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NICAMP – IMECC – DMA, Praç a Sérgio Buarque de Holanda, 651, CEP: 13083-859 Campinas, SP, Brazil

 r  t  i  c  l e  i  n  f  o

rticle history:
eceived 27 June 2014
eceived in revised form 26 July 2014
ccepted 2 October 2014
vailable online 8 October 2014

eywords:
ompartmental modelling
tability analysis of disease free equilibrium
outh–Hurwitz criteria
eometric mean
artial reproduction numbers

a  b  s  t  r  a  c  t

The  basic  reproduction  number  is a key  parameter  in mathematical  modelling  of transmissible  diseases.
From the  stability  analysis  of the  disease  free  equilibrium,  by applying  Routh–Hurwitz  criteria,  a  threshold
is  obtained,  which  is called  the  basic  reproduction  number.  However,  the  application  of spectral  radius
theory  on  the next  generation  matrix  provides  a different  expression  for the  basic  reproduction  number,
that  is,  the  square  root of  the  previously  found  formula.  If  the  spectral  radius  of  the next  generation  matrix
is  defined  as the  geometric  mean  of  partial  reproduction  numbers,  however  the product  of  these  partial
numbers  is the  basic  reproduction  number,  then  both  methods  provide  the  same  expression.  In order
to  show  this  statement,  dengue  transmission  modelling  incorporating  or not  the  transovarian  transmis-
sion  is  considered  as a case study.  Also  tuberculosis  transmission  and  sexually  transmitted  infection
modellings  are  taken  as  further  examples.

©  2014 Elsevier  Ireland  Ltd.  All  rights  reserved.

. Introduction

Dengue virus, a flavivirus transmitted by arthropod of the genus Aedes, is prevalent in different parts of the world. As a result of being
athogenic for humans and capable of transmission in heavily populated areas, dengue virus (arbovirus) can cause widespread and serious
pidemics, which constitute one of the major public health problems in many tropical and subtropical regions of the world where Aedes
egypti and other appropriate mosquito vectors are present.

In order to prevent dengue outbreak, periodic surveys designed to detect changes in key adult indices are important since they allow
he detection of adult population fluctuations, which may prompt changes to vector control strategy. However, ecological, behavioral and
ontrol information on population size, distribution, survivorship, seasonal abundance and insecticide susceptibility are required for an
nderstanding of epidemic potential and for the formulation of control strategies (Monath, 1989). By the means of dengue transmission
odelling, the efforts of the eradication of dengue epidemics can be measured. These efforts are linked with the basic reproduction number

enoted by R0 (Nåsell, 1976).
The basic reproduction number is defined, e.g., for a microparasite as the average number of secondary infections produced when one

nfected individual is introduced into a host population where everyone is susceptible, in the absence of density-dependent constraints
Anderson and May, 1991). This key epidemiological parameter is determined by assessing the stability of equilibrium points using the
outh–Hurwitz criteria to analyze the characteristic equation (Edelstein-Keshet, 1988). (Another way  to obtain R0 is done through an
-matrix, which is not considered here (Berman and Plemmons, 1979; Raimundo et al., 2010, 2014; Yang, 2012).) Recently, spectral radius

heory has been applied to obtain the basic reproduction number (van den Driessche and Watmough, 2002). Hereafter, the application of
outh–Hurwitz criteria to obtain R0 is referred to as the Jacobian method, while the recent approach is referred to as the next generation
ethod.

The main goal of this paper is to compare R0 obtained using Jacobian and next generation methods taking the dengue transmission

odelling as a case study. The Jacobian method provides R0 as the product of the partial reproduction numbers. The next generation
ethod provides R0 as the spectral radius, which is the (geometric) mean number of new infectives per infective in any class, per generation

Heffernan et al., 2005). Both methods yield the same mathematical expression if the product of the partial reproduction numbers defines
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he basic reproduction number, while the geometric mean of these partial reproduction numbers is the spectral radius of the next generation
atrix. The paper is structured as follows. In Section 2, models for dengue transmission are presented, and the stability of the disease free

quilibrium point is assessed. Section 3 presents discussion to compare the results obtained by applying Jacobian and next generation
ethods. Finally, conclusion is given in Section 4.

. Models for dengue transmission

Dengue virus circulates due to the interaction between human and mosquito populations in urban areas. A unique serotype of dengue
irus is being considered in the modelling.

With respect to population dynamics, the total human population is assumed to be constant, by taking the natality and mortality rates,
oth designated by �h, being equal. The life cycle of A. aegypti encompasses an aquatic phase (eggs, larva and pupa) followed by winged
adult) form (Yang et al., 2011). The number of eggs, which do not constitute a state variable (see (Yang, 2014a) for a model including this
ompartment), is determined by the oviposition rate ϕ(M) = �m, where � is the per-capita oviposition rate and m,  the number of female
osquitoes at time t. Defining as l the number of larvae (female) at time t, the effective larvae production rate is given by qf(1 − l/C)�m,
here q and f are the fractions of eggs that are hatching to larva and that will originate female mosquitoes, respectively, and C is the total

carrying) capacity of the breeding sites. The number of larvae decreases according to change of larvae to pupae and death, described,
espectively, by the changing � l and the mortality �l rates. The number of pupae in time t, p, increases with change of larvae to pupae (� l)
nd decreases according to transformation of pupae to adult mosquitoes and death, described, respectively, by the emerging �p and the
ortality �p rates. Finally, the number of female mosquitoes increases according to the emerging of pupae (�p) and decreases according

o the mortality rate �f.
With respect to dengue transmission, the human population is divided into four compartments according to the natural history of

he disease: s, e, i and r, which are the fractions at time t of, respectively, susceptible, exposed, infectious and recovered persons, with
 + e + i + r = 1. The constant total number of the human population is designated by N. The female mosquito population is divided into three
ompartments: m1, m2 and m3, which are the numbers at time t of, respectively, susceptible, exposed and infectious mosquitoes. The size
f mosquito population is given by m = m1 + m2 + m3.

