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The spectral radius of the next generation matrix provides an expression for the basic repro-

duction number. Instead of calculating the dominant eigenvalue of the characteristic equation

corresponding to the next generation matrix, a threshold parameter can be obtained by han-

dling the coefficients of this equation. Here we prove two conjectures presented in [9].

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

In [9], from the Jacobian and next generation matrices, the stability of the disease free equilibrium (DFE) was assessed. Briefly,

the application of the Routh–Hurwitz criteria to the coefficients of the characteristic equation corresponding to the Jacobian

matrix F evaluated at the DFE resulted in the determination of a possible basic reproduction number R
†
0. But, the spectral radius

corresponding to the next generation matrix F1V−1 resulted in, for instance, ρ(F1V−1) =
√

R
†
0, where R

†
0 is that obtained from the

Jacobian method and F = F1 − V, with F1 being the transmission matrix and V, the transition matrix [1,2] . In both methods, if

R
†
0 < 1 or ρ(F1V−1) < 1, the DFE is locally asymptotically stable (LAS).

Instead of calculating the spectral radius of the next generation matrix ρ(F1V−1), a threshold parameter can be obtained from

the characteristic equation corresponding to the matrix F1V−1. The absolute sum of the negative coefficients is the threshold.

With respect to this approach, in [9] two conjectures were presented without proofs. Here, we present the proofs.

2. Proofs of two conjectures

Conjecture 1. Let the characteristic polynomial of order n corresponding to the next generation matrix F1V−1 be written as

�
(
λ
) = λn − an−1λ

n−1 − · · · − a1λ − a0, (1)

with ai � 0, for i = 0, 1, 2, . . . , n − 1. Let R0 denote the spectral radius of the next generation matrix, that is, R0 = ρ(F1V−1), and

R∗ = an−1 + · · · + a1 + a0. (2)
0
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Then R∗
0 is a threshold value for the disease to take off or die out in the sense that:

(i) R∗
0 > 1 if and only if R0 > 1, (3)

(ii) R∗
0 = 1 if and only if R0 = 1, (4)

and

(iii) R∗
0 < 1 if and only if R0 < 1. (5)

Proof. If all ai = 0, the result is obvious. Otherwise the elements of the next generation matrix F1V−1 are non-negative as they

correspond to expected numbers of different types of infected individuals. Hence, by the Perron–Frobenius Theorem [8] it has

a non-negative right eigenvector whose eigenvalue is R0, and R0 is the largest real eigenvalue. Additionally, the characteristic

polynomial (1) is such that the number of sign differences between consecutive nonzero coefficients is one. Hence, according to

Descartes rule of signs, there is exactly one positive root. However, writing

�(∞) = lim
λ→∞

�(λ),

(i) If R∗
0 > 1, we have �(1) < 0 and �(�) = �, so �(λ) has a root in (1, �). Hence, the unique largest real eigenvalue R0

corresponding to the characteristic polynomial (1) is R0 > 1.

(ii) If R∗
0 = 1, we have �(0) < 0, �(1) = 0 and �(�) = �, so the unique positive root of �(λ) = 0 is λ = 1, and R0 = 1.

(iii) If R∗
0 < 1, we have �(0) < 0 and �(1) > 0, so �(λ) has a root in (0, 1). Hence, the unique largest real eigenvalue R0

corresponding to the characteristic polynomial (1) is R0 < 1.

Therefore R∗
0 is a valid threshold parameter that crosses the value one exactly when R0 does and determines the disease be-

haviour in the same way that R0 does. The application of the Routh–Hurwitz criteria to the characteristic equation corresponding

to the Jacobian matrix F = F1 − V [9], showed that the DFE is LAS if R
†
0 < 1, (equivalently R0 < 1, see Section 3 of this paper), and

unstable if R
†
0 > 1, equivalently R0 > 1. �

The above conjecture was obtained considering a single infection. Another conjecture deals with coinfection.

Conjecture 2. When two infections occur, let the characteristic polynomial corresponding to the next generation matrix F1V−1

be written as

�
(
λ
) = �1

(
λ
)
�2

(
λ
) − �3

(
λ
)
, (6)

where �1(λ) and �2(λ), given by equation (1), are the characteristic polynomials of degrees n1 and n2 corresponding to single

infection by infections 1 and 2 respectively, and �3(λ) is the characteristic polynomial of degree m involving coinfection given

by

�3

(
λ
) = a3

mλm + · · · + a3
1λ + a3

0,

with a3
i

≥ 0, for i = 0, 1, 2, . . . , m, and m < n1 + n2.

