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A mathematical model is developed to assess humoral and cellular immune responses
against Trypanosoma cruzi infection. Analysis of the model shows a unique non-trivial
equilibrium, which is locally asymptotically stable, except in the case of a strong cellular
response. When the proliferation of the activated CD8 T cells is increased, this equilib-
rium becomes unstable and a limit cycle appears. However, this behavior can be avoided
by increasing the action of the humoral response. Therefore, unbalanced humoral and
cellular responses can be responsible for long asymptomatic period, and the control of
Trypanosoma cruzi infection is a consequence of well coordinated action of both humoral
and cellular responses.
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1. Introduction

Trypanosoma cruzi, the causative agent of American trypanosomiasis (or Chagas’
disease), is transmitted by various species of bloodsucking triatomine insects, or
kissing bugs. Other forms of transmission include consumption of uncooked food
contaminated with feces from infected bugs, congenital transmission, blood transfu-
sion, organ transplantation and accidental laboratory exposure. T. cruzi infection
is a zoonosis, and humans are merely unfortunate hosts whose involvement in the
cycle of transmission is not necessary for the perpetuation of the parasite in nature.
It is currently estimated by the Pan American Health Organization that 10 to 12
million people are infected with T. cruzi and that up to 45,000 persons die each
year of Chagas’ disease.1

The insects become infected by sucking blood from animals or humans that
have circulating trypomastigotes. The injected parasites multiply in the midgut
of the insects as epimastigotes, which are flagellates of a distinct morphological
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type, and in the hindgut transform into infective metacyclic trypomastigotes that
are discharged with the feces at the time of subsequent blood meal. Transmission
to humans occurs when mucous membranes, conjunctivae or breaks in the skins
are contaminated with bug feces containing the infective form. In humans, Ameri-
can trypanosomes enter a variety of host cell types and multiply in the cytoplasm
after transformation into amastigotes. When multiplying amastigotes fill the host
cell, they differentiate into trypomastigotes in about 24h, and the cell ruptures.
The time from trypomastigote penetration of a cell to its rupture is thought to
be about five days, but it varies according to cell size and strain differences. The
released parasites invade local tissues or spread hematogenously to distinct sites,
this initiating further cycles of multiplication, primarily in muscle cells, and main-
taining a parasitemia infective for vectors. In contrast, African trypanosomes, which
cause sleeping sickness in humans, do not have an intracellular form and multiply
as trypomastigotes that circulate in the mammalian blood stream and other extra-
cellular spaces.1

Mathematical models for Chagas’ disease transmission among humans and syl-
vatic transmission were presented by Inaba and Sakine2 and Kribs-Zaleta,3 respec-
tively, while Cohen and Gürtler4 considered household transmission. Kleinman and
Busch5 modeled the risk of transfusion-transmitted infection; and Slimi et al.6

applied cellular automata formalism to describe the spatial spread of Chagas dis-
ease. In many countries, such as Brazil, T. cruzi infection by insects was eradicated,
but new cases of infection can occur due to congenital transmission.7

Within humans, the immune response against T. cruzi eliminates or contains
the infection. In experimental models, both CD4 and CD8 T cells have been shown
to be important for resistance to T. cruzi. Lysis of infected macrophages by CD8-
positive, cytotoxic T cells may also be an important mechanism of host defense.
CD4 T cells are also necessary to generate the specific antibody that contributes to
parasite clearance. Both types of T cells produce cytokines, principally interferon
gamma (IFN-γ), capable of activating macrophages to kill intracellular amastigotes.
However, the pathogenicity of experimental T. cruzi infections has been linked to
the induction of immunosuppressive cytokines by the parasite following infection,
which inhibit the macrophage activation capability of IFN-γ.8

It is logical that an organism so well adapted for intracellular survival should
have the ability to increase macrophage cytokines that prevent its destruction. Cir-
culating trypomastigotes shed a glycoprotein that inhibits the formation of com-
plement C3 converterases and accelerates their decay, which avoid the immune
response and persist for years in host. However, host antibodies are eventually
generated that neutralize this protective glycoprotein, exposing the trypomastig-
otes to complement-mediated lysis. These antibodies play an important role in
the suppression of circulating trypomastigotes in patients with chronic disease.
After entering the circulation, trypomastigotes must identify and infect suscepti-
ble host cells. The penetration of trypanosomes into a variety of host cell types
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probably occurs through receptor–ligand-mediated endocytosis (macrophages and
monocytes, as well as trypomastigotes, have fibronectin receptors, a molecule that
enhances both parasite-cell binding and parasite uptake). As intracellular parasites,
they must evade intracellular killing mechanisms, and a proportion of trypomastig-
otes pass through the phagosomal membrane to infect the cytoplasm, a privileged
site free from lysosomal enzymes.8

Therefore, both humoral and cellular responses promoted by the action of CD4
T cells in order to subdue T. cruzi infection are essential. The aim of this paper is
the development of a mathematical model to assess the role played by humoral and
cellular immune responses to control T. cruzi infection. Isasi et al.9 and Sibona
et al.10 analyzed mathematical models taking into account the parasite popula-
tion and the diversity of antibodies, while Velasco–Hernandez and Perez–Chavela
analyzed a model for the cellular immune response to T. cruzi .11

The paper is structured as follows. In Sec. 2, a simple mathematical model of
the immune system responding to T. cruzi infection is developed, and the analysis
of the model is presented. In Secs. 3 and 4, numerical results are obtained to assess
the immune responses, and discussions regarding the appearance of a limit cycle
and parasitemia are presented. Conclusions are presented in Sec. 5.

2. Model

In the model, all cells potentially involved in the immune response are not included,
such as CD4 T cells, dendritic cells, macrophages, NK cells, eosinophils, etc. A sim-
ple model presented here does not consider the production of cytokines that down-
and up-regulate the immune response. Instead, it is assumed that the activation
and proliferation of immune response cells are simply proportional to the amount
of parasites.

Trypanosomes (denoted by T , the concentration of trypanosomes circulating in
the blood stream at time t) infect susceptible host cells (denoted by H), result-
ing in infected cells (denoted by I). Inside the cell, trypomastigotes transform into
amastigotes, and they multiply. When amastigotes fill the host cell, they differen-
tiate into trypomastigotes, which are released after the cell ruptures. To clear the
circulating parasites and infected cells, both naive B (denoted by B) and CD8 T
(denoted by C) cells must be activated by activated CD4 T cells. Here, activation
of naive cells is assumed to be mediated by the circulating parasites as well as
their proliferation. The concentrations at time t of activated B and CD8 T cells are
denoted, respectively, by Ba (plasma cells) and Ca (cytotoxic cells). Finally, the
occurrence of infection, and activation and proliferation of immune cells follow the
mass action law.

With respect to the blood stream circulating T. cruzi : (1) the parasites are under
a natural mortality rate µT ; (2) an average number n of parasites can penetrate
a susceptible host cell at a constant infection rate α and (3) they are killed by
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direct and indirect actions of antibodies excreted by plasma cells at a constant
humoral response rate ε. Susceptible host cells are under natural mortality rate
µH , and they are replenished at a constant rate λH . Infected cells are either led to
death and release huge number of T. cruzi, or killed by cytotoxic cells at a constant
cellular response rate β. Hence, infected cells are under additional mortality µI ,
besides the natural mortality rate µH , and each cell releases on average τ parasites.
Naive immune system cells are replenished at constant rates λB and λC , and are
under natural mortality rates µB and µC . They can also be activated at constant
rates γB and γC . With respect to the activated cells, the proliferation rates are
given by δB and δC and the additional mortality rates are µd

B and µd
C , which are

due to the intense proliferation and production of immune components. After the
clearance of parasites by the immune system, activated cells must be eliminated by
apoptosis.

Based on the above definitions of variables and parameters of the model, the
dynamics of the interaction between immune system and T. cruzi infection is
described by the following system of equations



d

dt
T = τ(µH + µI)I − µTT − nαTH − εBaT,

d

dt
H = λH − µHH − αTH ,

d

dt
I = αTH − (µH + µI)I − βIC a,

d

dt
B = λB − µBB − γBBT ,

d

dt
Ba = γBBT − (µB + µd

B
apop)Ba + δBBaT,

d

dt
C = λC − µCC − γCCT ,

d

dt
Ca = γCCT − (µC + µd

B
apop)Ca + δCCaT.

(1)

In this model, the apoptosis of the activated immune system cells was introduced
through 



µd
B

apop =

{
µd

B; for T > T c,

∞; for T ≤ T c,

µd
C

apop =

{
µd

C ; for I > Ic,

∞; for I ≤ Ic,

(2)

where T c and Ic are sufficiently low values of parasites and infected cells, respec-
tively, to the infection be considered eliminated. Hence, system (1) is valid during
the time t when T > T c and I > Ic; and when T ≤ T c and I ≤ Ic, apoptosis is
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activated and the dynamical system is driven to the elimination of the parasite. In
other words, activated immune cells, as well as the number of parasites and infected
cells, go to zero (Ba = Ca = T = I = 0). In a strong immune response, this kind
of definition avoids the reappearance of parasites after assuming very low values,
which is a mathematical artifact originated from a continuous modeling.