Dengue transmission is sustained by the flows among human and mosquito compartments according to the dengue epidemics cycle
resented above. Susceptible humans are infected during the blood meal by infectious mosquitoes, with the transmission rate being
esignated by Bh, which depends on the frequency of bites on humans by mosquitoes. A very simple way to take into account the frequency
f bites is by allowing it to be proportional to oviposition rate �, that is, Bh = ˇh�, where ˇh is the transmission coefficient. The exposed
ersons are, then, transferred to an infectious class by rate �h, where 1/�h is the intrinsic incubation period. These infectious persons
rogress to recovered (immune) class at rate �h. Neither loss of immunity nor induced mortality due to the disease (a unique serotype

nfection) are considered. With respect to the vector, the susceptible mosquitoes are infected at a rate Bm. These exposed mosquitoes are
ransferred to infectious class at a rate �m, where 1/�m is the extrinsic incubation period, and remain infective until death.

To incorporate the feature that a particular human is bitten by a particular mosquito, the transmission coefficients ˇh and ˇm must be
ivided by N. The dynamics of dengue infection can incorporate or not the transovarian transmission.

.1. Dengue infection without transovarian transmission

Here, the transovarian transmission is not considered, hence all emerging mosquitoes from pupa stage are classified as susceptible.
ased on the foregoing descriptions of model parameters and dynamical states, dengue transmission is described by a system of differential
quations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
m2 = ˇm�im1 − (�m + �f )m2

d

dt
m3 = �mm2 − �f m3

d

dt
e = ˇh�

N
m3s − (�h + �h)e

d

dt
i = �he − (�h + �h)i

d

dt
l = qf�m(1 − l

C
) − (�l + �l)l

d

dt
p = �ll − (�p + �p)p

d

dt
m1 = �pp − (ˇm�i + �f )m1

d

dt
s = �h − (

ˇh�

N
m3 + �h)s,

(1)

here the decoupled fraction of immune persons is given by r = 1 − s − e − i. In this system of equations, the infective classes were written
n first place, different from the sequence of A. aegypti life cycle and the evolution of disease, that is, in the order l, p, m1, m2, m3, s, e, and i.
There are two equilibrium points, assuming the existence of mosquito population. One is the trivial equilibrium P0, or disease free
quilibrium (DFE), given by

P0 = (m2 = 0, m3 = 0, e = 0, ı = 0, l = l∗, p = p∗, m1 = m∗, s = 1),
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here l*, p* and m*  are given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

l∗ = C
(

1 − 1
Q0

)
p∗ = �l

�p + �p
C
(

1 − 1
Q0

)
m∗ = �p

�f

�l

�p + �p
C
(

1 − 1
Q0

)
.

(2)

learly the mosquito population exists if Q0 > 1, where

Q0 = �l

�l + �l

�p

�p + �p

qf�

�f
(3)

s the basic offspring number (Yang et al., 2011).
Other is a unique non-trivial equilibrium P∗, or endemic equilibrium, given by

P∗ = (m2 = m∗
2, m3 = m∗

3, e = e∗, ı = i∗, l = l∗, p = p∗, m1 = m∗
1, s = s∗),

here l∗ and p∗ are given by Eq. (2), and the remaining values are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∗
1 = �p

ˇm�i∗ + �f

�l

�p + �p
C
(

1 − 1
Q0

)

m∗
2 = ˇm�i∗

�m + �f

�p

ˇm�i∗ + �f

�l

�p + �p
C
(

1 − 1
Q0

)

m∗
3 = �m

�f

ˇm�i∗

�m + �f

�p

ˇm�i∗ + �f

�l

�p + �p
C
(

1 − 1
Q0

)

s∗ = 1 − (�h + �h)(�h + �h)
�h�h

i∗

e∗ = �h + �h

�h
i∗

i∗ = �f (R0 − 1)

ˇm� + �f (�h + �h)(�h + �h)
�h�h

R0

,

(4)

here the basic reproduction number R0 is given by

R0 = �m

�m + �f

ˇh�

�f

�h

�h + �h

ˇm�

�h + �h

m∗

N
,  (5)

ith the size of mosquito population m∗ being given by Eq. (2).
The combination of s∗, m∗

1 and m∗, given by Eqs. (2) and (4), results in

s∗ m∗
1

m∗ ≡ �0 = 1
R0

, (6)

hat is, in the endemic steady state, the product of the fractions of susceptible humans and mosquitoes (�0) is equal to the inverse of the
asic reproduction number. This relationship is well established in directly transmitted infections (Anderson and May, 1991; Yang and
ilveira, 1998).

