correct orientation defined for these curves. The
summation terms are easily computed, and a good approximation
for the integral in S is given by using the parametric approximation
obtained in the first step. With this approach, we have a very good
approximation of L(P).

Let us comment on the applicability of this method. First of all,
the method works when the separatrix is formed by invariant
manifolds of saddle points (Chiang et al., 1988). If many saddle
points lie in the boundary, then the first step needs to be applied to
each point. Second, the bounded region C must be such that its area
is easily calculated. These first two requirements are very general
(Chiang et al., 1988). The last and most restrictive condition is that,
for each saddle point in the separatrix, the local approximation
obtained in the first step must be a good approximation at all
points inside C. The method fails when this requirement is not
satisfied. In our case, for parameters values in Table 1, the
approximation for the stable manifold of P1 with 25 terms was
obtained in a few seconds by Mathematica�, and provided a very
good approximation for points inside C. The separatrix in Figs. 2, 4
and 7 was plotted with this approximation.

5.2. The precariousness Pr(P) of an equilibrium point

Another important measure is the precariousness of an
equilibrium point. Roughly speaking, it is defined as the minimum
perturbation required to drive the system to another basin of
attraction. As a basin of attraction of interest may be large but the
equilibrium may be located near the boundary, the precariousness
is an important measure. It can be defined as

PrðPÞ ¼ inffdistðP; XÞ; X 2 @AðPÞg;

where @V stands for the boundary of the set V, and dist(X, Y) is the
Euclidean distance. However, it may happen that perturbations of
relevance may not occur in the direction where this minimum
distance is achieved. Thus, one can consider

PrðPÞ ¼ inffdistðP; XÞ; X 2 @AðPÞ \ ZðPÞg;

where Z(P) is a specified set containing the relevant directions for
perturbations from P (Meyer, 2016). For system (1), all relevant
perturbations of P2 will diminish both coordinates. Thus we define

PrðP2Þ ¼ inffdistðP2; XÞ; X 2 @AðP2Þ \ ZðP2Þg; ZðP2Þ

¼ ½0; N2��½0; A2�: (10)

Let us now consider which are the relevant perturbations of P0. As
new cancer cells may arise in the tissue, we may consider
perturbations which increase the value of A. Thus, it would be the
case to consider a single direction,~v1 ¼ ð0; 1Þ. However, as cancer
cells arise during mitosis, roughly speaking, the number of normal
cells diminish by one when a cancer cell arises. Thus, it would be
the case to consider the direction given by~v2 ¼ ð�1; 1Þ: Therefore,
we consider all directions between ~v1 and ~v2, giving us the set
above the line N + A = rN/mN (which passes through P0 and is
parallel to~v2) and to the left of the vertical line N = rN/mN (which
passes through P0 and is parallel to ~v1). Thus, the expression of
Z(P0) is
ical resilience perspective on cancer: Insights from a toy model.
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Fig. 7. Phase portrait of system (1). Z(P2) is the box with P2 in one of the vertices. Z(P0) is the triangular region with P0 in its vertices. The blue points are the nearest points of P0

and P2 inside regions Z(P0) and Z(P2) respectively. The intensity of color on background correspond to the value of the local resistance R(N, A) defined in Section 5.3. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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ZðP0Þ ¼ fðN; AÞ 2 R2
þ; N þ A 	 rN=mN; N�rN=mNg:

An illustration of regions Z(P0) and Z(P2) can be seen in Fig. 7.
In extreme cases I and III we do not have bistability, and Pr(P)

must be defined appropriately. In case III, when P2 is globally
stable, we define Pr(P2) as the tumor volume, Pr(P2) = A2, meaning
that the removal of the entire tumor leads the system outside the
basin of attraction of P2. Indeed, this removal leads the system to
the N-axis, which is the invariant manifold of P0. Analogously, in
case I, when P0 is globally stable, we define Pr(P0) = N0. However, in
this case the A-axis is not invariant, and another choice would be
Pr(P0) =1.