The model does not take into account explicitly the period of time spent to
mount the immune response. The delay between the infection and immune response
is left to the non-linear terms of activated cells Ba and Ba. Also, the infection term
αTH can be understood as the formation of the complex cell–parasite (1 cell and n
parasites). Table 1 presents a summary of variables and parameters of the model.
Values of the parameters are also given.

The steady states of the system of Eqs. (1) and the stability analysis of the
equilibrium points are presented in the case T > T c and I > Ic.

2.1. Equilibrium points

The equilibrium points are designated by (T̄ , H̄, Ī, B̄, B̄a, C̄, C̄a). One of the steady
states of the system (1) is the trivial equilibrium point P 0 with coordinates(

0, H0 =
λH

µH
, 0, B0 =

λB

µB
, 0, C0 =

λC

µC
, 0

)
, (3)

which corresponds to the sizes of the host and the immune system cells found in
an individual free of T. cruzi infection.

Table 1. Summary of the variables and parameters of the model and their values. The unity of
[•] is number of •/vu, with [I] = [H], [Ba] = [B] and [Ca] = [C]. Immune response parameters
(last six parameters) are allowed to vary.

Symbols Definitions Units Values

T Concentration of circulating T. cruzi [T] —
H (I) Concentration of susceptible (infected) host cells [H] —
B (Ba) Concentration of B cells (plasma cells) [B] —
C (Ca) Concentration of CD8 T cells (cytotoxic cells) [C] —
τ Number of T. cruzi released by infected cell [T][H]−1 20
n Number of T. cruzi penetrating susceptible cell [T][H]−1 1
α Infection rate day−1 3α0

λH Host cells replenishing rate day−1 0,2
λB B cells replenishing rate from bone marrow day−1 0,8
λC CD8 T cells replenishing rate from timus day−1 0,8
µT T. cruzi mortality rate day−1 0,06
µH (µI ) Susceptible cells mortality rate (infected cells) day−1 0,01 (0.05)

µB (µd
B) B cells mortality rate (additional) day−1 0,05 (0.2)

µC (µd
C ) CD8 T cells mortality rate (additional) day−1 0,05 (0.2)

γB B cells activation rate [T]−1day−1 0,01
γC CD8 T cells activation rate [T]−1day−1 0,01
δB Plasma cells proliferation rate [T]−1day−1 0,05
δC Cytotoxic cells proliferation rate [T]−1day−1 0,05
β Cellular response rate [C]−1day−1 0,1
ε Humoral response rate [B]−1day−1 0,1
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In order to become more concise, for the coordinates of the non-trivial equilib-
rium point P ∗, the following dimensionless parameters are introduced



α′ =
α

µH
α′

0 =
α0

µH
δ′B =

δB

µB + µd
B

δ′C =
δC

µC + µd
C

β′ =
β

µH + µI
ε′ =

ε

µT
γ′B =

γB

µB
γ′C =

γC

µC

µHI =
µH

µH + µI
µHT =

µH

µT
µBd =

µB

µB + µd
B

µCd =
µC

µC + µd
C

,

where α0 is the threshold of the infection rate α, defined by

α0 =
µTµH

(τ − n)λH
=

µT

(τ − n)H0
, (4)

with H0 being given by Eq. (3).
The coordinates of the unique non-trivial equilibrium point P ∗, under the action

of the immune response, are


H̄ =
H0

1 + α′T̄
Ī =

µHIα
′H0T̄

(1 + α′T̄ )(1 + β′C̄a)
,

B̄ =
B0

1 + γ′BT̄
B̄a =

µBdγ
′
BB0T̄

(1 + γ′BT̄ )(1 − δ′BT̄ )
,

C̄ =
C0

1 + γ′C T̄
C̄a =

µCdγ
′
CC0T̄

(1 + γ′C T̄ )(1 − δ′C T̄ )
,

(5)

where T̄ is the positive solution of the equation

f(T ) = T × g(T ), (6)

with the fifth f(T ) and the third g(T ) degree polynomials being given by


f(T ) =
[(

α′

α′
0

− 1
)
− α′T

]
(1 − δ′BT )(1 − δ′CT )(1 + γ′BT )(1 + γ′CT )

g(T ) = β′γ′CC0(1 − δ′BT )(1 + γ′BT )(1 + α′T ) + ε′γ′BB0(1 − δ′CT )

× (1 + γ′CT )(1 + α′T ) + β′ε′γ′CC0γ
′
BB0(1 + α′T )T

+ nα′β′µHTγ
′
CC0H0(1 − δ′BT )(1 + γ′BT ).

(7)

By inspecting B̄a and C̄a, the inequalities

T̄ < TB =
1
δ′B

=
µB + µd

B

δB
and T̄ < TC =

1
δ′C

=
µC + µd

C

δC
(8)

must be satisfied for the equilibrium point to be biologically feasible.
Two special cases are presented. Firstly, in the absence of the immune response

(γ′B = γ′C = 0), the equilibrium point is(
T̄0,

H0

1 + α′T̄0
,
µHIα

′H0T̄0

1 + α′T̄0
, B0, 0, C0, 0

)
,
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where H0, B0 and C0 are given by Eq. (3), and the equilibrium value of T. cruzi
T̄0 is given by

T̄0 =
1
α′

0

− 1
α′ =

R0 − 1
α′ , (9)

which is biologically feasible for α′ > α′
0 (or R0 > 1), where R0 is the basic repro-

duction number of parasites defined by

R0 =
α′

α′
0

=
α

α0
=
αH0

µT
× (τ − n). (10)

This number is interpreted as follows. Suppose that one invading T. cruzi infects
successfully, during its life span (1/µT ), a cell in a completely susceptible population
of cells (αH0). This infected cell releases an average number of τ parasites. However,
an average number of n parasites are sequestered to infect another susceptible cell
(this penetrating number of parasites must be at least one and much lower than τ ,
or, 1 ≤ n < τ). Therefore, R0 is the average number of viable T. cruzi originated
from one invading T. cruzi in an individual who never had got the infection.

Suppose that the immune system recognizes the invading pathogen (γ′B > 0
and γ′C > 0), but the activated effector cells do not proliferate. This corresponds
to δ′B = δ′C = 0, and the coordinates of this special non-trivial equilibrium P ∗

1 are
such that 



H̄ =
H0

1 + α′T̄
Ī =

µHIα
′H0T̄

(1 + α′T̄ )(1 + β′C̄a)
,

B̄ =
B0

1 + γ′BT̄
B̄a =

µBdγ
′
BB0T̄

1 + γ′BT̄
,

C̄ =
C0

1 + γ′C T̄
C̄a =

µCdγ
′
CC0T̄

1 + γ′C T̄
,

where T̄ is solution of the equation f(T ) = T × g(T ), with f(T ) and g(T ) being,
respectively, the third and the second degree polynomials given by



f(T ) =
[(

α′

α′
0

− 1
)
− α′T

]
(1 + γ′BT )(1 + γ′CT ),

g(T ) = β′γ′CC0(1 + γ′BT )(1 + α′T ) + ε′γ′BB0(1 + γ′CT )(1 + α′T )

+ β′ε′γ′CC0γ
′
BB0(1 + α′T )T + nα′β′µHTγ

′
CC0H0(1 + γ′BT ).

It can be shown that f(T ) and g(T ) have two negative roots, while the third root of
f(T ), when α′ > α′

0, is positive, and f(T ) = T ×g(T ) has a unique positive solution
situated in the interval (0, χ). Notice that, due to the absence of the proliferation,
the constraints given in Eq. (8) disappear, resulting in χ = T̄0, as given by Eq. (9).
Hence, it is observed that 0 < T̄ < T̄0.

In Appendix A, the analysis of Eq. (6) is presented, showing that when α′ > α′
0,

there is a unique positive solution T̄ , which is situated in the range (0, χ), where χ
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is the minimum among T̄0, 1/δ′B and 1/δ′C , that is,

T̄ ∈ (0, χ), with χ = min{T̄0, 1/δ′B, 1/δ
′
C}.

Additionally, the positive solution always satisfies the constraints given by Eq. (8).
Summarizing, in the absence of the immune response (γ′B = γ′C = 0), the

equilibrium point is such that T̄ = T̄0 (B̄a = 0 and C̄a = 0), while the activation of
immune response without proliferation (δ′B = δ′C = 0) results in P ∗

1 , with T̄ < T̄0.
Hence, the recognition of invading T. cruzi and the consequent activation of immune
cells (expressed by the parameters γ′B and γ′C) are essential to initiate the control of
the infection. However, the containment of T. cruzi infection is achieved effectively
by the proliferation of activated immune cells (given by the parameters δ′B and
δ′C), in which case the equilibrium point is P ∗. As proliferation increases (δ′B or δ′C
increases), the constraint 1/δ′B or 1/δ′C decreases even below T̄0, and the level of
the circulating T. cruzi situates lower than 1/δ′B or 1/δ′C , that is, T̄ ∈ (0, χ), with
χ = min{1/δ′B, 1/δ′C}.

2.2. Stability analysis

The local stability of the equilibrium points P 0 and P ∗ given, respectively, by
Eqs. (3) and (5) are assessed by linearizing the dynamical system (1) at the equilib-
ria. Results are presented briefly, but detailed analyses of the stability are presented
in Appendix B.