(a) If �3(λ) � 0, then R∗
0 = max{R1∗

0 , R2∗
0 } is a threshold value for disease to take off or die out in the sense that conditions

(3)–(5 ) hold.

(b) If �3(λ) �≡ 0, then define R∗
3 = �3(1) = a3

m + · · · + a3
1 + a3

0, analogous to R∗
0 defined by (2), but for coinfection, and

R∗
t = R∗

3(
1 − R1∗

0

) (
1 − R2∗

0

) , (7)

(possibly infinite). Then

R∗
0 = max{R1∗

0 , R2∗
0 , R∗

t } (8)

(also possibly infinite) is a threshold value for disease to take off or die out in the sense that conditions (3)–(5 ) hold.

Proof.

(a) First, when �3(λ) � 0, Conjecture 1 can be applied for each infection. As R0 is the largest real positive eigenvalue of the

characteristic equation,

R0 = max{R1
0, R2

0}
when the result follows from Conjecture 1.

(b) When �3(λ) �≡ 0, the product �1(λ)�2(λ), one term of the characteristic polynomial (6), is such that �1(0)�2(0) = a1
0a2

0 ≥
0. The other term �3(λ) is a strictly increasing function (or a constant, if �3(λ) = a3

0), with �3(0) = a3
0. Recall that �i(λ)

has a unique positive root Ri
0 for i = 1, 2. Hence, one of the roots, rs (which can be negative if a1

0a2
0 < a3

0), of �(λ) = 0 is less

than or equal to the minimum of the roots R1
0 and R2

0 of �1(λ) = 0 and �2(λ) = 0 respectively and another (rb) is strictly

greater than max{R1
0, R2

0}. Again as F1V−1 is a next generation matrix its elements are non-negative and R0 is its largest

real eigenvalue. Hence R0 � rb is strictly greater than max{R1
0, R2

0}. By Lemma 1 (below), R0 = rb, so

R0 > max{R1, R2}. (9)
0 0
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If R∗
0 > 1 then either (i) max{R1∗

0 , R2∗
0 } > 1, (ii) max{R1∗

0 , R2∗
0 } = 1 and R∗

t > 1, or (iii) max{R1∗
0 , R2∗

0 } < 1 and R∗
t > 1. In the first

case, by Conjecture 1 max{R1
0, R2

0} > 1 so R0 > 1 by (9). In the second case similarly, max{R1
0, R2

0} = 1, so R0 > 1 by (9). In the third

case

�(1) = �1(1)�2(1)

[
1 − �3(1)

�1(1)�2(1)

]
,

= (1 − R1∗
0 )(1 − R2∗

0 )(1 − R∗
t ),

where R∗
t is given by Eq. (7), and �(�) = � due to the assumption that the degree of the polynomial �3(λ) is less than the other

two. As R∗
t > 1 we have �(1) < 0 and R0 lies in (1, �) so R0 > 1.

If R∗
0 = 1 and max{R1∗

0 , R2∗
0 } = 1 then R∗

t = ∞ which contradicts R∗
0 = 1. Hence max{R1∗

0 , R2∗
0 } < 1 and R∗

t = 1 so arguing as in

the third case above �(1) = 0. Moreover by Conjecture 1, max{R1∗
0 , R2∗

0 } < 1 implies that max{R1
0, R2

0} < 1 so by using Lemma 1,

R0 = 1. Hence we have shown that R∗
0 = 1 implies that R0 = 1.

If R∗
0 < 1 then max{R1∗

0 , R2∗
0 } < 1 and R∗

t < 1, hence �(1) > 0. Again by Conjecture 1, max{R1
0, R2

0} < 1 and by Lemma 1 the

unique root of �(λ) in (max{R1
0, R2

0}, ∞) is less than one. So we have shown that R∗
0 < 1 implies that R0 < 1. �

So once again R∗
0 is a valid threshold parameter that crosses the value one exactly when R0 does and determines the disease

behaviour in the same way that R0 does. The condition max{R1∗
0 , R2∗

0 , R∗
t } < 1 can be written as

max{R1∗
0 , R2∗

0 } < 1 − R∗
3 and R∗

t < 1

(see Lemma 2).

Lemma 1. �(λ), given by Eq. (6), has exactly one positive real root in (max{R1
0, R2

0}, ∞).