The basic reproduction number R0 given by Eq. (5) can be split in two  partial reproduction numbers Rh
0 and Rm

0 defined by⎧⎪⎨
⎪⎩

Rh
0 = ˇh�

�f

�h

�h + �h

Rm
0 = ˇm�

�h + �h

m∗

N

�m

�m + �f
,

(7)

hus R0 = Rh
0Rm

0 . Notice that the term [(ˇh�/N)N]/�f of Rh
0 is the average number of humans (in a susceptible population of size N) infected

y one infectious mosquito during her entire lifespan; and the term �h/(�h + �h) is the probability of these infected persons to survive the
xposed class and enter the infectious class. Hence, Rh

0 is the average number of infectious humans produced by one infectious mosquito
ntroduced in a community free of dengue. The term [(ˇm�/N)m∗]/(�h + �h) of Rm

0 is the average number of mosquitoes (in a susceptible
opulation of size m∗) infected by one infectious human during his/her infectious period; and the term �m/(�m + �f) is the probability
f these infected mosquitoes to survive the exposed class and enter to the infectious class. Thus, Rm

0 is the average number of infectious
osquitoes produced by one infectious human introduced in a community free of dengue. Therefore, the basic reproduction number R0

ives the average number of secondary infectious humans (or mosquitoes) produced by one primary infectious human (or mosquito)

ntroduced in completely susceptible populations of humans and mosquitoes.

The effective reproduction number Ref can be defined as product of partial effective reproduction numbers Rh
0s and Rm

0 m1/m as

Ref =
(

Rh
0s
)(

Rm
0

m1

m

)
. (8)
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uppose that at t = 0 one infectious case (does not matter if human or mosquito) is introduced in a completely susceptible populations
f humans and mosquitoes. Then, when t ≤ 0, before and just at the time of the beginning of epidemics, Ref = R0 because s = 1 and m1 = m.
otwithstanding, when t→ ∞,  the epidemics reaches a steady state, which occurs due to Ref = 1, and Eq. (6) can be obtained.

Details of all above calculations can be found in Yang et al. (2014).
The main goal of this work is the comparison of R0 obtained using the Routh–Hurwitz criteria and the spectral radius of next generation

atrix. Hence, the stability analysis will be restricted to the DFE. Details of the calculations are presented in order to compare both methods.

.1.1. Jacobian method – Routh–Hurwitz criteria
Here, the basic reproduction number is obtained applying Routh–Hurwitz criteria (Edelstein-Keshet, 1988).
The Jacobian matrix evaluated at DFE, named J = J(P0), results in

J =
[

F 0

J1 J2

]
,

here the matrices F and J2 are

F =

⎡
⎢⎢⎢⎢⎢⎣

−(�m + �f ) 0 0 ˇm�m∗

�m −�f 0 0

0
ˇh�

N
−(�h + �h) 0

0 0 �h −(�h + �h)

⎤
⎥⎥⎥⎥⎥⎦ and J2 =

[
M 0

0 H

]
, (9)

ith the matrices M and H being given by

M =

⎡
⎢⎢⎣

−(�l + �l)Q0 0 qf�
1

Q0

�l −(�p + �p) 0

0 �p −�f

⎤
⎥⎥⎦ and H = [−�h], (10)

nd the matrix J1 is

J1 =

⎡
⎢⎢⎢⎢⎢⎣

qf�
1

Q0
qf�

1
Q0

0 0

0 0 0 0

0 0 0 −ˇm�m∗

0 −ˇh�

N
0 0

⎤
⎥⎥⎥⎥⎥⎦ . (11)

otice that F is the disease transmission matrix, and M and H are the vital dynamics matrices of mosquito and human populations. The vital
ynamics of human population is Malthusian with constant population, hence H is an 1 × 1 matrix. The local stability of DFE is assessed by
he eigenvalues of the characteristic equation det(J − �I) = 0, where

det(J − �I)  ≡ det(F − �I)  det(M − �I)  det(H − �I).

The eigenvalue corresponding to vital dynamics matrix of humans H is �1 = − �h.
The characteristic equation corresponding to vital dynamics matrix of mosquitoes M is

�3 + a2�2 + a1� + a0 = 0,

here the coefficients are⎧⎪⎨
⎪⎩

a2 = (�l + �l)Q0 + (�p + �p) + �f

a1 = (�l + �l)(�p + �p + �f )Q0 + (�p + �p)�f

a0 = (�l + �l)(�p + �p)�f (Q0 − 1),

ith Q0 being given by Eq. (3). The difference a2a1 − a0 can be evaluated, resulting in

a2a1 − a0 = a1[(�l + �l)Q0 + (�p + �p)] + qf�

Q0
�l�p + [(�l + �l)Q0 + (�p + �p)]�2

f > 0.

ence, the eigenvalues �2,3,4 have negative real part since all the Routh–Hurwitz criteria (for a third degree polynomial they are a0 > 0,
2 > 0 and a2a1 > a0) are satisfied when Q0 > 1, which is the condition for the existence of mosquito population. With this condition, matrix

 is an M-matrix (van den Driessche and Watmough (2002), in their proof, assumed that matrix J2 had all eigenvalues with negative real

art).