The trivial equilibrium point P 0 is locally asymptotically stable for R0 < 1,
where the basic reproduction number of parasites R0 is given by Eq. (10). In this
case, it was shown that P 0 is globally stable for R0 < 1.

Depending on the values assigned to the model parameters, the unique non-
trivial equilibrium point P ∗ can be locally asymptotically stable for R0 > 1.

3. Numerical Results

Antibodies produced and excreted by plasma cells that neutralize the circulating
parasites and cytotoxic actions of activated CD8 T cells that kill infected cells
acting coordinately to control T. cruzi infection are analyzed numerically, taking
into account the values of the model parameters given in Table 1.1,12 Values of the
immune response parameters are allowed to vary.

Based on the values given in Table 1, the equilibrium value of T. cruzi is T̄ =
0.624parasite/vu, where vu stands for an arbitrary volume unit, and the threshold
of the infection rate is α0 = 1.579× 10−4 [T ]−1 × days−1, where [T ] = parasite/vu
and the basic reproduction number is R0 = 3. The constraints (upper bounds),
using Eq. (8), are TB = TC = 5.0 parasite/vu. Additionally, the trivial equilibrium
point P 0 has the natural concentrations H0 = 20 cells/vu, B0 = 16Bcells/vu and
C0 = 16Tcells/vu. There are approximately 7000 white blood cells per microliter,
hence vu should be 0.005µL = 5nL, nanoliter. Hereafter, all units are omitted.
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The values of parameters given in Table 1 are fixed in all numerical simulations,
except when explicitly cited. These values correspond to a weak immune response,
presenting, at non-trivial equilibrium P ∗, T̄ = 0.624, which is 67 times lower than
the case without immune response, H̄ = 19.43 (practically equal to H0) and Ī =
5.71× 10−2 (39 times lower than the case without immune response). The immune
system cells reach B̄ = C̄ = 14.22 (88.9% of the natural concentrations) and B̄a =
C̄a = 0.406 (2.54% of the natural concentrations).

3.1. Steady states

The solution of Eq. (6) is obtained numerically by the bisection method.13

Figure 1 shows the unique equilibrium value T̄ varying α. Also H̄, Ī, B̄ = C̄

and B̄a = C̄a are shown, which are obtained using Eq. (5). For α ≤ α0, the only
biologically feasible solution is T̄ = 0; and for α > α0, besides the zero solution a
positive solution T̄ appears. Due to the values given in Table 1, the steady state
values obey B̄ = C̄ and B̄a = C̄a. Instead of α, by varying δB or δC , the equilibrium
value of T. cruzi is situated always below the upper limits TB and TC , satisfying
the constraints in Eq. (8). For instance, for δB = 102, the equilibrium value is
T̄ = 2.496 × 10−3, with TB = 2.5 × 10−3, while for δB = 105, T̄ = 2.4997 × 10−6,
with TB = 2.5 × 10−6. Hence, a unique non-trivial equilibrium point P ∗ appears
for α > α0, and for a fixed α but varying δB or δC , the coordinate T̄ of P ∗ situates
always below the constraints TB and TC .

The non-trivial equilibrium point corresponding to the isolated humoral
response is LAS in all range of variations of δB, as presented in Appendix B. How-
ever, for sufficiently higher values of δC , the equilibrium point corresponding to the
isolated action of cellular response can be unstable. Figure 2 shows the diagram of
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Fig. 1. The equilibrium value of T̄ , plus all other coordinates of P ∗, varying α. The scales of
vertical and horizontal axes must be multiplied by the factors shown in the legends to obtain the
actual values (for instance, H̄ must be multiplied by the factor 10).
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Fig. 2. The diagram of T̄ varying δC . The equilibrium point P ∗ is LAS for δC < δc
C , and unstable

for δC > δc
C , where δc

C is the critical value.

Table 2. Eigenvalues corresponding to the non-trivial equilibrium P ∗ obtained using values given
in Table 1, except δC = 1.70 and δC = 1.75.

Eigenvalues P ∗ with δC = 1.70 P ∗ with δC = 1.75

ψ1 −2.45× 10−1 + i0.0264 −2.45× 10−1 + i0.0260
ψ2 −2.45× 10−1 − i0.0264 −2.45× 10−1 − i0.0260
ψ3 −2.44× 10−4 + i0.0821 +1.51× 10−4 + i0.0822
ψ4 −2.44× 10−4 − i0.0821 +1.51× 10−4 − i0.0822
ψ5 −5.12× 10−2 −5.12× 10−2

ψ6 −1.01× 10−2 −1.01× 10−2

ψ7 −5.13× 10−2 −5.13× 10−2

T̄ varying δC , using values given in Table 1. The equilibrium value T̄ is LAS for
δC < δc

C , while for δC > δc
C , unstable, where δc

C is a critical value.
Table 2 presents the eigenvalues corresponding to the equilibrium P ∗ calcu-

lated with δC = 1.70 and 1.75: the first is LAS, while the latter is unstable. By
calculating eigenvalues numerically, the interval where the critical value situates is
δc
C ∈ (1.7305, 1.7310): all eigenvalues at the lower bound have negative real part,

and at upper bound, a pair of complex numbers has positive real part. A pair of
pure complex numbers must be obtained at δC = δc

C , and Hopf bifurcation occurs.

3.2. Evaluating immune responses

Numerical solutions of Eq. (1) are obtained by the 4th order Runge–Kutta method13

in order to assess the effect of immune response against T. cruzi infection. The
initial conditions supplied to the dynamical system (1) are T (0) = 0.001, H(0) =
H0, I(0) = 0, B(0) = B0, Ba(0) = 0, C(0) = C0 and Ca(0) = 0. These conditions
simulate T. cruzi infection in an individual who had never got this infection.
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Fig. 3. Dynamical trajectories of T. cruzi infection in the absence of immune response. The
variables corresponding to immune responses are unchanged (not shown). The scales of vertical
and horizontal axes must be multiplied by the factors shown in the legends to obtain the actual
values.

Figure 3 shows the case where the immune system does not mount any response,
considering γB = γC = 0. The asymptotic values attained are T̄ = T̄0 =
2µH/(3α0) = 42.22, from Eq. (9) and B̄ = B0, C̄ = C0 and B̄a = C̄a = 0. Other
asymptotic values are H̄ = 6.67 and Ī = 2.22.

As shown in Appendix B, the complete elimination of T. cruzi is achieved only
when R0 < 1, with R0 = αH0(τ − n)/µT . Knowing that H0 is fixed (the number
of cells of an organ of human body in general does not vary), T. cruzi related
parameters α, µT , τ and n must be changed in order to reduce R0. (These parame-
ters can be varied by drug treatments, which are not taken into account.) From a
mathematical point of view, the elimination of T. cruzi is impossible by the action
of immune response alone whenever R0 > 1. Biologically, however, T. cruzi can be
eliminated if T reaches a very small value (for instance, less than one parasite).

Next, the responses of the immune system in order to reduce T. cruzi infection
are assessed. For didactical purpose, each one of parameters in the set (ε, γB, δB)
is varied to assess the strength of the humoral response, while one of (β, γC , δC) is
varied to assess the cellular response.

3.2.1. Enhancing humoral immune response

The humoral response is described by the destruction of circulating T. cruzi by
antibodies (ε), the activation of naive B cells (γB), and the proliferation of plasma
cells (δB). Each one of the parameters ε, γB and δB is increased by 10 and 105 times
than the value given in Table 1.

Increasing the action of antibodies by 10 times (ε = 1), the dynamical trajecto-
ries achieve the asymptotic values T̄ = 0.133, H̄ = 19.88 and Ī = 8.62×10−3, while
the immune system cells reach B̄ = C̄ = 15.59 and B̄a = C̄a = 8.50 × 10−2.
This case is similar to weak immune response. Figure 4 shows the increasing
action of antibodies by 105 times (ε = 104), with the asymptotic values reaching
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Fig. 4. Dynamical trajectories of T. cruzi infection taking into account the values given in
Table 1, except ε = 104. The interaction of parasite with host cells T,H and I (a), and the
immune response cells B,Ba, C and Ca (b) are shown. The scales of vertical and horizontal axes
must be multiplied by the factors shown in the legends to obtain the actual values.

T̄ = 1.87 × 10−5, H̄ = 19.999998 and Ī = 2.96 × 10−6, shown in Fig. 4(a), and the
immune system cells reach B̄ = C̄ = 15.99994 and B̄a = C̄a = 1.20 × 10−5, shown
in Fig. 4(b). The oscillations are a mathematical artifact, but the asymptotic values
are attained.

The increase in ε decreased proportionally the circulating T. cruzi (T̄ ) and
infected cells (Ī). Hence, due to the high affinity and intense production of anti-
bodies, the immune response is enhanced with diminished activation of immune
cells, which is the reason for lower numbers of plasma (B̄a) and cytotoxic (C̄a) cells
(3 × 104 lower than the weak response).

