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We formulate an infinite-time quadratic functional minimization problem ofAedes aegyptimosquito population.Three techniques
of mosquito population management, chemical insecticide control, sterile insect technique control, and environmental carrying
capacity reduction, are combined in order to obtain the most sustainable strategy to reduce mosquito population and consequently
dengue disease. The solution of the optimization control problem is based on the ideas of the Dynamic Programming and
Lyapunov Stability using State-Dependent Riccati Equation (SDRE) control method. Different scenarios are analyzed combining
three mentioned population management efforts in order to assess the most sustainable policy to reduce the mosquito population.

1. Introduction

According toWorld Health Organization, dengue is reported
to be the most rapidly spreading mosquito-borne disease in
the world [1]. Recent estimates are that 50 million dengue
infections occur each year, with 2.5 billion people at risk of
infection in dengue endemic countries. Aedes aegypti is a
domesticated urban mosquito and is the vector responsible
for the transmission of some infectious diseases. The most
common of them is dengue disease-virus infection caused
by four distinct but related single-strand RNA viruses of
the family Flaviviridae. Each of them causes a different type
of clinical manifestation of dengue disease, varying from
classic form to severe dengue shock syndrome and the fatal
hemorrhagic dengue form.

Integrated vector management (IVM) is a strategy which
aims to achieve a maximum impact on vector borne diseases
like dengue. The emphasis of IVM is on examining and ana-
lyzing the local situation, making decisions at decentralized
levels, and utilizing the appropriate mosquito control tools
[1]. One of the features of IVM is the use of a range of
interventions, often in combination and simultaneously, that
work together to reduce dengue transmission. For dengue
control, there are three main categories of intervention:

biological control, the use of chemicals to kill the adult and
immature mosquito stages, and the physical (mechanical)
control, eliminating possible breeding sites.

The biological control includes the well-known sterile
insect technique (SIT). The SIT is a biological control,
firstly presented by Knipling [2], and was used in 1958 to
control Screwworm fly (Cochliomyia hominivorax [3, 4]).
SIT control is a technique in which natural male insects are
exposed to radiations that eliminate their ability to fertilize
eggs. The sterile males are released in the environment to
mate with natural female population. Once irradiated, the
sperms of sterile male mosquitoes fertilize the eggs of female
mosquitoes producing unviable eggs, which do not hatch and
disrupt the natural reproductive process of the population.

Ultra low volume (ULV) method consists of aerial sprays
of insecticide for adult mosquitoes control. Chemical insecti-
cides are sprayed using portable or truck-mounted machines
in order to kill adult insects. Although studies have been
shown that space spraying alone is relatively ineffective as a
routine control strategy [5], it should be reserved for use only
during epidemics.

Aedes aegyptimosquitoes lay their eggs in containers such
as bottles, tires, fountains, barrels, and pots. By removing
these habitats, mosquitoes have fewer opportunities to lay
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eggs.This strategy is called mechanical control.The mechan-
ical control must be done both by public health officials and
by residents in affected areas [1].

Mathematical modeling of mosquito population in order
to assist SIT can be found in [6]. In [7] an optimal control of
the A. aegypti population problem was formulated in terms
of Pontryagin Maximum Principle, where a quadratic func-
tional was minimized in finite time interval. It is known that
in many cases the application of the Pontryagin Maximum
Principle does not guarantee the long time stability of the
controlled system.

In this paper we formulate an infinite-time quadratic
functional minimization problem of A. aegypti mosquito
population.The solution of this problem is based on the ideas
of the Dynamic Programming and Lyapunov Stability using
State-Dependent Riccati Equation (SDRE) control method
[8, 9]. The reduction in the mosquito population is achieved
by applying three control mechanisms: chemical insecticides
control, biological control by release of the sterilized male
insects, andmechanical control based on the reduction of the
breeding sites.

2. Population Dynamics Model

The mosquito population dynamics model, proposed in [6],
represents the interaction among four different stages of the
natural mosquito population, and a sterile male mosquito
group artificially was introduced into the environment as a
control strategy.

The population size of the immature phase of the insect
(eggs, larvae and pupae) is considered as one compartment
denoted by 𝐴. The natural adult or mature insects are
divided into three compartments, which are denoted as 𝐼-
unmated female population (before copulation), 𝐹-fertilized
female adult population (after copulation with natural male
mosquito), and𝑀-natural male population.