The characteristic equation corresponding to dengue transmission matrix F is

�4 + b3�3 + b2�2 + b1� + b0 = 0,
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here the coefficients are⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

b3 = �h + �h + �m + 2�h + 2�f

b2 = (�h + �h)(�h + �h) + (�h + �h + 2�h) × (�m + 2�f ) + (�m + �f )�f

b1 = (�h + �h)(�h + �h)(�m + 2�f ) + (�h + �h + 2�h)(�m + �f )�f

b0 = (�h + �h)(�h + �h)(�m + �f )�f (1 − R0),

(12)

ith R0 being given by Eq. (5). The Routh–Hurwitz criteria for a fourth degree polynomial are b3 > 0, b1 > 0, b0 > 0 and b3b2b1 > b2
1 + b2

3b0. The
rst two conditions are true, while the third condition is satisfied if R0 < 1. The last inequality can be rewritten as ı = b3b2b1 − b2

1 − b2
3b0 > 0,

r, splitting b0,

ı = b3b2b1 − b2
1 − b2

3ϒ + b2
3ϒR0 = 
 + b2

3ϒR0,

here ϒ = (�h + �h)(�h + �h)(�m + �f)�f > 0. However, 
 is


 = b3b2b1 − b2
1 − b2

3ϒ

= b3

{
(�h + �h)(�h + �h)(�h + �h + 2�h) ×

[(
�m + �f

)2 + �2
f

+ (�m + �f )�f

]
+ (�m + 2�f )(�m + �f )

× �f

[
(�h + �h)2 + (�h + �h)2 + (�h + �h)(�h + �h)

]}
+ b1
{

(�h + �h)(�h + �h)(�m + �h + 2�h)

+ (�m + 2�f )(�m + �f )�f

}
> 0,

esulting in ı > 0. Hence, for R0 < 1, all the Routh–Hurwitz criteria are satisfied, and the eigenvalues �5,6,7,8 have negative real part. Therefore,
FE is locally asymptotically stable for R0 < 1, and at R0 = 1 occurs bifurcation.

The independent term b0 was obtained, using definition given in Eq. (5), from

b0 = (�h + �h)(�h + �h)(�m + �f )�f ×
(

1 − �m�hˇh�ˇm�m∗/N

(�m + �f )(�h + �h)(�h + �h)�f

)
.

otice that this expression is one of the way to write b0 in the form K1(1 − K2/K1), where K1 and K2 are functions of the model parameters,
nd K2/K1 is defined as R0. But, there are many other ways to do this. For instance, defining K2/K1 =

√
R0, or (K2 + K)/(K1 + K) = R0, because

n all cases, they give the same threshold at R0 = 1 (Li et al., 2011). For this reason, let a recipe (named Procedure 1) with two  steps be
efined:

. Write a positive K1 in terms of the model parameters, excluding all transmission parameters, in order to write b0 in the form K1(1 − K2/K1).

. Define the ratio K2/K1 as the basic reproduction number R0.

This procedure defines a unique R0.
Another threshold parameter comes from Eq. (6), which states that the product of the fractions of susceptible humans and mosquitoes

�0) is equal to the inverse of the basic reproduction number. This parameter can also be obtained from the independent term b0 following
 recipe (named Procedure 2) with two steps:

. Write a positive K3 in terms of the model parameters, including vertical transmission parameters, in order to write b0 in the form
K3(1 − Rh/K4), where Rh contains only horizontal transmission parameters (not necessarily the basic reproduction number R0).

. Define the ratio Rh/K4 as the inverse of the product of fractions �−1
0 .

This procedure defines a unique �−1
0 .

Following the Procedure 2, b0 can be written as

b0 = (�h + �h)(�h + �h)(�m + �f )�f

(
1 − R0

1

)
,

hat is, K3 = K1 and K4 = 1, resulting in �−1
0 = R0, the basic reproduction number, since there is only horizontal transmission. Notice that

FE is stable if �−1
0 < 1, and bifurcates at �−1

0 = 1, and above this value a unique non-trivial (endemic) equilibrium appears. The condition
−1
0 < 1, or �0 > 1, shows that the product of fractions is greater than one, which is biologically unfeasible, and DFE is stable.

.1.2. Next generation method – Spectral radius theory
Here, the basic reproduction number is obtained calculating the spectral radius of next generation matrix (van den Driessche and

atmough, 2002). In this method, the next generation matrix is constructed by a subsystem of (1) taking into account the states-at-infection
m2,e) and the states-of-infectiousness (m3,i) (Diekmann et al., 2010).

First, consider only states-of-infectiousness variables in the vector f (van den Driessche and Watmough, 2002). In matrix form, the

ynamical system (1) is written as

d

dt
xp = fp(x) − vp(x), p = 1, . . .,  8,
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here

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m2

m3

e

i

l

p

m1

s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˇm�im1

0
ˇh�

N
m3s

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

nd

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(�m + �f )m2

−�mm2 + �f m3

(�h + �h)e

−�he + (�h + �h)i

−qf�m
(

1 − l

C

)
+ (�l + �l)l

−�ll + (�p + �p)p

−�pp + (ˇm�i + �f )m1

−�h +
(

ˇh�

N
m3 + �h

)
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

he partial derivatives of f and v, with respect to m2, m3, e and i, evaluated at the DFE are partitioned as

Df = ∂fp

∂xn
=
[

F1 0

0 0

]
and Dv = ∂vp

∂xn
=
[

V 0

−J1 −J2

]
, 1 ≤ p, n ≤ 8,

here the transmission matrix F1 and transition matrix V are

F1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 ˇm�m∗

0 0 0 0

0
ˇh�

N
0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

V =

⎡
⎢⎢⎢⎢⎣

(�m + �f ) 0 0 0

−�m �f 0 0

0 0 (�h + �h) 0

0 0 −�h (�h + �h)

⎤
⎥⎥⎥⎥⎦ ,

nd J2 and J1 are given by Eqs. (9) and (11). Notice that J = Df − Dv and F = F1 − V, where J and F are, respectively, the Jacobian and the disease
ransmission matrices obtained in the foregoing section.