Increasing the activation of B cells by 10 times (γB = 0.1), the asymptotic
values are T̄ = 0.181, H̄ = 19.84 and Ī = 2.37× 10−2, shown in Fig. 5(a), while the
immune system cells reach B̄ = 11.75, C̄ = 15.44, B̄a = 0.88 and C̄a = 0.12, shown
in Fig. 5(b). Increasing the activation by 105 times (γB = 103), the asymptotic
values are T̄ = 2.99× 10−5, H̄ = 19.99997 and Ī = 4.73× 10−6, shown in Fig. 5(c),
while the immune system cells reach B̄ = 10.002, C̄ = 15.9999, B̄a = 1.20 and
C̄a = 1.92 × 10−5, shown in Fig. 5(d).

The increase in γB decreased proportionally the circulating T. cruzi and infected
cells, but slightly less than the action of ε. The high activation of B cells decreased
inactivated B cells (B̄ in 62.5%), and decreased cytotoxic cells by 105 times than
plasma cells. In comparison with weak response, B̄a increased 3 times, while C̄a

decreased 2 × 104 times.
Increasing the proliferation of activated B cells by 10 times (δB = 0.5), the equi-

librium values are T̄ = 0.345, H̄ = 19.69 and Ī = 3.92 × 10−2, while the immune
system cells reach B̄ = C̄ = 14.966, B̄a = 0.67 and C̄a = 0.22. The dynamical tra-
jectories are similar than those shown in Figs. 5(a) and 5(b), exceptB = C. Figure 6
shows the increasing action of the proliferation by 105 times (δB = 5×103), and the
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Fig. 5. Dynamical trajectories of T. cruzi infection taking into account the values given in
Table 1, except γB . The interaction of parasite with host cells T,H and I for γB = 0.1 (a) and
103 (c), and the immune response cells B,Ba, C and Ca for γB = 0.1 (b) and 103 (d) are shown.
The scales of vertical and horizontal axes must be multiplied by the factors shown in the legends
to obtain the actual values.

asymptotic values are T̄ = 5.00 × 10−5, H̄ = 19.99995 and Ī = 7.89 × 10−6, shown
in Fig. 6(a), while the immune system cells reach B̄ = C̄ = 15.9998, B̄a = 1.20 and
C̄a = 3.19 × 10−5, shown in Fig. 6(b).

The increase in δB decreased proportionally the circulating T. cruzi and infected
cells, but less than the action of ε. The high proliferation of plasma cells practically
unchanged inactivated B cells, but the ratio between plasma cells and cytotoxic
cells is quite the same as that observed in the case of activation of B cells.

When one of the parameters ε, γB and δB is increased by 105 times with respect
to the value given in Table 1, T̄ reached, respectively, 1.87 × 10−5, 2.99 × 10−5

and 5.00 × 10−5, much less than 6.242 × 10−1 found in weak immune response.
The decrease in circulating T. cruzi protects host cells from infection, and the
infected cells are decreased to, respectively, 2.96×10−6, 4.73×10−6 and 7.89×10−6,
much less than the infection found in the weak immune response, 5.71 × 10−2. By
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Fig. 6. Dynamical trajectories of T. cruzi infection taking into account the values given in
Table 1, except δB = 5 × 103. The interaction of parasite with host cells T,H and I (a), and the
immune response cells B,Ba, C and Ca (b) are shown. The scales of vertical and horizontal axes
must be multiplied by the factors shown in the legends to obtain the actual values.

defining arbitrarily T c = 1.0× 10−5 and Ic = 1.0× 10−6 as the values of biological
elimination, the increase in one of the humoral response parameters by 105 times
resulted in a quasi extinction of infection.

Another finding is regarded to the total number of inactivated and activated B
and CD8 T cells. The total number of all types of effector cells before the infection
is quite the same found after intense immune response.

In all simulations, even if the humoral response parameters are broadly varied
(higher than 105 times), all dynamical trajectories reach a steady state correspond-
ing to the non-trivial equilibrium point. The model agrees with the simplified model
(see Appendix B) with respect to the maintenance of the stability of the non-trivial
equilibrium point.

3.2.2. Enhancing cellular immune response

The cellular response is described by the destruction of infected cells by T. cruzi
by action of CD8-positive T cells (β), the activation of naive CD8 T cells (γC),
and the proliferation of cytotoxic cells (δC). The enhanced contribution of cellular
immune response against T. cruzi infection is studied, by increasing each one of
the parameters β, γC and δC by 10 and 105 times than the value given in Table 1,
but δC is allowed to assume two more values.

Increasing the action of lysis by 10 times (β = 1), the equilibrium values are
T̄ = 0.146, H̄ = 19.870 and Ī = 1.98 × 10−2, while the immune system cells reach
B̄ = C̄ = 15.55 and B̄a = C̄a = 9.35× 10−2. Increasing the action of antibodies by
105 times (β = 104), the asymptotic values are T̄ = 1.62× 10−5, H̄ = 19.99998 and
Ī = 9.37× 10−7, while the immune system cells reach B̄ = C̄ = 15.99995 and B̄a =
C̄a = 1.04×10−5. The dynamical trajectories are similar than those shown in Fig. 4.
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The increase in β follows similar behavior with that shown by ε. However, the
increase in the capacity of lysis resulted in lower level of circulating T. cruzi (T̄ )
and less infection of host cells (Ī) than those observed for increasing ε. It shows
the importance of cellular defense when parasites invade host cells. The numbers
of activated cells are 4 × 104 lower than the weak response.

Increasing the activation of B cells by 10 times (γC = 0.1), the equilibrium values
are T̄ = 0.163, H̄ = 19.85 and Ī = 1.09×10−2, while the immune system cells reach
B̄ = 15.49, C̄ = 12.06, B̄a = 0.10 and C̄a = 0.81. The dynamical trajectories are
similar than those shown in Fig. 5(a) and 5(b), except B > C and Ca > Ba.
Figure 7 shows the increasing action of the activation by 105 times (γC = 103), the
asymptotic values are T̄ = 2.39×10−5, H̄ = 19.99998 and Ī = 1.39×10−6 as shown
in Fig. 7(a), while the immune system cells reach B̄ = 15.9999, C̄ = 10.818, B̄a =
1.53 × 10−5 and C̄a = 1.04 as shown in Fig. 7(b).

The increase in γC follows similar behavior with that shown for γB, if the role
of B and CD8 T cells is changed. The activation of CD8 T cells resulted in slightly
lower levels of T. cruzi and infection of host cells. In comparison with weak response,
C̄a increased 2.5 times, while B̄a decreased 2.3 × 104 times.

When one of the parameters β and γC is increased by 105 times with respect to
the value given in Table 1, T̄ reached, respectively, 1.62×10−5 and 2.39×10−5, much
less than 6.242× 10−1 found in weak immune response. The decrease in circulating
T. cruzi protects host cells from infection, and the infected cells are decreased to,
respectively, 9.37×10−7 and 1.39×10−6, much less than the infection found in weak
immune response, 5.71 × 10−2. In cellular response, the variation in β resulted in
Ī < Ic and T̄ � T c, conditions of a quasi biological elimination of infection. Both
T̄ and Ī resulted in higher reductions than those observed in humoral response
varying ε and γB.
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Fig. 7. Dynamical trajectories of T. cruzi infection taking into account the values given in
Table 1, except γC = 103. The interaction of parasite with host cells T,H and I (a), and the
immune response cells B,Ba, C and Ca (b) are shown. The scales of vertical and horizontal axes
must be multiplied by the factors shown in the legends to obtain the actual values.
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Another finding is regarded to the total number of inactivated and activated B
and CD8 T cells. The total number of all types of effector cells before the infec-
tion is quite the same found after intense immune response, as it was observed in
humoral immune response. In all simulations where β and γC are varied broadly,
the stability of the non-trivial equilibrium point was unchanged, that is, all dynam-
ical trajectories reach a steady state corresponding to the non-trivial equilibrium
point.

The proliferation of activated CD8 T cells is shown in Figs. 8 and 9, for δC =
0.5, 1.70, 1.75 and 5×103, which are 10, 34, 35 and 105 times greater than the value
in Table 1.

Figure 8 shows the case where the non-trivial equilibrium point P ∗ is stable. For
low proliferation rate, δC = 0.5, the asymptotic values are T̄ = 0.339, H̄ = 19.698
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Fig. 8. Dynamical trajectories of T. cruzi infection taking into account the values given in
Table 1, except δC . The interaction of parasite with host cells T,H and I for δC = 0.5 (a) and
1.70 (c), and the immune response cells B,Ba, C and Ca for δC = 0.5 (b) and 1.70 (d) are shown,
which follow damped oscillations. The scales of vertical and horizontal axes must be multiplied
by the factors shown in the legends to obtain the actual values.
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and Ī = 2.57 × 10−2, shown in Fig. 8(a), while the immune system cells reach
B̄ = C̄ = 14.985, B̄a = 0.22 and C̄a = 0.63, shown in Fig. 8(b). For δC = 1.70,
the asymptotic values are T̄ = 0.13, H̄ = 19.875 and Ī = 8.62 × 10−3 as shown in
Fig. 8(c), while the immune system cells reach B̄ = C̄ = 15.586, B̄a = 8.50 × 10−2

and C̄a = 0.85 as shown in Fig. 8(d).
As δC increases, but lower than a critical value, the amplitudes of the oscillations

increase, as well as the number of oscillations before they fade out. The damped
oscillations reach the stable equilibrium point P ∗.