The result obtained in the first step of the previous section can
be used to calculate the precariousness of an equilibrium
straightforwardly. In our case, let skðuÞ ¼ ðs1

kðuÞ; s2
kðuÞÞ be the

approximation for the stable manifold of P1 obtained in that step.
To calculate Pr(P0), for instance, we first find the interval I0 of
values of u such that sk(u) 2 Z(P0). The solution u1 of equation

sð1Þk ðu1Þ ¼ rN=mN

is the value of u such that sk(u) lies in the vertical line N = rN/mN.
The solution u2 of

sð1Þk ðu2Þ þ sð2Þk ðu2Þ ¼ rN=mN

is the value of u such that sk(u) lies in the line N + A = rN/mN. Thus, u1

and u2 are the extrema of interval I0. With this, Pr(P0) is obtained by
solving the minimization problem

min jjsnðuÞ�P0jj
u 2 I0

which can be easily solved. The precariousness of P2 is calculated in
an analogous way.

5.3. The resistance R(P) of an equilibrium point

Finally, the third important measure concerning resilience of an
equilibrium is termed as the resistance of this equilibrium. It refers
to ‘‘the ease or difficulty of changing the system, related to the
topology of the basin – deep basins of attraction indicate that
greater forces or perturbations are required to change the current
state of the system away from the attractor’’ (Walker et al., 2004).
Thus, a resistant system will overcome perturbations rapidly,
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
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while a system with small resistance can be driven to a basin
transition through a series of small perturbations that are not
absorbed enough. This description concerns exactly the illustration
provided by Fig. 4. There, if P2 is more resistant, more
chemotherapeutic doses, or more intense doses, would be
necessary to drive the system to the basin of attraction of P0.

The task of characterizing the sizes and frequencies of
perturbations that a basin of attraction can absorb is currently a
research area (Meyer, 2016). Recently, Mitra and others (Mitra
et al., 2015) proposed an approach to measure the resistance of a
point in state-space to local pertubations using local Lyapunov
exponents (Abarbanel et al., 1991). Again, consider the two-
dimensional system

X0 ¼ FðXÞ;

where F is a C1 vector field. The instantaneous Jacobian matrix at X is
defined as

J dtðXÞ ¼ I2�2 þ JðXÞdt;

where J(X) is the Jacobian at X and dt is an infinitesimal time. Let
si(X), i = 1, 2, be the square roots of the eigenvalues of the right
Cauchy–Green tensor J dtðXÞTJ dtðXÞ. The si(X)’s are also the
singular values of J dtðXÞ. They measure the instantaneous
stretching of the neighborhood of the trajectory at X. The local
Lyapunov exponents evaluated at the state X are defined as

liðXÞ ¼ 1

dt
ln siðXÞð Þ; i ¼ 1; 2;

and measure the rate of stretching at X. The local resistance R(N, A)
at the state X = (N, A) may be defined as

RðXÞ ¼ �maxfl1ðXÞ; l2ðXÞg: (11)

Thus, the resistance of an equilibrium point can be measured as

ResðPÞ ¼
RR
AðPÞ \ CRðN; AÞ dNdARR

CRðN; AÞ dNdA
: (12)

The division by the total resistance on C is made to obtain a non-
dimensional quantity normalized between 0 and 1.

For system (1), analytical expressions for li(X), i = 1, 2, at state
X = (N, A) can be calculated using Mathematica�. The density plot
of R(N, A) is showed in Fig. 7. With these expressions, we can
ical resilience perspective on cancer: Insights from a toy model.
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Fig. 8. Values of L(Pi) (top), Pr(Pi) (center) and Res(Pi) (bottom), i = 0, 2, as b3 varies,

with b1 > bth
1 , which corresponds to the bifurcation diagram (ii) in Fig. 3 (top, right).

As b3 varies, we observe transitions between regimes III, II and I.
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calculate integrals in (12). The unique concern is with respect to
the region of integration in the first integral, AðPÞ \ C. However,
this integral can be calculated using the approximations for the
stable manifold of P1 obtained in the first step of Section 5.1.

5.4. Application of resilience analysis to system (1)

We analyze the behavior of the above measures when
parameters of system (1) vary. Fig. 8 shows the results when b3

varies while other parameters are kept constant, with b1 > bth
1 ,

which corresponds to bifurcation diagram (ii) in Fig. 3 (center),
where a transition I–II–III is observed. Results when other
parameters vary are similar (not shown here).

To discuss these results, we first consider the point of view of
cancer onset and analyze the resilience measures of P0. In region I,
P0 is globally stable and all these measures are equal to the unity.
When b3 becomes lesser than bth

3;D and enters region II, equilibrium
P0 is no longer globally stable, and its resilience measures undergo
an abrupt jump and decay rapid in a small strip near bth

3;D. The most
notorious jump occurs with Pr(P0). For values in the midpoint
between the two thresholds separating region II from regions I and
III, the values of Pr(P0) and L(P0) are very small. These features are
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
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due to the convex shape of the graphs of L(P0), Pr(P0) and Res(P0),
and indicate that in the bistable regime the healthy state P0 is
threatened by small disturbances which may easily drive the
system to the basin of attraction of P2.