The eigenvalues �1,2,3,4 of matrix J2, solutions of det(J2 − �I) ≡ det(M − �I) det(H − �I) = 0, where matrices M and H are given by Eq. (10),
ere already evaluated in the preceding section.

The next generation matrix (or, operator (Diekmann and Heesterbeek, 2000)) is defined by F1V−1. The inverse of the matrix V exists and
s

V−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢

1
�m + �f

0 0 0

�m

�f (�m + �f )
1

�f
0 0

1

⎤
⎥⎥⎥⎥⎥⎥⎥ ,
⎢⎢⎣ 0 0

�h + �h
0

0 0
�h

(�h + �h)(�h + �h)
1

�h + �h

⎥⎥⎦
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nd the next generation matrix F1V−1 is, then,

F1V−1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 NR
m
0

�h + �h

�h
NR

m
0

0 0 0 0
1
N

R
h
0

�m + �f

�m

1
N

R
h
0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ , (13)

here the partial contributions from human and mosquito populations R
h
0 and R

m
0 are defined by⎧⎪⎨

⎪⎩
R

h
0 = �m

�m + �f

ˇh�

�f

R
m
0 = �h

�h + �h

ˇm�

�h + �h

m∗

N
.

(14)

he interpretation follows similar to the partial reproduction numbers given by Eq. (7), that is, R
h
0 (or R

m
0 ) is the average number of exposed

umans (or mosquitoes) originated by one exposed mosquito (or human). The difference is that the partial reproduction numbers given
y Eq. (7) are defined in function of infectious classes. The four eigenvalues corresponding to F1V−1 are �5,6 = 0 and �7,8 = ±

√
R0, with R0

eing given by Eq. (5). The spectral radius of a matrix A is denoted by �(A), which is the dominant eigenvalue, hence �(F1V−1) =
√

R0. If
(F1V−1) < 1, then all eigenvalues corresponding to matrix F1 − V have negative real part, and DFE is locally asymptotically stable (van den
riessche and Watmough, 2002), assuming that all eigenvalues corresponding to J2 have negative real part. Hence, the spectral radius,
hich is the basic reproduction number Rng

0 , is

Rng
0 ≡ �(F1V−1) =

√
R0. (15)

his square root arises from the two ‘generations’ required for an infected vector or host to ‘reproduce’ itself (van den Driessche and
atmough, 2002).
Now, let the states-at-infection be included in the vector f, that is,

f =
(

ˇm�im1, �mm2,
ˇh�

N
m3s, �he, 0, 0, 0, 0

)T

,

here T stands for the transposition of a matrix. In this case, the next generation matrix F1V−1 is

F1V−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
ˇm�m∗

�h + �h

�m

�m + �f
0 0 0

0
1
N

ˇh�

�f
0 0

0 0
�h

�h + �h
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 R4

R1 0 0 0

0 R2 0 0

0 0 R3 0

⎤
⎥⎥⎥⎥⎥⎦ ,

ith Rp, p = 1, . . .,  4, being the partial reproduction numbers. The corresponding eigenvalues are �5,6 = ±im
4√

R1R2R3R4, with im standing
or imaginary part, and �7,8 = ± 4√

R1R2R3R4, where R0 = R1R2R3R4, with R0 being given by Eq. (5). Hence, the spectral radius, which is the

asic reproduction number R
ng
0 , is

R
ng
0 ≡ �(F1V−1) = 4

√
R0. (16)

his fourth order root arises from the four ‘generations’ required for an infected vector or host to ‘reproduce’ itself.

.1.3. Comparison
Currently, the spectral radius of the next generation matrix, which is defined as the basic reproduction number, is obtained as the

eometric mean of entries. This formalism is largely accepted, and the majority of papers treating epidemiological modellings apply this
efinition. There are few exceptions, for instance, Hyman and Li (2005) they applied next generation and Jacobian (M-matrix theory)
ethods, while in Hyman and Li (2007) they applied the Jacobian method.

Instead of that definition, let the product of the partial reproduction numbers be the basic reproduction number (Anderson and May,

991). By the fact that the spectral radius is obtained as the geometric mean of the entries (or partial reproduction numbers), the basic
eproduction number is the square of the spectral radius (if there are n entries, then the basic reproduction number is the n-th order of the
pectral radius). In Appendix A, this definition is tested considering tuberculosis transmission.
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To assess the stability of DFE by the Jacobian method, Routh–Hurwitz criteria were applied, and a threshold parameter R0 was  obtained,
iven by Eq. (5), as the product of partial reproduction numbers. The biological interpretation was done for R0, and concluded that it is the
asic reproduction number. The next generation method, however, resulted in two different expressions for the spectral radius, that is, Rng

0

nd R
ng
0 , given by Eqs. (15) and (16), which are composed by two  and four mean numbers of new infectives, respectively. Or, the spectral

adius is the geometric mean of partial reproduction numbers. If the definition that the basic reproduction number is indeed the product

f partial reproduction numbers is applied, then �
(

F1V−1
)2 = �

(
F1V−1

)4
, which is R0 yielded by the Jacobian method. As a consequence,

he different manners to construct vectors f and v in the next generation method are not determinant in the process of obtaining the basic
eproduction number.