Figure 9 shows the case where the non-trivial equilibrium point P ∗ is unstable
and appears a limit cycle. The values corresponding to peak of the variables are
also presented. For δC = 1.75, the coordinates of unstable equilibrium points are
T̄ = 0.13, H̄ = 19.88, Ī = 8.38 × 10−3, B̄ = C̄ = 15.596, B̄a = 8.28 × 10−2 and
C̄a = 0.86. The peaks of variables are Tp = 0.145, H̄ = 19.88 and Ip = 9.91× 10−3,
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Fig. 9. Dynamical trajectories of T. cruzi infection taking into account the values given in
Table 1, except δC . The interaction of parasite with host cells T,H and I for δC = 1.75 (a) and
5 × 103 (c), and the immune response cells B,Ba, C and Ca for δC = 1.75 (b) and 5 × 103 (d)
are shown, which follow regular oscillations. The scales of vertical and horizontal axes must be
multiplied by the factors shown in the legends to obtain the actual values.
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shown in Fig. 9(a), while for the immune system cells are Bp = Cp = 15.62, Bap =
9.24×10−2 and Cap = 1.20, shown in Fig. 9(b). For δC = 5×103, the coordinates are
T̄ = 4.92×10−5, H̄ = 19.99995, Ī = 7.75×10−6, B̄ = C̄ = 15.9998, B̄a = 3.15×10−5

and C̄a = 2.02× 10−3. The peaks of variables are Tp = 1.91× 10−4, Hp = 19.99998
and Ip = 1.55 × 10−5, shown in Fig. 9(c), while for the immune system cells are
Bp = Cp = 15.99997 (quasi in equilibrium), Bap = 1.14×10−4 and Cap = 2.42×103,
shown in Fig. 9(d). Similarly to the action of δB, the increase in δC decreased the
number of plasma cells and increased hugely activated cytotoxic cells.

When δC is increased by 105 times, the minimum values of T and I reached,
respectively, 3.12 × 10−6 and 1.0 × 10−7. Comparing with previously defined
T c = 1.0 × 10−5 and Ic = 1.0 × 10−6 as values of biological elimination, the
intense proliferation of activated cytotoxic cells resulted in the extinction of infec-
tion according to the biological point of view. Hence, apoptosis must occur elapsing
100 days after the infection, according to Figs. 9(c) and 9(d).

The increase in δC resulted in the change of the stability: the non-trivial equilib-
rium P ∗ becomes unstable for a critical value of δC , say δc

C , situated between 1.70
and 1.75. For lower values of δC , say δC ≤ 1.70, the dynamical trajectories follow
damped oscillations, while for higher δC , say δC ≥ 1.75, the dynamical trajectories
attain limit cycles, and the amplitudes of oscillations of Ca increase with increas-
ing δC . For instance, for δC = 5 × 103, the number of effector cells at the peak of
dynamical trajectories is about 100 times higher than that found before infection.

Figure 8 shows damped oscillations, while Fig. 9 shows regular oscillations.
Table 2 presented the eigenvalues corresponding to Figs. 8(c) and 8(d), with δC =
1.70, and Figs. 9(a) and 9(b), with δC = 1.75. A pair of pure complex numbers
occurred at δC = δc

C , where δc
C ∈ (1.7305, 1.7310). Hence, the numerical results

agree with the results of the simplified model (see Appendix B) with respect to the
stability of the non-trivial equilibrium point: it becomes unstable for higher values
of δC , appearing in a limit cycle.

The critical value δc
C depends on the values assigned to the parameters. Taking

into account the values given in Table 1, if the average number of parasites released
by one infected cell is increased by 5 times, τ = 100, it is expected that the critical
number decreases, due to increase in the circulating T. cruzi. In this case, the
critical value situates in the interval δc

C ∈ (1.630, 1.635). Increasing δB by 100
times, or δB = 5, which decreases the circulating T. cruzi, the critical value is
increased, situating in δc

C ∈ (5.48, 5.49).

4. Discussion

In the foregoing section, it was shown that humoral and cellular immune responses
are important in T. cruzi infection. The activation of immune cells (parameters
γB and γC) is done by antigen presenting cells (APC), which process and present
antigens to immune cells. The simple model presented here did not consider the
action of APC neither included the production of cytokines, assuming that the
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recruitment (migration) and proliferation of immune response cells were simply
proportional to parasite quantity. The activation transfers inactivated (naive, or at
rest) to the class of activated cells. In general, small number of cells are activated,
which must proliferate quickly and intensively. Numerical simulations showed that
as the proliferation (parameters δB and δC) increases, there is a diminishing of the
number of cells being activated from naive cells. However, the intense proliferation
results in elevated number of activated cells, which persists even though the par-
asites were decreased up to biological elimination (described by T c and Ic). After
the containment of parasites the apoptosis must occur in order to decrease rapidly
the activated cells. The autonomous model did not take into account the apoptosis.
However, this important and crucial question can be introduced in the model by
apoptosis described in Eq. (2).

Analysis of the model showed that a well coordinated action of humoral and
cellular immune responses is essential to control T. cruzi infection. Michailowsky
et al.,14 working with the paraflagellar rod proteins (PFR) as a potential vac-
cine candidate against T. cruzi infection, showed that immunization with PFR
induced antibodies and protected mice against challenge with a virulent strain
of T. cruzi. They also demonstrated that protective immunity elicited by vacci-
nation with PFR was dependent on T cells rather than B cells: B-cell-deficient
mice immunized with PFR and subsequently challenged with a lethal inoculum
of T. cruzi presented reduced parasitemia and 100% survival. Immunization with
subcutaneous adjuvant as well as PFR with IL-12 simultaneously adsorbed to alum
resulted in induction of a Th1 response associated with protective immunity. How-
ever, Machado et al.,15 immunizing mice with type 5 recombinant adenoviruses
encoding the T. cruzi parasite protective antigens trans-sialidase or/and amastig-
ote surface protein-2, showed both optimal antibody and T cell responses and
high level of protection against a challenge with live parasites. Further experiments
demonstrated that such protection was at least partially dependent on CD8-positive
T cells and protection against the T. cruzi was highly dependent on type 1 immune
response. Since CD8-positive T cells possess effector function to suppress the repli-
cation of infectious T. cruzi pathogens in vivo, the research area aiming for the
induction of CD8-positive T cell-mediated protective immunity has become a cen-
ter of intense research efforts to find control measures against antibody-resistant
pathogens.16

4.1. Limit cycle and apoptosis

For broad ranges of variations of the parameters ε, γB and δB (humoral) and β and
γC (cellular), the non-trivial equilibrium point P ∗ maintained its stability. However,
for the parameter δC (cellular), the non-trivial equilibrium point P ∗ always exists
for all ranges of its variation, but is stable for lower values only. When δC surpasses
a critical value δc

C , the non-trivial equilibrium point becomes unstable, and limit
cycles appear, which can be assessed through the Routh–Hurwitz criteria: δc

C is the
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value at which one of the criteria is not satisfied firstly. But, this value must be
obtained numerically due to the complexity of the coefficients of the seventh degree
polynomial. For this reason, the Hopf bifurcation is studied qualitatively.

From Eq. (1) picking up only the equations for T and Ca and rewriting the
latter equation, the result is


d

dt
T = τ(µH + µI)I − µTT − nαTH − εBaT,

d

dt
Ca = γCCT − δC(TC − T )Ca,

where TC is given by Eq. (8). In the equilibrium, T̄ < TC is always obeyed. When
δC increases, the amount of cytotoxic cells Ca increases, resulting in increasing in
the destruction of infected cells I (see Figs. 8 and 9). By decreasing I, lower number
of T. cruzi T is released, however, Ba is also decreased with increasing δC , which
decreases the action of antibodies. As a consequence, the first equation for T says
that the balance between production and destruction of parasites is such that there
is possibility of blow-up in the number of T. cruzi for sufficiently higher values of
δC . This results in T > TC in the second equation, and Ca increases exponentially,
which decreases T , and leads to the decreasing also in Ca. Notice that the upper
bound of constraint corresponding to δC = 5 × 103 is TC = 5 × 10−5.

Above qualitatively described limit cycle can be seen in Figs. 9(c) and 9(d).
Focusing on the third peak, the increase in both infected cells and parasites begins
at around 260 days, and reaches peak at around 390days. During this period, T
does not surpass TC , and Ca does not increase. However, just before T reached the
peak (Tp = 19.1×10−5), T surpassed TC , and Ca increased exponentially, resulting
in a very quick destruction of infected cells I. Due to the fact that the action of
antibodies is weak (see Table 1), circulating T. cruzi is destroyed slowly, and when
it reaches very low value (around 420 days) Ca begins exponential decay. This role
played between parasites T and cytotoxic cells Ca results in periodic behavior (limit
cycle).

Notwithstanding, the limit cycles do not appear with increasing δB, even though
the governing equations are similar to that for δC , that is,


d

dt
T = τ(µH + µI)I − µTT − nαTH − εBaT

d

dt
Ba = γBBT − δB(TB − T )Ba,

where TB is given by Eq. (8). In this case, T is not allowed to increase as in the
previous case, but it always decreases, because with increasing δB, increasing Ba

and decreasing I are observed (see Fig. 6). From the first equation, the number
of released T. cruzi by infected cells is decreased, and the action of antibodies is
increased by increasing the plasma cells Ba, which decreases T , and T does not
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surpass TB. Hence, T and Ba reach their asymptotic values without oscillations at
any point of time.