On the other hand, let us consider the point of view of
treatment, and discuss the results concerning P2. In regime III, this
equilibrium is globally stable and L(P2), Pr(P2) and Res(P2) are equal
to the unity. As b3 becomes larger than bth

3 , these measures decay
very slowly and are greater than the respective measures of P0,
until b3 reaches the small strip near the next threshold, bth

3;D. Now,
these features are due to the down-concave shape of the graphs,
and implicate that P2 is relatively protected against small
perturbations.

By comparing these differences on the resilience measures of P0

and P2 we conclude that it is much more easy to drive the system
outside the basin of attraction of the cure equilibrium P0 when it
loses its global stability, than driving the system out of the basin of
attraction of the cancer equilibrium P2 when it reaches the bistable
regime, unless the parameters get very near the next bifurcation
threshold at which P2 loses its stability. In other words, our analysis
reveals that, in the bistable regime, although these are different
phenomena, it is more likely that mutations or exposure to
carcinogenic factors drive cancer onset than chemotherapy,
surgery or radiotherapy lead to tumor regression.

5.5. The potential of resilience analysis to personalize cancer

treatments

We now illustrate how the resilience analysis can be used to
obtain quantitative measures from models and use them as
indicators to design personalized treatments.

Fig. 9 illustrates how small differences in parameters lead to
differences in the basins sizes and in the effectiveness of
treatments. This figure shows simulations of system (7) for three
almost identical individuals. The unique difference between them
is the tumor apoptosis rate eA. All them are treated with the same
drug schedule, which consists in 8 weekly doses of 10mg each.
Patient I has the highest tumor apoptosis rate, eA ¼ eI

A ¼ 1=100
day�1. The treatment is completely effective since it ends in the
‘cure basin’. Further, there is a very small risk of tumor relapse,
since small perturbations in this trajectory would not be able to
drive it again to the tumor basin. Patient II has a smaller tumor
apoptosis rate, eA ¼ 0:95eI

A. The treatment is effective, but, once it
ends very near the separatrix, there is a high risk of tumor relapse.
Finally, patient III has the smallest tumor apoptosis rate eA ¼ 0:9eI

A.
The treatment almost reaches the basin boundary but is not able to
cross it. Thus, despite the number of tumor cells attains a low value
at the end of the treatment, tumor relapse is observed after some
time.

It is worth to note that the post-treatment situation of all three
patients is almost the same. Indeed, according to the panels in the
second and third row of Fig. 9, the short term dynamics is quite
similar for all the three patients during a transient period of almost
one year. Only one or two years after the treatment the tumor of
patient III starts to exhibit a substantial difference from the others.
This is the same observed in many clinical cases. Once more, these
results suggest that, from this theoretical point of view, those
patients who presented tumor relapse could be completely cured if
they were treated with a more intense drug schedule, which could
be previously estimated based on some more complete informa-
tion about them and their tumors.

The left panel of Fig. 10 shows how the latitude and the
precariousness of the tumor basin, together with their product,
behave when parameter eA varies. We see that the lower is the
tumor apoptosis rate, the higher is the tumor resilience and the
more difficult is to reach the cure basin. The center panel shows
ical resilience perspective on cancer: Insights from a toy model.
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Fig. 9. Top row: projection of solutions of system (7) in the N � A plane. The small black (large blue) numbers indicate the time in months (weeks) in which the solution was at

each point. Center and bottom rows: short and long-term dynamics of solutions. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of the article.)

Fig. 10. Left: the behavior of resilience measures as eA varies. Center and right: behavior of the minimum weekly dose needed to enable an eight-week treatment to cross the

boundary, as a function of eA (center) and the tumor resilience latitude � longitude (right).
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how the value of eA changes the minimum weekly dose needed to
enable an eight-week treatment cross the boundary. This value
varies in a large range, from 0 mg to 20 mg, 100% with respect to
the interval center (10 mg), while eA varied in the interval
[0.8 � 10�2, 1.05 � 10�2], which is a small relative variation,
about �13% with respect to the interval center, eA = 0.925 � 10�2. All
graphs in this Figs. 9 and 10 were obtained with the same parameters
values from Table 1, except eA. We observe that a small decrease in eA,
of 10%, from 0.010 to 0.009, increases this minimum needed dose in
60%, from 7.5 mg to 12 mg. We also see that, in theory, if patient III
receive a 12 instead of a 10 mg of drug dose each week, he would be
cured. In case of toxicity constraints, an additional week of treatment
would result in the same effect. Finally, the panel on the right shows
the relationship between the ‘tumor resilience’ (values of latitude �
longitude) and the minimal needed dose.