Proof. Note that at Ri
0, i = 1, 2, �(Ri

0) = −�3(R
i
0) < 0. Hence �(max{R1

0, R2
0}) < 0 and �(�) = � so there is a positive real root

of �(λ) in (max{R1
0, R2

0}, ∞). Note also that

�i(λ) = λni

(
1 −

ai
ni−1

λ
−

ai
ni−2

λ2
− · · · − ai

0

λni

)
,

and that for λ ≥ Ri
0 both λni and

�i(λ)

λni
=

(
1 −

ai
ni−1

λ
−

ai
ni−2

λ2
− · · · − ai

0

λni

)

are positive monotone increasing functions, so �i(λ) is positive monotone increasing. Hence �1(λ)�2(λ) is also positive mono-

tone increasing in (max{R1
0, R2

0}, ∞). But

�(λ) = �1(λ)�2(λ)

[
1 − �3(λ)

�1(λ)�2(λ)

]

= �1(λ)�2(λ)

[
1 − �3(λ)/λ(n1+n2)

{�1(λ)/λn1}{�2(λ)/λn2}
]
.

In (max{R1
0, R2

0},∞), �1(λ)/λn1 and �2(λ)/λn2 are both monotone increasing and strictly positive and �3(λ)/λ(n1+n2) is

strictly monotone decreasing and strictly positive, hence

1 − �3(λ)/λ(n1+n2)

{�1(λ)/λn1}{�2(λ)/λn2}
is strictly monotone increasing. So �(λ) is strictly monotone increasing in (max{R1

0, R2
0}, ∞). The result follows. �

Lemma 2. The condition max{R1∗
0 , R2∗

0 , R∗
t } < 1 is equivalent to max{R1∗

0 , R2∗
0 } < 1 − R∗

3 and R∗
t < 1.

Proof. The statement is obvious if R∗
3 = 0 so suppose that R∗

3 > 0. When max{R1∗
0 , R2∗

0 } < 1, R∗
t , given by Eq. (7), is a strictly

increasing function in R1∗
0 and R2∗

0 , with value R∗
3 when R1∗

0 = 0 and R2∗
0 = 0. Hence, R∗

t < 1 implies that R∗
3 < 1.

Consider R2∗
0 = 1 − R∗

3 + ε, with |ε| � 0. Then

R∗
t = R∗

3(
1 − R1∗

0

) [
1 − (

1 − R∗
3 + ε

)] = R∗
3(

1 − R1∗
0

) (
R∗

3 − ε
) .

When R1∗
0 = 0, we have

R∗
t = R∗

3

R∗
3 − ε

{
>1, if ε > 0,

<1, if ε < 0.

We deduce that in general (provided that max{R1∗
0 , R2∗

0 } < 1) if R2∗
0 ≥ 1 − R∗

3, then R∗
t ≥ 1, and max{R1∗

0 , R2∗
0 , R∗

t } < 1 is not

satisfied. Similarly if R1∗
0 ≥ 1 − R∗

3, then max{R1∗
0 , R2∗

0 , R∗
t } ≥ 1. Hence, max{R1∗

0 , R2∗
0 , R∗

t } < 1 implies that max{R1∗
0 , R2∗

0 } < 1 − R∗
3,

with R∗ < 1 and R∗
t < 1. On the other hand if max{R1∗, R2∗} < 1 − R∗ and R∗

t < 1, then clearly max{R1∗, R2∗, R∗
t } < 1. �
3 0 0 3 0 0
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3. Conclusion

In this brief paper we have proved two conjectures. For the second conjecture the case �3(λ) � 0 may describe infections

where infection with each disease or strain individually does not influence the infection with the other disease or strain. Another

possibility is when each infection confers complete immunity against the other. In this case (�3(λ) � 0) both infections die out

when R∗
0 = max{R1∗

0 , R2∗
0 } < 1. On the other hand, the condition for co-existence of two non-interacting infections is given by

min{R1∗
0 , R2∗

0 } > 1.

However for the case �3(λ) �≡ 0, we would expect that coinfection can occur, even when max{R1∗
0 , R2∗

0 } < 1, provided that

R∗
t > 1. In other words, a sufficiently high interaction between strains sustains both infections and the DFE is unstable. For this

reason, besides max{R1∗
0 , R2∗

0 } < 1 we must have R∗
t < 1, or R∗

0 = max{R1∗
0 , R2∗

0 , R∗
t } < 1, in order for the DFE be LAS. An example

of coinfection where the DFE is LAS when the largest real eigenvalue R0 of F1V−1 is strictly less than one is found in [6]. Indeed

Raimundo et al. [6], dealing with coinfection with drug sensitive and drug resistant tuberculosis, showed that the DFE is LAS if

max{R1
0, R2

0} < 1 − R∗
3 and R∗

t < 1, with R∗
3 < 1.