Efficient immune responses are due to activation (small number of inactivated
cells) and subsequent quick proliferation of activated immune cells.17 Once para-
sites are cleared, the huge amount of activated cells must be destroyed, mediated
by apoptosis. In Fig. 6(b), the equilibrium value B̄a corresponds to 7.5% of the
total amount B0, while in Fig. 9(d), the peak of Cap corresponds to 15125% of
the total amount C0. Figure 10 illustrates high proliferation of both plasma and
cytotoxic cells, letting δB = δC = 5×103. Figure 10 shows the first two peaks in the
beginning of the infection, although regular oscillations (not shown here) are settle
after 5000days. The amplitude of oscillations of Ca is small than the previous case,
due to the action of Ba, which decreases T (Tp = 16.0 × 10−5).

From Fig. 10, it is observed that the cytotoxic cells do not blow up (as in Fig. 9),
which is due to an intense action of antibodies that are clearing circulating T. cruzi.
However, the peak of Cap corresponds to 25% of the total amount C0 (same for
plasma cells, due to symmetric values for parameters regarded to humoral and
cellular responses). At around 50 days after the infection, T and I drop to minima
7.4×10−6 and 6.9×10−7, respectively (Ba and Ca reach the lowest value 3.6×10−4

at around 100days). When T and I drop to minima, T. cruzi infection can be
considered eliminated (both are lower than T c and Ic), according to Eq. (2). Hence,
at day 50th, apoptosis must occur eliminating all activated cells.

Experiments done with animals18 showed a little variance of effector cells in
comparison with pre-infection values. As shown in Fig. 9, in a very strong cellular
immune response, the effector cells after infection are much higher than the level
found before, that is, limit cycle implies in a huge amount of immune cells. But,
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as shown in Fig. 10, in a strong humoral immune response, the difference in the
number of effector cells before and after infection is little. Comparing Figs. 9 and 10,
the limit cycle can be avoided by increasing antibodies related parameters, ε or δB,
showing that a well orchestrated action of humoral and cellular immune responses
is essential to subdue T. cruzi infection, and also to avoid sustained oscillations
resulting in a relatively small number of activated cells.

4.2. Parasitemia

In the early stage of the infection, the transient parasitemia found by El Bouhdidi
et al.19 and Andersson et al.20 can be explained by Fig. 11. The initial conditions
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are the same as those used in previous simulations, except T (0) = T c = 0.00001.
The values of parameters are: τ = 50, α = 10α0, ε = 1, β = 1 and δC = 300; and
two values for δB: δB = 400, shown in Figs. 11(a) and 11(b) and δB = 50, shown
in Figs. 11(c) and 11(d). Other values are those given in Table 1. In Figs. 11(a)
and 11(c) the parasitemia is shown, and Figs. 11(b) and 11(d) show the infected and
activated immune cells. According to Figs. 11(a) and 11(c), parasitemia lasted up
to approximately 8 and 14 weeks, respectively. Higher values of δB result in a per-
sistent parasitemia (non-trivial equilibrium point is stable, and from in Fig. 11(a),
T̄ = 6.42 × 10−4, however the load of parasites in the indeterminate stage can
be diminished by increasing δB), while for lower values, sustained oscillations are
observed (non-trivial equilibrium point is unstable, and in Figs. 11(c) and 11(d) the
next peak, not shown here, appears at around 150 days). It is worthy to mention
that a decrease in δB (decreased proliferation of plasma cells) increased the peak
of Ca from 0.1 to 13315.

From Figs. 11(c) and 11(d), the appearance of the first peak occurs in the fol-
lowing order: I, T,Ba and Ca. In a first contact with T. cruzi parasite, there is no
adaptive immune response, hence, the parasite infects host cells and they grow prac-
tically unrestricted. For this reason, the peak of infected host cells firstly appears at
around 50 days. Due to abundant parasites, plasma cells produce antibodies, and
the maximum production (it is assumed that this production is proportional to the
number of Ba) occurs at around 60 days. At this time, parasites begin descend-
ing phase, after a peak at around 55 days. Finally, the last peak occurs for Ca at
around 80 days. Notice that the infected host cells cannot grow due to the action
of cytotoxic cells, and the ascending phase of these cells is roughly proceeded by
the end of descending phase of infected cells.

As the infection progresses, the number of parasites in the blood of patients with
chronic T. cruzi infection is extremely low, and very little is known about the fac-
tors that are responsible for parasite persistence and the ensuing chronic disease.20

The finding of T. cruzi in the central vein of suprarenal showed that the pres-
ence of the parasites is important in the pathogenesis of the disease, which can be
seeded to other sites of the body, especially in immunosuppressed persons.21 Hence,
polymerase chain reaction (PCR) assays have the potential for detecting such low
numbers because the organisms have highly repetitive nuclear and kinetoplast DNA
sequences that can be amplified by PCR.1 In a murine model, it was observed that
all mice developed a transient parasitemia which lasted up to 8 (infected with
the Tulahuen strain) and 12 weeks (infected with the CA-1 clone) post-infection.
Another observation was the presence of CD8-positive T cells invading non-necrotic
muscle fibers.20

The pathogenesis of end-organ destruction in Chagas’ disease is not completely
understood. The infrequent finding of tissue-dwelling amastigotes in the sectioned
heart leads some to argue that amastigotes are sequestered in tissues other than
the heart and gut. It is also not clear if continued presence of amastigotes or
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parasite DNA is required for tissue destruction. Others believe that infection with
T. cruzi stimulates auto-immunity, which results in chronic pathological changes
in the absence of parasite.8

The model considered as the class of host cells H being infected by T. cruzi
a pool of tissues and organs of human body. Different organs and tissues present
broad variability in the risk of infection (α), number of parasites necessary to infect
a cell (n) and number of parasites released when an infected cell dies (τ). Each
organ or tissue is also characterized by size H0 of cells. The basic reproduction
number of ith organ Ri

0, which is the average number of T. cruzi produced by
one trypanosome infecting one cell of specified organ, can be defined according to
Eq. (10). Highly productive organs and tissues (Ri

0 > 1) should maintain infection
even in a strong immune response,21 and organs refractory to infection (maybe
Ri

0 < 1), like heart, can eventually sustain T. cruzi infection at very lower level.
This is left to a further work.

5. Conclusion

Cossy Isasi et al.9 and Sibona et al.10 analyzed mathematical models taking into
account the parasite population and action of N different antibodies. The parasites
population are released by infected cells, but the dynamics of infected cells do not
present healthy cells being infected, rather they increase proportionally to parasites
population. Another weakness is the absence of cellular response to kill infected
cells.

A simple model presented here dealt with humoral and cellular immune
responses against T. cruzi infection. Plasma cells (activation described by the
parameter γB) proliferate (parameter δB) and release antibodies that neutral-
ize the protective glycoprotein (parameter ε), exposing the trypomastigotes to
complement-mediated lysis. Activated CD8 T cells (activation described by the
parameter γC) proliferate (parameter δC) and produce cytokines, principally IFN-
γ capable of activating macrophages to kill intracellular amastigotes (parameter β).
The model did not take into account CD4 T helper cells that are necessary to gen-
erate both humoral and cellular immune responses. A more elaborate model must
consider interleukins or cytokines produced by T helper cells in order to activate
and proliferate B and CD8 T cells.

There are evidences of the joint action of humoral and cellular immune responses
to control T. cruzi infection.22–27 In experimental murine model of T. cruzi infec-
tion, a vigorous humoral response accompanied by a significant but moderate TH1
cellular response resulted in control of parasitemia and limited pathology, allow-
ing the recovery and survival of Ninoa-infected mice; in contrast, a weak humoral
response with a potent THI proinflammatory profile produced an uncontrolled
inflammatory reaction.27

An important conclusion from this simple model is the joint action of humoral
and immune responses to control T. cruzi infection. In general, parasitemia is
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contained at a lower but persistent level by immune responses, and the model
showed that sustained oscillations occurred when humoral response is less strong
than cellular response. This shows the important role played by antibodies in neu-
tralizing circulating trypomastigotes in order to avoid infection of cells. After a
strong immune response, effector cells must commit suicide in order to avoid self
damage after elimination of parasites.

The model assumed that the class of host cells H is formed by a pool of tissues
and organs of human body. If R0 can be estimated for different organs and tissues,
according to Eq. (10), it can be possible to follow the spread of T. cruzi infection
along different organs and tissues.