Despite being obtained with a simple model for tumor growth
which does not consider several important interactions in the
tumor microenvironment, the results above show the potential of
this kind of ‘resilience analysis’ as a method to obtain indicators for
design of tailored treatments design. The application of this
approach to a validated model has the potential to elaborate a
computational method to estimate the treatment needs for a
particular patient or, at least, to stratify patients in a more refined
Please cite this article in press as: Fassoni, A.C., Yang, H.M., An ecolog
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fashion. The method would have as input data taken from the
patient’s tumor (its growth data obtained in vivo or in vitro). Then, a
black-box function would calculate the total resilience of that
tumor. This output would be used to prescribe a tailored treatment
protocol which would be, in theory, effective to reach the cure of
that patient. The resilience approach was already applied to several
other areas, but, as far as we know, this work is the first to do this
for cancer.

6. Conclusion

In this paper, an ecological resilience framework to think of
cancer as the alternance between two states was presented. This
framework was based on the analysis of a simple ODE model for
tumor growth considering the interaction with the host tissue.
Despite the simplicity of the model, the approach adopted here
gives interesting theoretical insights that shed some light on
several relevant issues concerning cancer onset and treatment, and
may help to improve the way we view cancer.

The model exhibited three regimes. These regimes were used to
illustrate three different possibilities which may occur in clinical
cases in general. The first regime corresponds to a healthy person
where cancer onset is not possible since the cancer cure state is
ical resilience perspective on cancer: Insights from a toy model.
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globally stable. The second regime corresponds to a person which
can develop cancer if exposed to external carcinogenic factors, due
to a partially corrupted repair system and/or a high aggressive
phenotype of tumor cells. This regime presents bistability between
the cancer and the cancer cure states. The third regime corresponds
to a person in which cancer will arise due to intrinsic factors, i.e.,
the total corruption of repair systems. In this regime, the cancer
state is globally stable.

Based on the general property that treatments are finite and,
therefore, do not change the global dynamics in the phase space,
we discussed the possibility of cure, which concerns stability and
resilience questions above all. In the bistable regime the cure is
possible if the treatment is able to drive the system to the basin of
attraction of the cure equilibrium. Tumor recurrence in this case is
associated with treatments which are unable to cross the
separatrix between the basins, or which do not end at a safe
distance from the separatrix. In the third regime, the complete cure
is not possible at all, since the repair system is intrinsically weak,
but tumor recurrence may be delayed if the treatment is
prolonged, because the system takes a long time to pass around
the cure equilibrium, which is a saddle point. However, toxicity
was not assessed in this model.

Besides perturbations on state variables, a view in the switching
between these three regimes due to parameters changes in a slow
time scale was discussed and the roles of the most important
parameters in these transitions were assessed. Results indicated
that only aggressive tumors may arise if intrinsic repair systems
are not totally corrupted. Further, these aggressive tumors depend
on exposure to external carcinogenic factors for arising.

Finally, we reviewed the use of three different measures to
assess the resilience of a stable equilibrium. We proposed a simple
and efficient methods to calculate these measures. After applying
this analysis to the model we concluded that in the bistable regime
the cancer equilibrium has much more resilience than the cure
equilibrium, with respect to state variable perturbations as
parameters change. We also illustrated how resilience analysis
can be used to estimate the treatment needs for a particular
patient, and showed its potential to design personalized cancer
treatments.

This paper contributes to the current understanding on cancer
by raising some issues in an ecological view, and also demonstrates
how a ‘resilience analysis’ may be applied to population dynamics
models in order to improve the understanding of nonlinear
phenomena. Further, the application of the ‘resilience analysis’
presented here to detailed and accurate models for specific tumor
types has the potential to generate measures which can be
accounted for in the design of treatment plans for cancer patients
and also in the development of adaptive treatments (Benzekry
et al., 2015). The size and shape of the basin of attraction of the
cancer equilibria in those models may be used as indicators in the
design and planning of personalized treatments.
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