The remaining two compartments are S-sterile male
population and 𝑈-females mated with sterile males resulting
in unviable insects with dynamics uncoupled from the rest
of the population. The dynamics of the population described
above is represented by the following mathematical model:

𝑑𝐴

𝑑𝑡
= 𝜙 (1− 𝐴
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)𝐹− (𝛾 + 𝜇
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plus one equation uncoupled from the rest
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In (1) the mortality rates of aquatic phase, immature
female adults, fertilized female adults, male adults, sterile

male adults, and unmated female adults are represented by
𝜇
𝐴
, 𝜇
𝐼
, 𝜇
𝐹
, 𝜇
𝑀
, 𝜇
𝑆
, and 𝜇

𝑢
, respectively.

An adult female mosquito mates only once during
its lifespan and lays eggs in different places every three
days (gonadotrophic cycle) during entire life. Therefore, the
aquatic population growth is regulated by the parameter 𝜙,
which represents the oviposition rate per female mosquito
and depends on the environmental carrying capacity 𝐶. The
term 𝜙(1 − 𝐴/𝐶) is the per capita oviposition rate. The
aquatic population becomes winged adult mosquitoes at rate
𝛾. The female portion of these winged adults is represented
by coefficient 𝑟, while the male portion is represented by
coefficient (1 − 𝑟). Unmated female mosquitoes 𝐼 transform
into fertilized female 𝐹 or fertilized but unviable female 𝑈
mosquitoes only after mating a natural male or a sterile male,
respectively. It is assumed that the probability of the female
𝐼 and natural male 𝑀 encounter is given by 𝑀/(𝑀 + 𝑆).
Therefore the per capita mating rate is given by 𝛽𝑀/(𝑀 +

𝑆), where 𝛽 represents the intrinsic mating rate of natural
mosquitoes. For sterile male, this intrinsic rate could be
diminished by physiological modification of the sterilization
technique. So another 𝛽

𝑠
is considered and the per capita

mating rate of female 𝐼 and sterile male is given by 𝛽
𝑆
𝑆𝐼/(𝑀+

𝑆).The rate𝛼 represents the artificial release of the sterilemale
population 𝑆 in the environment.

The dynamics of system (1) was considered in [6].
According to Esteva andYang [6] the trivial equilibriumpoint
𝑃
0
= (0, 0, 0, 0, 0) of system (1) without SIT control is stable if

𝑅 = 𝜙𝑟𝛾𝛽/(𝜇
𝐴
+ 𝛾)(𝜇

𝐼
+ 𝛽)𝜇

𝐹
< 1; that is, in the absence of

sterile insects (𝛼 = 0), the condition for existence of natural
insects is𝑅 > 1. In affected areas the last inequality is satisfied,
and an application of IVM is necessary.

In next section, the integrated vector management of the
mosquito population is formulated as an optimal control
problem.

3. Formulation of the Optimal Control
Problem of Aedes aegypti Mosquitoes

Now, it is possible to formulate a control problem where the
main goal is to minimize the fertile female mosquito popu-
lation, and, consequently, all other mosquito populations are
reduced by the action of three different control techniques:
mechanical, chemical (insecticide spraying), and biological
(sterile insect introduction).

The mechanical control is related to educational cam-
paigns, and it is essential to remove water from domestic
recipients, eliminating possible breeding sites (such as bottles,
tires, fountains, barrels, and pots). This control decreases the
environmental carrying capacity 𝐶 in the initial time of the
educational campaign, and it can be considered constant for
some periods of time.

Let the insecticide control effort be denoted by 𝑢
1
, and it

affects only adult phase of mosquito population. The sterile
male insects release is represented by 𝑢

2
. Then the control

model is given by

𝑑𝐴

𝑑𝑡
= 𝜙 (1− 𝐴

𝐶
)𝐹− (𝛾 + 𝜇

𝐴
) 𝐴,
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Table 1: Parameter values (units are days−1, except for 𝑟 and 𝐶).
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For this system, the functional to be minimized can be
represented as

𝐽 =
1
2
∫
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where 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
, and 𝑞

5
represent the cost of control

effort to minimize specific population compartment. The
parameters 𝑟

1
and 𝑟
2
are the cost of insecticide application

and cost of production and release of sterile mosquitoes,
respectively. We assume a quadratic functional cost [7, 8]
since we believe that the performance index is a nonlinear
function. The quadratic terms act as a penalization [9, 10],
amplifying the effects of great variations of the variables.
Each quadratic term is multiplied by a coefficient, which
establishes the relative importance of the term on dengue
control cost.