Another detail observed in the next generation matrix F1V−1 given by Eq. (13) is that the elements are not exactly the partial reproduction
umbers. Roberts and Heesterbeek (2003) stated that each element of the matrix F1V−1 provides the expected number of secondary cases

n host type p that would arise from a typical primary case in host type n in a susceptible population. Or, in another words, the partial
eproduction numbers. This fact is one of the reasons to consider that the threshold obtained from the next generation method is indeed
he basic reproduction number. But, to be in accordance with above definition, the elements must be multiplied or divided by the size
f human population N. Another minor detail is that the elements of the next generation matrix consider exposed classes, not infectious
lasses.

.2. Dengue infection with transovarian transmission

The model dealing with transovarian transmission simplifies the previous one. The exposed classes of humans and mosquitoes are not
onsidered, hence s + i + r = 1 and m = m1 + m2, where m2 is now the infectious class of mosquitoes. Another simplification is gathering larva
nd pupa forms in the aquatic phase, hence �a is the rate of adult emerging from aquatic phase, and �a is the mortality rate of aquatic
hase Yang et al. (2009). The number of uninfected aquatic forms is denoted by l1, and l2 is the number of infected aquatic forms, where
he total size is l = l1 + l2. It is assumed that infected aquatic forms behave equally as uninfected. The infected aquatic forms that emerge as

ale mosquitoes are not considered here, in order to simplify the model, for instance, the mating between male and female mosquitoes
s not taken into account (Esteva and Yang, 2000).

Taking into account above simplifications, and based on the foregoing descriptions of model parameters and dynamical states, the
engue transmission encompassing transovarian transmission is described by the system of differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
m2 = �al2 + ˇm�im1 − �f m2

d

dt
i = ˇh�

N
m2s − (�h + �h)i

d

dt
l2 = qf�jm2

(
1 − l1 + l2

C

)
− (�a + �a)l2

d

dt
l1 = qf�[m1 + (1 − j)m2]

(
1 − l1 + l2

C

)
− (�a + �a)l1

d

dt
m1 = �al1 − (ˇm�i + �f )m1

d

dt
s = �h −

(
ˇh�

N
m2 + �h

)
s,

(17)

here j is the fraction of eggs with dengue virus from all eggs laid by infected mosquitoes.
There are two equilibrium points, assuming the existence of mosquito population. One is the trivial equilibrium P0, or disease free

quilibrium (DFE), given by

P0 = (m2 = 0, ı = 0, l2 = 0, l1 = l∗, m1 = m∗, s = 1),

here l∗ and m∗ are given by⎧⎪⎪⎨
⎪⎪⎩

l∗ = C
(

1 − 1
Q0

)
m∗ = �a

�f
C
(

1 − 1
Q0

)
.

(18)

learly the mosquito population exists if Q0 > 1, where

Q0 = �a

�a + �a

qf�

�f
(19)

s the basic offspring number.

Other is a unique non-trivial equilibrium P∗, or endemic equilibrium, given by

P∗ = (m2 = m∗
2, ı = i∗, l2 = l∗2, l1 = l∗1, m1 = m∗

1, s = s∗),
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ith the coordinates being given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l∗1 = (1 − j)
ˇm�i∗ + �f

ˇm�i∗ + (1 − j)�f
C
(

1 − 1
Q0

)

l∗2 = j
ˇm�i∗

ˇm�i∗ + (1 − j)�f
C
(

1 − 1
Q0

)
m∗

1 = (1 − j)
�f

ˇm�i∗ + (1 − j)�f

�a

�f
C
(

1 − 1
Q0

)

m∗
2 = ˇm�i∗

ˇm�i∗ + (1 − j)�f

�a

�f
C
(

1 − 1
Q0

)
s∗ = 1 − �h + �h

�h
i∗

i∗ = �f (Re − 1)

ˇm� + �f (�h + �h)
�h

R0

,

(20)

here the basic reproduction number Re, which encompasses transovarian transmission, is defined as

Re = R0 + j. (21)

his number is the sum of the basic reproduction number R0 for the horizontal transmission, given by

R0 = ˇh�

�f

ˇm�

�h + �h

m∗

N
,  (22)

ith the size of mosquito population m∗ being given by Eq. (18), and the contribution due to the vertical transmission j. With respect to R0,
hich can be obtained from Eq. (5) by letting �h→ ∞ and �m→ ∞,  this horizontal transmission parameter can be written as the product

f two partial reproduction numbers Rh
0 and Rm

0 defined by⎧⎪⎨
⎪⎩

Rh
0 = ˇh�

�f

Rm
0 = ˇm�

�h + �h

m∗

N
,

(23)

esulting in Re = Rh
0Rm

0 + j.
The basic reproduction number Re, given by Eq. (21), is interpreted as follows. R0 is the average number of secondary infectious humans

or mosquitoes) produced by one primary infectious human (or mosquito) introduced in a completely susceptible populations of humans
nd mosquitoes. That is, R0 gives the average number of secondary cases due to horizontal transmission. The term j is the average number
f infectious mosquitoes (daughters) generated by a single infectious mosquito by transovarian (vertical) transmission. Hence Re is the
verall number of infectious humans (or mosquitoes) generated by a single infectious human (or mosquito) due to horizontal and vertical
ransmissions.