In spectral radius theory, the dominant eigenvalue of the characteristic equation of the next generation matrix F1V−1, which

is the spectral radius ρ(F1V−1), determines the stability of the DFE in the sense that:

(i) ρ(F1V−1) < 1 if and only if all eigenvalues of the matrix F = F1 − V have strictly negative real part,

(ii) ρ(F1V−1) = 1 if and only if zero is an eigenvalue of F, and

(iii) ρ(F1V−1) > 1 if and only if F has a strictly positive real eigenvalue.

In the proofs of our two conjectures, using the same characteristic equation corresponding to the next generation matrix

F1V−1, we developed a new threshold R∗
0, given by Eqs. (2) and (8), which was determined to be a threshold equivalent to R0

in that the DFE was LAS if R∗
0 < 1 and unstable if R∗

0 > 1. These new definitions are not spectral radii, and we therefore cannot

directly establish the stability or instability of the DFE from that property. However in [9], the stability of the DFE was assessed

by the Routh–Hurwitz criteria applied to the Jacobian matrix F (if all Routh–Hurwitz criteria are satisfied, then all eigenvalues

have strictly negative real parts). But the arguments above show that the values R∗
0 given in (2) and (8) are equivalent to R

†
0 as

thresholds determining the stability of the system and thus equivalent to the Jacobian method in assessing stability. Hence for

both (2) and (8) here the disease is LAS if R∗
0 < 1 and unstable if R∗

0 > 1. Thus the stability threshold from the Jacobian method is

also the same as the results given by (2) and (8).

We are grateful to a referee for pointing out that this method has potential applications in other disease models, in particular

brucellosis in sheep and cattle.

Sun and Zhang [7] discuss a sheep brucellosis model with immigration. From p. 339 the corresponding characteristic equation

is

λ3 − A11λ
2 = 0,

that is, from Eq. (1), the characteristic polynomial is �(λ) = λ3 − A11λ
2. Hence, from Eq. (2), we obtain R∗

0 = R0 = A11 =
S0(d+m+α)
(d+m)(d+α)

(β + β1k
nτ+ε ). Nie et al. [5] discuss a different model for cattle brucellosis in Jinlin province, China, and there our method

can be applied in a similar fashion.

Li et al. [3] discuss a model for the spread of brucellosis between sheep and cattle in a public farm. From the matrix FV−1 on

p. 586 of [3] the corresponding characteristic equation is(
λ − A11

) (
λ − A22

)
λ4 − A12A21λ

4 = 0,

where A11, A22, A12 and A21 are constants as defined by [3], with R1
0 = A11 and R2

0 = A22. This characteristic equation is written as

the polynomial �(λ) = �1(λ)�2(λ) − �3(λ), from Eq. (6), where

�1(λ) = λ3 − A11λ

and

�2(λ) = λ3 − A22λ

are the characteristic polynomials corresponding to single infection with strains 1 and 2, and

�3(λ) = A21A12λ
4

is the characteristic polynomial corresponding to the interaction between strains 1 and 2. So the characteristic polynomial �(λ)

satisfies the hypotheses of Conjecture 2, hence R1
0 = R1∗

0 , R2
0 = R2∗

0 and

R∗
t = A12A21(

1 − R1
0

) (
1 − R2

0

) .

The stability condition is equivalent to R∗
0 = max{R1∗

0 , R2∗
0 , R∗

t } < 1, or equivalently, max{R1∗
0 , R2∗

0 } < 1 − A12A21 and R∗
t < 1.

Li et al. [4] discuss an alternate model for the spread of brucellosis amongst sheep and cattle in China. Particularly for system

(2) in [3], from the matrix FV−1 (page 1130), the corresponding characteristic equation is

�(λ) = (λ − A11)(λ − A33)λ
3 − A13A31λ

3 = 0.
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Brucellosis infection occurring only in population 1 is

�1(λ) = λ3 − A11λ
2,

while for infection only in population 2 is

�2(λ) = λ2 − A33λ,

and the characteristic polynomial corresponding to the interaction between populations 1 and 2 is

�3(λ) = A13A31λ
3.

A similar procedure as in [3] can be done. In this case, we have n1 � n2.
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