The optimization problem of the control of the Aedes
aegypti mosquito population by the sterile insect technique
and insecticide can be formulated as determination of the
strategy 𝑢 which leads nonlinear system (3) from a given
initial to a final state:

𝑥 (∞) = 0, (5)

minimizing cost functional (4) and satisfying constraints:

0 ≤ 𝑢1 ≤ 𝑢mas, 0 ≤ 𝑢mas ≤ 1. (6)

The formulated control problem can be solved by State-
Dependent Riccati Equation (SDRE) method [11, 12]. SDRE
approach is explained in more detail in the Appendix.

Defining the vectors 𝑥 and 𝑢 as
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,
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(7)

this results in the following system:
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(9)

According to SDREmethod the control 𝑢 was determined by

𝑢 = −𝑅
−1
𝐵
𝑇
𝑃 (𝑥) 𝑥, (10)

where a matrix 𝑃 is a solution of the following State-
Dependent Riccati Equation:

𝑃 (𝑥)𝐴 (𝑥) +𝐴
𝑇
(𝑥) 𝑃 (𝑥)

−𝑃 (𝑥) 𝐵 (𝑥) 𝑅
−1
(𝑥) 𝐵
𝑇
(𝑥) 𝑃 (𝑥) +𝑄 (𝑥) = 0.

(11)

4. Numerical Simulation Results

For the solution of the control problem and attainment
of control 𝑢 determined by (10), it is necessary to solve
State-Dependent Riccati Equation (11). For this purpose the
MATLAB software intrinsic 𝑙𝑞𝑟 function was used. Once
obtaining control 𝑢, system (5) is solved as initial value
problemusing numeric, fourth-order Runge-Kutta integrator
in MATLAB.

The parameter values of system (5) are shown in Table 1.
The values for 𝜙, 𝜇

𝐴
, 𝜇
𝐼
, 𝜇
𝑀
, and 𝛾 are taken from [7].

The numerical simulations showed that SIT control alone
cannot be a sustainable control strategy due to the lack of
effectiveness in reducingmosquito population andhigh costs.
In the same manner, the application of insecticide spraying
alone cannot be seen as such an alternative because of its
high ecological toxicity andmainly because it demands every
day application at, almost, the maximum level of insecti-
cide, which is obviously difficult for many reasons (weather
conditions, restricted access of houses, lack of personal, and
machinery).

Figures 1 and 2 present a scenario where both chemical
(insecticide) and biological (sterile male insect release) con-
trols are considered.The environmental carrying capacity has
the original value, 𝐶 = 3, as in scenario 1.
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Figure 1: Insecticide control (a) and SIT control (b).
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Figure 2: Aquatic population (a), adult immature female population (b), adult female fertilized population (c), and natural male population
(d).
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Figure 3: Insecticide control (a) and SIT control (b).

As it is seen from Figure 1, the control 𝑢
1
grows to its

limit at the beginning of the period, acting at its maximum
for approximately 10 days, and then asymptotically decreases.
The total effort of 𝑢

1
control is 14.91. The 𝑢

2
control increases

when 𝑢
1
starts to decrease, forming the bell shaped pattern.

The total cost of this control is 46.24.
All four compartments of the mosquito population

asymptotically tend to zero (Figure 2).The aquatic population
and the unmated female population decrease more slowly
than fertilized female and natural male population. It means
that a practically similar investment in SIT control (compared
to previous scenario) plus a little more investment in insecti-
cide reduced significantly the mosquito population.

Next scenario illustrates the combination of insecticide
control, SIT control, and reduction of the environmental
carrying capacity to 𝐶 = 1.5 (Figures 3 and 4). This
mainly affects aquatic phase and unmated female population,
reducing them more efficiently than in previous scenario
(Figures 4(a) and 4(b)). The sum of efforts of the insecticide
control and SIT control are 13.51 and 36.9, respectively
(Figure 3). These costs are lower than in previous scenario
pointing out that the combination of three types of mosquito
population management increases the efficacy of mosquito
population control and reduces its costs.

5. Discussion and Conclusion

This paper considers optimization control problem regarding
Aedes aegypti that combines three techniques of mosquito
population management, chemical insecticide control, ster-
ile insect technique control, and environmental carrying
capacity reduction, in order to obtain the most sustainable
strategy to reduce mosquito population and consequent
dengue disease reduction.