The combination of s∗, m∗
1 and m∗, given by Eqs. (18) and (20), results in

s∗ m∗
1

m∗ ≡ �e = 1 − j

R0
, (24)

hat is, in the endemic steady state, the product of the fractions of susceptible humans and mosquitoes encompassing the transovarian
ransmission (�e) is not equal to the inverse of the basic reproduction number Re, differently from that one obtained in the previous

odelling. If j = 1, then m∗
1 = 0 and s∗m∗

1/m∗ = 0.
Details of all above calculations and discussions of the results are left to a further work (Yang, 2014b).
Again, the stability analysis will be restricted to the DFE considering the Routh–Hurwitz criteria and the spectral radius of next generation

atrix.

.2.1. Jacobian method – Routh–Hurwitz criteria
The Jacobian matrix evaluated at DFE, named J = J(P0), results in

J =
[

F 0

J1 J2

]
,

here the matrices F and J2 are⎡
⎢ −�f ˇm�m∗ �a

⎤
⎥ [ ]
F =
⎢⎢⎢⎣ ˇh

�

N
−(�h + �h) 0

jqf�
1

Q0
0 −(�a + �a)

⎥⎥⎥⎦ and J2 = M 0

0 H
, (25)
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ith the matrices M and H being given by

M =

⎡
⎣−qf�m∗ − (�a + �a) qf�

1
Q0

�a −�f

⎤
⎦ and H = [−�h], (26)

nd the matrix J1 is

J1 =

⎡
⎢⎢⎢⎣

(1 − j)qf�
1

Q0
0 qf�m∗

0 −ˇm�m∗ 0

−ˇh�

N
0 0

⎤
⎥⎥⎥⎦ . (27)

he local stability of DFE is assessed by the eigenvalues of the characteristic equation det(J − �I) = 0, where

det(J − �I)  ≡ det(F − �I)  det(M − �I)  det(H − �I).

The eigenvalue corresponding to vital dynamics matrix of humans H is �1 = − �h.
The characteristic equation corresponding to vital dynamics matrix of mosquitoes M is

�2 + a1� + a0 = 0,

here the coefficients are{
a1 = qf�m∗ + �a + �a + �f

a0 = (�a + �a)�f (Q0 − 1),

ith Q0 being given by Eq. (19). The eigenvalues �2,3 have negative real part since all the Routh–Hurwitz criteria (for a second degree
olynomial they are a0 > 0 and a1 > 0) are satisfied when Q0 > 1, which is the condition for the existence of mosquito population.

The characteristic equation corresponding to dengue transmission matrix F is

�3 + b2�2 + b1� + b0 = 0,

here the coefficients are⎧⎪⎨
⎪⎩

b2 = �h + �h + �a + �a + �f

b1 = (�h + �h)[�a + �a + �f (1 − R0)] + (1 − j)�f (�a + �a)

b0 = (�h + �h)(�a + �a)�f (1 − Re),

(28)

ith Re and R0 being given by Eqs. (21) and (22), respectively. The difference b2b1 − b0 can be evaluated, resulting in

b2b1 − b0 = (�h + �h){(�h + �h + �f )[(�a + �a) + �f × (1 − R0)] + (�a + �a)(�a + �a + �f )} + (1 − j)�f (�a + �a)(�a + �a + �f ) > 0

or R0 < 1. For j < 1, when Re < 1, which implies that R0 < 1, the eigenvalues �4,5,6 have negative real part since all the Routh–Hurwitz criteria
re satisfied, and DFE is locally asymptotically stable. For j = 1, b0 = − (�h + �h)(�a + �a)�fR0 < 0 and DFE is always unstable for R0 > 0.

The independent term b0 = det(F) in Eq. (28) was  obtained, using the definition given in Eq. (21), from

b0 = (�a + �a)(�h + �h)�f ×
[

1 − ˇh�ˇm� m∗
N + (�h + �h)�f j

(�h + �h)�f

]
.

otice that the Procedure 1 already defined in the foregoing section was  applied (K1 = (�a + �a)(�h + �h)�f and K2/K1 = Re), defining a unique
e.