The model showed that immune response alone was not able to fade out T. cruzi
infection, when the reproducibility of this parasite is greater than 1 (R0 > 1). Bio-
logically, however, a critical level of circulating parasites can be defined below which
they can be considered eliminated. Hence, there are other types of controls that
must be analyzed: administration of chemotherapy and vaccine. The successful elim-
ination of vectorial and transfusional transmission of Chagas’ disease in Brazil was
a result of the reduction of domestic density of the primary vector T. infestans and
of almost 100% of coverage in blood serological selection. Thus, the transmission,
if it is occurring, is only accidental. However, congenital transmission may occur at
any time of pregnancy, in successive gestations and may affect twins. The infection
may produce pathology in the growing fetus. The consequences on the newborn
are variable, ranging from asymptomatic to severe clinical manifestations. Congen-
ital transmission cannot be prevented, but early diagnosis of the newborn enables
prompt treatment, achieving cure rates close to 100% (the treatment regimen should
include benznidazol between 5 and 10mg/kg/d for 30–60 days or nifurtimox at 10–
15mg/kg/d for 60 days) and thus avoiding progression to chronic Chagas’ disease.7

On the other hand, non-antibodymediated cellular immune responses to the anti-
gens expressed in the mammalian forms of the parasite can be used for the purpose
of vaccination.28 In a future work, controlling mechanisms will be included in the
model in order to assess the effects of different controls.
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Appendix A. Non-trivial Equilibrium Point

The non-trivial equilibrium value of T. cruzi corresponding to model (1), T̄ , is the
positive solution of Eq. (6). Initially, properties of the polynomials f(T ) and g(T )
are analyzed.

The continuous third degree polynomial g(T ), given by Eq. (7), is such that
g(−∞) = ∞, g(0) = β′γ′CC0 + ε′γ′BB0 + nα′β′µHTγ

′
CC0H0 > 0 and g(∞) = −∞.

Hence, g(T ) has: (1) zero or two real roots in the interval (−∞, 0) and (2) one or
three real roots in the interval (0,+∞).

To evaluate the roots of the equation g(T ) = 0, this is written as g1(T ) = g2(T ),
where




g1(T ) = β′γ′CC0(1 − δ′BT )(1 + γ′BT ) + ε′γ′BB0(1 − δ′CT )(1 + γ′CT )

+ β′ε′γ′CC0γ
′
BB0T,

g2(T ) = −nα
′β′µHTγ

′
CC0H0(1 − δ′BT )(1 + γ′BT )

1 + α′T
.
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The second-order polynomial function g1(T ) has one positive root, say T+
1 . Hence,

in the interval (0, T+
1 ), g1(T ) is positive, and assumes negative values thereafter.

The function g2(T ) is such that there is one positive (T+
2 = 1/δ′B) and one neg-

ative (−1/γ′B) roots, and g2(T ) has an asymptote at T = −1/α′. There are two
possibilities for the graph of g2(T ): (1) For −1/α′ > −1/γ′B, g2(T ) is a monoton-
ically increasing function for T > −1/α′ with positive root at T+

2 = 1/δ′B; (2) if
−1/α′ < −1/γ′B, g2(T ) is an upward concavity function for T > −1/α′ with posi-
tive root at T+

2 = 1/δ′B. In both cases, g2(T ) is negative in the interval (0, T+
2 ) and

assumes positive values thereafter.
By comparing the behaviors of functions g1(T ) and g2(T ), there is a unique

positive root for the equation g(T ) = 0, say Tg, which is situated between 1/δ′B
and T+

1 : T+
1 < Tg < 1/δ′B (if g1(T ) and g2(T ) intersect at negative value) or

1/δ′B < Tg < T+
1 (if g1(T ) and g2(T ) intersect at positive value). Hence, g(T ) is

positive and decreases from g2(0) up to 0 at T = Tg. In turn, the function T × g(T )
is positive in the interval [0, Tg], assuming zero value at the lower and upper bounds
of the interval, and has downward concavity.

The continuous fifth degree polynomial f(T ), given by Eq. (7), has two negative
real roots (−1/γ′B and −1/γ′C), two positive real roots (T+

3 = 1/δ′B and T+
4 = 1/δ′C)

and the last one should be positive or negative. Moreover, f(−∞) = ∞, f(0) =
R0−1 and f(∞) = −∞, where R0 is given by Eq. (10). When R0 > 1, the last root
is positive, T+

5 = T̄0 = f(0)/α′, with T̄0 being given by Eq. (9). In this situation,
f(T ) is positive and decreases from f(0) to 0 at T = χ, where χ is the minimum
among T̄0, 1/δ′B and 1/δ′C or χ = min{T̄0, 1/δ′B, 1/δ

′
C}. However, if R0 < 1, the last

root is negative, and f(T ) is negative and increases from f(0) to 0 at T = χ, where
χ = min{1/δ′B, 1/δ′C}.

The relative positions of the positive roots of f(T ), g1(T ) and g(T ) are such
that: (1) for δ′C > δ′B (with g1(1/δ′C) > 0), 1/δ′C < T+

1 < Tg < 1/δ′B, if β′ < β′c,
otherwise, 1/δ′C < 1/δ′B < Tg < T+

1 ; and (2) for δ′C < δ′B (with g1(1/δ′B) > 0),
1/δ′B < Tg < T+

1 < 1/δ′C , if ε′ < ε′c, otherwise, there are two possibilities: 1/δ′B <

Tg < 1/δ′C < T+
1 or 1/δ′B < 1/δ′C < Tg < T+

1 . The critical values α′c
B, α

′c
B, β

′c and
ε′c are 


α′c

B =
α′

0δ
′
B

δ′B − α′
0

, β′c =
(δ′C − δ′B)(δ′B + γ′C)

δ′Bγ
′
CC0

,

α′c
C =

α′
0δ

′
C

δ′C − α′
0

, ε′c =
(δ′B − δ′C)(δ′C + γ′B)

δ′Cγ
′
BB0

.

When R0 < 1, T ×g(T ) is a positive function in the interval (0, Tg) and negative
for T > Tg, while f(T ) assumes negative values in the interval (0, χ), where χ =
min{1/δ′B, 1/δ′C}, and positive for T > χ (indeed f(T ) assumes again negative
values for T > max{1/δ′B, 1/δ′C}, the maximum between 1/δ′B and 1/δ′C). By the
fact that Tg is always greater than 1/δ′B or 1/δ′C or both, the curves y = T × g(T )
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and y = f(T ) intercept at T > χ, which is positive solution but does not obey
Eq. (8), resulting in a biologically unfeasible equilibrium. Hence, when R0 < 1,
there is not an acceptable positive solution for Eq. (6).

However, for R0 > 1, the function T × g(T ) initially increases from 0 at T =
0, and then decreases to 0 at T = Tg. But, f(T ) decreases monotonically from
f(0) > 0 at T = 0 to 0 at T = χ, where χ = min{T̄0, 1/δ′B, 1/δ

′
C}. Then, the curves

y = T × g(T ) and y = f(T ) have exactly one intercept in this interval. Hence,
f(T ) = T × g(T ), Eq. (6), has a unique positive solution T̄ in the interval (0, χ).

Proliferation of plasma and cytotoxic cells affects the magnitude of the unique
positive solution T̄ . This magnitude can be determined, as α′ increases, in terms
of the critical values α′c

B, α
′c
B, β

′c and ε′c. Notice that α′c
B > α′c

B, if δ′B > δ′C , while
α′c

B < α′c
B, if δ′B > α′

0 and δ′C > α′
0.

Let the case where plasma cells proliferate higher than cytotoxic cells (δ′B > δ′C)
be considered. For α′

0 < δ′C < δ′B, when α′
0 < α′ < α′c

B, then T̄ < T̄0; when α′c
B <

α′ < α′c
C , then T̄ < 1/δ′B; and when α′ > α′c

C , then T̄ < 1/δ′B. For δ′C < α′
0 < δ′B,

when α′
0 < α′ < α′c

B , then T̄ < T̄0; and when α′ > α′c
B , then T̄ < 1/δ′B. Finally, for

δ′C < δ′B < α′
0, T̄ < T̄0.

In this case, the concentration of T. cruzi at equilibrium T̄ situates in the
interval (0, χ), where χ = min{T̄0, 1/δ′B}.

The case corresponding to cytotoxic cells proliferating higher than plasma cells
(δ′C > δ′B) is considered. For α′

0 < δ′B < δ′C , when α′
0 < α′ < α′c

C , then T̄ < T̄0;
when α′c

C < α′ < α′c
B, then T̄ < 1/δ′C; and when α′ > α′c

B, then T̄ < 1/δ′C . For
δ′B < α′

0 < δ′C , when α′
0 < α′ < α′c

C , then T̄ < T̄0; and when α′ > α′c
C , then

T̄ < 1/δ′C . Finally, for δ′B < δ′C < α′
0, then T̄ < T̄0.

In this case, the concentration of T. cruzi at equilibrium T̄ situates in the
interval (0, χ), where χ = min{T̄0, 1/δ′C}.

Appendix B. Stability of the Equilibrium Points

The local stability of the equilibrium points is determined by the eigenvalues of the
characteristic equation det(J∗ − ψI) = 0, with the Jacobian matrix J being given
by J = [J1 J2], where J1 and J2 containing, respectively, the first four columns and
the last three columns of the matrix J are given by

J1 =




−µT − εBa − nαH −nαT τ(µH + µI) 0

−αH −µH − αT 0 0

αH αT −µH − µI − βCa 0

−γBB 0 0 −µB − γBT

γBB + δBBa 0 0 γBT

−γCC 0 0 0

γCC + δCCa 0 0 0



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and

J2 =




−εT 0 0

0 0 0

0 0 −βI
0 0 0

−(µB + µd
B) + δBT 0 0

0 −µC − γCT 0

0 γCT −(µC + µd
C) + δCT



.