When one seeks a control mechanism or a strategy that
combines different but sometimes antagonistic mechanisms
aiming at the mosquito population control, some criteria
should be considered and some concerns arise. First of them
is to find a control strategy that significantly and immediately
reduces the adult mosquito population in order to reduce
the disease propagation. Second concern is the use of the
minimum chemical insecticide spraying due to its toxicity.
And the last concern is to find a strategy that can be feasible,
or easily employable by the government, which implies
minimization of costs.

In general, optimal control problems are addressed in
specific situations, for instance, when public policy author-
ities have limited budget or when one type of controls is
dangerous to public health (as insecticide, which presents
another inconvenience of generating resistant strains). Dis-
cussions are presented bearing these features in mind.

The numerical simulations in this paper showed that SIT
control alone and the application of insecticide spraying alone
cannot be sustainable control strategies due to many reasons
noted in Section 4.

The combination of SIT control and insecticide spraying
is an alternative to a sustainablemosquito population control.
The numerical simulation of this scenario showed that all
four compartments of natural population are minimized
(Figure 2).With respect to the optimal control, the insecticide
application is active during only few days (which is attractive
in terms of implementation) and the SIT control is also
optimized.

Scenario, presented in Figures 3 and 4, reflects the
combination of three kinds of effort in controlling the
mosquito population: the insecticide control, the SIT control,
and reduction of environmental carrying capacity. All the
population compartments are minimized in the first week
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Figure 4: Aquatic phase population (a), immature female population (b), fertilized female population (c), and normal male population (d).

and the cost of insecticide and SIT controls is lower than in
all previous scenarios. This strategy can be seen as the ideal
control strategy of mosquito population in this optimization
problem.

In the case of presence of antagonistic controlmechanism
such as the combined release of sterile male insects and
the application of the insecticide, optimal control problem
provides management strategies for both interventions. The
considered scenarios show that insecticide application must
take place in early times with the maximum amount, but
should be soon decreased. Meanwhile, sterile insect must be
released in small amounts at the early times when insecticide
is applied (as the insecticide also kills sterile insects) andmust
increase while insecticide application decreases. Then the
release of sterile insects should decrease with the reduction
in total mosquito population.

Appendix

SDRE Nonlinear Control Method

We consider the nonlinear dynamical system given by

�̇� = 𝑓 (𝑥) + 𝐵 (𝑥) 𝑢, 𝑓 (0) = 0, (A.1)

where 𝑥 ∈ 𝑅
𝑛 denotes the state, 𝑢 ∈ 𝑅

𝑚 denotes the control,
and 𝑓(𝑥) : 𝑅

𝑛
→ 𝑅

𝑛 and 𝐵(𝑥) : 𝑅
𝑛

→ 𝑅
𝑛×𝑚 are

differentiable in all arguments.
Our goal is to determine the optimal control 𝑢 that

drives system (A.1) from an initial state to 0 minimizing the
following functional:

𝐽 [𝑢] = ∫

∞

0
[𝑞 (𝑥) + 𝑢

𝑇
𝑅𝑢] 𝑑𝑡 (A.2)

for 𝑞(𝑦) continuously differentiable and positive definite.The
desired solution is a state-feedback control law. Applying
a standard dynamic programming argument, the above
optimal control problem reduces to the Hamilton-Jacobi-
Bellman (HJB) partial differential equation [13]:

min
𝑢∈𝑈

(
𝑑𝑆

𝑑𝑡
+𝑤) = (

𝑑𝑆

𝑑𝑡
+𝑤)

𝑢=𝑢
𝑜

= 0, (A.3)

where 𝑈 is a set of control functions, 𝑢𝑜 are the optimal
functions, 𝑤 = 𝑞(𝑥) + 𝑢

𝑇
𝑅𝑢, and 𝑆 (commonly referred to

as the value function) specifies the minimum cost in shifting
from the current state 𝑥(𝑡); that is,

𝑆 (𝑥 (𝑡)) = min
𝑢∈𝑈

∫

∞

𝑡

[𝑞 (𝑥) + 𝑢
𝑇
𝑅𝑢] 𝑑𝑡. (A.4)
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The optimal control 𝑢 is given by

𝑢 = −𝑅
−1
𝐵 (𝑥)
𝑇 grad 𝑆, (A.5)

where

grad 𝑆 = [
𝜕𝑆

𝜕𝑥1

𝜕𝑆

𝜕𝑥2
⋅ ⋅ ⋅

𝜕𝑆

𝜕𝑥
𝑛

] (A.6)

and the function 𝑆 is the solution of the Hamilton-Jacobi-
Bellman (HJB) partial differential equation (A.3). Generally,
HJB equation (A.3) is extremely difficult to solve.

In particular case, 𝑓(𝑥) = 𝐴𝑥, 𝑞(𝑥) = 𝑥
𝑇
𝑄𝑥, and 𝐵(𝑥) =

𝐵 (matrices𝐴, 𝐵,𝑄, and𝑅 are constant), problem (A.1)–(A.5)
is called Linear Quadratic Regulator (LQR) technique, and
the HJB equation becomes the following Riccati Equation:

𝑃𝐴+𝐴
𝑇
𝑃−𝑃𝐵𝑅

−1
𝐵
𝑇
𝑃+𝑄 = 0. (A.7)

The LQR control law is given by

𝑢 = −𝑅
−1
𝐵
𝑇
𝑃𝑥, (A.8)

where a matrix 𝑃 is a solution of Riccati Equation (A.7).
The SDRE approach can be regarded as an extension of

the LQR. It produces a suboptimal nonlinear controller. This
is because of the approximations required in parametrization
of the nonlinear system, as well as using a Riccati Equation
to approximate the solution to the optimal control problem
rather than solving the correspondingHamilton-Jacobi equa-
tion [12].

Instead of using a linear model, the SDRE starts with the
following nonlinear model [12]:

�̇� = 𝑓 (𝑥) + 𝐵 (𝑥) 𝑢, 𝑓 (0) = 0. (A.9)

Problem (A.1)-(A.2) can now be formulated as a minimiza-
tion of the following functional:

𝐽 [𝑢] = ∫

∞

0
[𝑥
𝑇
𝑄 (𝑥) 𝑥 + 𝑢

𝑇
𝑅𝑢] 𝑑𝑡. (A.10)

According to [12], the solution of problem (A.9)-(A.10)
is equivalent to solving associated Hamilton-Jacobi equa-
tion (A.3). However, because solving the Hamilton-Jacobi-
Bellman equation is very difficult, the HJB equation is
approximated using a State-Dependent Riccati Equation:

𝑃 (𝑥)𝐴 (𝑥) +𝐴
𝑇
(𝑥) 𝑃 (𝑥)

−𝑃 (𝑥) 𝐵 (𝑥) 𝑅
−1
(𝑥) 𝐵
𝑇
(𝑥) 𝑃 (𝑥) +𝑄 (𝑥) = 0.

(A.11)

This makes the problem feasible, although it leads to a
suboptimal controller.

The control law in this problem, like the LQR, is also a
state-feedback law:

𝑢 = −𝑅
−1
𝐵
𝑇
𝑃 (𝑥) 𝑥 (A.12)

which depends on the solution to the State-Dependent
Riccati Equation.

This can be seen by rewriting system (A.9) as

�̇� = 𝑓 (𝑥) + 𝐵 (𝑥) 𝑢, 𝑓 (0) = 0, (A.13)

where 𝑓(𝑥) = 𝐴(𝑥)𝑥. This is known as the State-Dependent
Coefficient form. Note that the matrices 𝐴(𝑥) and 𝐵(𝑥)

are functions of the states of the system, and they become
coefficients in Riccati Equation (A.11). It is important to
notice that the State-Dependent Coefficient form is not
unique. There are many possible 𝐴(𝑥) and 𝐵(𝑥) matrices.
Once a State-Dependent Coefficient form has been found the
SDRE approach is reduced to solving a LQR problem at each
sampling instant. For a controller to exist, the conditions in
the following definition must be satisfied [12].

Definition A.1. 𝐴(𝑥) is a controllable (stabilizable)
parametrization of the nonlinear system for a given region if
[𝐴(𝑥), 𝐵(𝑥)] are pointwise controllable (stabilizable) for all 𝑥
in that region.

Given this standing assumption, the SDRE design pro-
ceeds as follows [12]:

(1) Start with a State-Dependent Coefficient form of the
system to be controlled.

(2) Solve State-Dependent Riccati Equation (A.11) to
obtain a positive, semidefinite matrix 𝑃(𝑥).

(3) Construct the controller in form (A.12).

It is important to stress that the existence of the optimal
control for a particular parametrization of the system is not
guaranteed. Furthermore, there may be an infinite num-
ber of parameterizations of the system, so the choice of
parametrization is very important. The other factor which
may determine the existence of a solution to the Riccati
Equation is the selection of the 𝑄 and 𝑅 weighing matrices
in Riccati Equation (A.11).
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