Matrix J∗ is the Jacobian J evaluated at the equilibrium point.

B.1. Trivial equilibrium point

The eigenvalues corresponding to the trivial equilibrium point P 0, with coordinates
given by Eq. (3), are ψ1 = −µH , ψ2 = −µC , ψ3 = −(µC + µd

C), ψ4 = −µB, ψ5 =
−(µB + µd

B) and the remaining two are the roots of the equation

ψ2 + (µH + µI + µT + nαH0)ψ + (1 −R0) = 0,

where R0 is given by Eq. (10). When the coefficients of this second degree poly-
nomial are positive, according to the Routh–Hurwitz criteria,29 both roots have
negative real values, or negative real part if complex. Hence, the trivial equilibrium
P 0 is locally asymptotically stable (LAS) if R0 < 1.

To show the global stability of the trivial equilibrium P 0, a Lyapunov function
is defined in V :R7

+ → R as

V = τI + T, (B.1)

whose orbital derivative is

V̇ = −
[
µT

(
1 −R0

H

H0

)
T + τβIC a + εBaT

]
.

The invariant (biologically feasible) region of the system (1) is given by

Ω = {(T,H, I,B,Ba, C, Ca) ∈ R7
+ |T ≥ 0;H ≤ H0; I ≥ 0;

B ≤ B0;Ba ≥ 0;C ≤ C0;Ca ≥ 0},

where H0, B0 and C0 are given by Eq. (3). Since H/H0 ≤ 1, V̇ < 0 for R0 < 1 and
V̇ = 0 for T = 0. By inspecting the system of Eqs. (1), the maximum invariant set
is the trivial equilibrium point P 0. Hence, by the La-Salle Lyapunov Theorem,30

P 0 is globally stable for R0 < 1.
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B.2. Non-trivial equilibrium point

When R0 > 1, P 0 becomes unstable, and there arises a unique P ∗ as shown in the
foregoing section. The stability of P ∗, with coordinates given by Eq. (5) and T̄ as
a positive solution of Eq. (6), is assessed by the characteristic equation

h1(β, ε) + β × h2 + ε× h3 = 0, (B.2)

where the functions h1(β, ε), h2 and h3 are given by


h1(β, ε) = (µC + µd
C − δC T̄ + ψ)(µC + γC T̄ + ψ)(µB + µd

B − δBT̄ + ψ)

× (µB + γBT̄ + ψ)[αT̄ (µH + µI + βC̄a + ψ)(µT + εB̄a + ψ)

+ (ψ + µH + µI + µT + εB̄a + βC̄a + nαH̄)(µH + ψ)ψ],

h2 = Īτ(µH + µI)(µB + µd
B − δBT̄ + ψ)(µB + γBT̄ + ψ)

× (µH + αT̄ + ψ)[(γBB̄ + δBB̄a)(µB + ψ) + γBδBB̄aT̄ ],

h3 = T̄ (µC + µd
C − δC T̄ + ψ)(µC + γC T̄ + ψ)(µH + µI + βC̄a + ψ)

× (µH + αT̄ + ψ)[(γC C̄ + δCC̄a)(γC + ψ) + γCδCC̄aT̄ ].

The equalities µH +µI +βC̄a = αT̄ H̄/Ī and µT +εB̄a+nαH̄ = τ(µH +µI)Ī/T̄ were
used to obtain this characteristic equation, hence it is valid only for T̄ �= 0. The
characteristic equation presents two terms regarding to isolated action of humoral
(εh3) and cellular (βh2) responses, and one term that accounts for both responses
(h1(β, ε)).

The characteristic Eq. (B.2) can be written in the form of a polynomial ψ7 +∑7
i=1 aiψ

7−i = 0. By the fact that the constraints in Eq. (8), µB + µd
B > δBT̄ and

µC + µd
C > δC T̄ , are simultaneously satisfied, the equilibrium point P ∗, as well

as the special equilibrium P ∗
1 , have positive coefficients ai, i = 1, . . . , 7. Therefore,

one of the Routh–Hurwitz criteria (ai > 0, i = 1, . . . , 7) is satisfied,29 implying
that the unique non-trivial equilibrium point can be LAS. Instead of dealing with
a seventh degree polynomial, the stability of the non-trivial equilibrium point is
assessed considering isolated humoral and cellular immune responses.

B.2.1. Isolated action of humoral response

When β = 0 and n = 0, the compartments of infected cells, and cytotoxic cells
are decoupled from the dynamics, and the non-trivial equilibrium point is P ∗ =
(T̄ , H̄, B̄, B̄a), with coordinates in dimensionless parameters being given by(

T̄ , H̄ =
H0

1 + α′T̄
, B̄ =

B0

1 + γ′BT̄
, B̄a =

µBdγ
′
BB0T̄

(1 − δ′BT̄ )(1 + γ′BT̄ )

)
,

where T̄ is solution of the equation

( α′
α′

0
− 1) − α′T

1 + α′T
=

ε′γ′BB0T

(1 − δ′BT )(1 + γ′BT )
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and H0 and B0 are given by Eq. (3). With respect to the equation for I, this class is
considered at steady state, and (µH + µI)I is substituted by αTH in the equation
for T .

The characteristic equation corresponding to Jacobian evaluated at the equilib-
rium point P ∗ is

0 = εT̄ (µH + αT̄ + ψ)[γBB̄(µB + ψ) + δBB̄a(µB + γBT̄ + ψ)][(µH + ψ)ψ

+αT̄ (µT + εB̄a + ψ)] + (µB + µd
B − δBT̄ + ψ)(µB + γBT̄ + ψ). (B.3)

This characteristic equation can be written as a polynomial equation ψ4 +∑4
i=1 aiψ

4−i = 0, where the coefficients ai are


a1 = (µH + αT̄ ) + (µB + γB T̄ ) + (µB + µd
B − δBT̄ ),

a2 = (µB + µd
B − δBT̄ )[(µH + αT̄ ) + (µB + γB T̄ )]

+ (µH + αT̄ )(µB + γBT̄ ) + αT̄ (µT + εB̄a) + εT̄ (γBB̄ + δBB̄a),

a3 = (µH + αT̄ )(µB + γBT̄ )(µB + µd
B − δBT̄ )

+ [(µB + γBT̄ ) + (µB + µd
B − δBT̄ )]αT̄ (µT + εB̄a)

+ εT̄ (γBB̄ + δBB̄a)[(µH + αT̄ ) + µB] + εγBδBT̄
2B̄a,

a4 = αT̄ (µT + εB̄a)(µB + γBT̄ )(µB + µd
B − δBT̄ ) + εT̄ (µH + αT̄ )

× [µB(γBB̄ + δBB̄a) + γBδBT̄ B̄a].

It can be shown (omitted here) that, when α > α0, all the Routh–Hurwitz
conditions corresponding to the characteristic equation (B.3) are satisfied, which
are a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2

3 + a2
1a4.31

B.2.2. Isolated action of cellular response

When ε = 0 (and a simplification τ � n), the compartments of B cells are decoupled
from the dynamics, and the non-trivial equilibrium point is P ∗ = (T̄ , H̄, Ī, C̄, C̄a),
with coordinates (dimensionless parameters)


H̄ =

H0

1 + α′T̄
, Ī =

µHIα
′H0T̄

(1 + α′T̄ )(1 + β′C̄a)
,

C̄ =
C0

1 + γ′C T̄
, C̄a =

µCdγ
′
CC0T̄

(1 − δ′C T̄ )(1 + γ′C T̄ )
,

where T̄ is solution of the equation

( α′
α′

0
− 1) − α′T

1 + α′T
=

β′γ′CC0T

(1 − δ′CT )(1 + γ′CT )

and H0 and C0 are given by Eq. (3).
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The characteristic equation corresponding to Jacobian evaluated at the equilib-
rium point P ∗ is

0 = (µC + µd
C − δC T̄ + ψ)(µC + γC T̄ + ψ)[αT̄ (µH + µI + βC̄a + ψ)(µT + ψ)

+ (ψ + µH + µI + µT + βC̄a)(µH + ψ)ψ] + βĪτ(µH + µI)(µH + αT̄ + ψ)

× [(γCC̄ + δCC̄a)(γC + ψ) + γCδCC̄aT̄ ]. (B.4)

It can be shown (omitted here) the non-trivial equilibrium P ∗ is locally asymp-
totically stable for α > α0, but in a limited range of parameter δC . The Routh–
Hurwitz conditions corresponding to the characteristic equation (B.4) written
as a polynomial equation ψ5 +

∑5
i=1 aiψ

5−i = 0 are ai > 0 (i = 1, . . . , 5),
a1a2a3 > a2

3 + a2
1a4 and (a1a4 − a5)(a1a2a3 − a2

3 − a2
1a4) > a5(a1a2 − a3)2 + a1a

2
5.32

Note that the latter can be written as a3(a1a2 − a3) > a2
1a4, and, when all coeffi-

cients are positive, then an implicit condition is a1a2 > a3, which is not satisfied
for a sufficiently higher values of δC .31 When P ∗ is unstable, due to the fact that
there is no other biologically feasible equilibrium, a limit cycle appears.