It is important to stress the fact that Re, given by Eq. (21), is not a good parameter to be related to the product of fractions of susceptible
opulations �e, given by Eq. (24). Following Procedure 2 presented in the foregoing section, b0 given by Eq. (28) is written in the form
3(1 − R0/K4), that is,

b0 = (�h + �h)(�a + �a)�f (1 − j)(1 − �−1
e ),

or j < 1, where the inverse of the product of susceptible fractions �e is

�−1
e = R0

1 − j
. (29)

otice that DFE is stable if �−1
e < 1, and bifurcates at �−1

e = 1, and above this value a unique non-trivial (endemic) equilibrium appears.
he condition �−1

e < 1 is equivalent to Re < 1. For j = 1, the Procedure 2 can not be used, due to m∗
1/m∗ = 0 (all mosquitoes are infectious),

esulting in �e = 0.
Interestingly, �e brings implicitly the idea of the basic reproduction number, as it must do. The equation relating susceptible fractions,
iven by Eq. (24), can be rewritten as

s∗ m∗
1

m∗ ≡ �e = 1
R0

− j

R0
,
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hich has clearly a biological interpretation. The term 1/R0 is the decreasing fractions of susceptible populations due to the horizontal
ransmission, while the term j/R0 is the additional decrease due to vertical transmission. The appearance of R0 in the latter term shows
hat vertical transmission is a consequence of horizontal transmission. Additionally, this latter term is such that the sum of numerator and
enominator results in Re, hence �e brings indirectly the idea of the basic reproduction number, as expected. In this particular modelling,
he contribution of the vertical transmission (j) does not depend on the horizontal transmission parameters ˇh and ˇm (see Appendix B for

 modelling which does).

.2.2. Next generation method – Spectral radius theory
The next generation matrix is constructed by a subsystem of (17) taking into account the state-at-infection (l2) and the states-of-

nfectiousness (m2,i) (Diekmann et al., 2010).

.2.2.1. Considering only states-of-infectiousness. In matrix form, the dynamical system (17) is written as

d

dt
xp = fp(x) − vp(x), p = 1, . . .,  6,

here

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m2

i

l2

l1

m1

s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˇm�im1

ˇh�

N
m2s

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

nd

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�al2 + �f m2

(�h + �h)i

−qf�jm2

(
1 − l1 + l2

C

)
+ (�a + �a)l2

−qf�[m1 + (1 − j)m2]
(

1 − l1 + l2
C

)
+ (�a + �a)l1

−�al1 + (ˇm�i + �f )m1

−�h +
(

ˇh�

N
m2 + �h

)
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

he partial derivatives of f and v, with respect to m2, i and l2, evaluated at the DFE are partitioned as

Df = ∂fp

∂xn
=
[

F1 0

0 0

]
and Dv = ∂vp

∂xn
=
[

V 0

−J1 −J2

]
, 1 ≤ p, n ≤ 6,

here F1 and V are

F1 =

⎡
⎢⎢⎣

0 ˇm�m∗ 0

ˇh�

N
0 0

0 0 0

⎤
⎥⎥⎦ and V =

⎡
⎢⎢⎣

�f 0 −�a

0 �h + �h 0

−jqf�
1

Q0
0 �a + �a

⎤
⎥⎥⎦ ,

nd J2 and J1 are given by Eqs. (25) and (27).
The eigenvalues �1,2,3 of matrix J2, solution of det(J2 − �I) ≡ det(M − �I) det(H − �I) = 0, where matrices M and H are given by Eq. (25),

ere already evaluated in the preceding section.
The inverse of the matrix V for j < 1 exists and is

V−1 =

⎡
⎢⎢⎢⎢

1
(1 − j)�f

0
�a

(1 − j)�f (�a + �a)

0
1

0

⎤
⎥⎥⎥⎥ ,
⎢⎣ �h + �h

1
(1 − j)�a

0
1

(1 − j)(�a + �a)

⎥⎦
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nd the next generation matrix F1V−1 is

F1V−1 =

⎡
⎢⎢⎣

0 NRm
0 0

1
1 − j

1
N

Rh
0 0

1
1 − j

�a

�a + �a

1
N

Rh
0

0 0 0

⎤
⎥⎥⎦ , (30)

here the partial reproduction numbers Rh
0 and Rm

0 are given by Eq. (23). The eigenvalues corresponding to F1V−1 are �4 = 0 and �5,6 =√
�−1

e , with �−1
e being given by Eq. (29), and the spectral radius is �(F1V−1) =

√
�−1

e . If �(F1V−1) < 1, then all eigenvalues corresponding
o matrix F1 − V have negative real part, and DFE is locally asymptotically stable (van den Driessche and Watmough, 2002), assuming that
ll eigenvalues corresponding to J2 have negative real part. Hence, the spectral radius, which is the basic reproduction number R

ng
e , is

R
ng
e ≡ �(F1V−1) =

√
�−1

e , (31)

nd �−1
e can be written as the product of the partial reproduction numbers, for instance, Rh

0/(1 − j) and Rm
0 . See below the reason why basic

eproduction number and partial reproduction numbers are inappropriate for �−1
e .

For j = 1, det(V) = 0 and V is not invertible, and the next generation matrix is not defined.

.2.2.2. Adding state-at-infection. Now, let the state-at-infection be included in the vector f, that is,

f =
(

ˇm�im1 + �al2,
ˇh�

N
m2s, qf�jm2

(
1 − l1 + l2

C

)
, 0, 0, 0

)T

,

here T stands for the transposition of a matrix. In this case, the next generation matrix F1V−1 is

F1V−1 =

⎡
⎢⎢⎢⎢⎣

0 NRm
0

�a

�a + �a

1
N

Rh
0 0 0

j
�a + �a

�a
0 0

⎤
⎥⎥⎥⎥⎦ .

he corresponding eigenvalues are �4 = 0 and �5,6 = ±
√

Re, with Re being given by (21), and the spectral radius is �(F1V−1) =
√

Re. Hence,
he spectral radius, which is the basic reproduction number Rng

0 , is

Rng
e ≡ �(F1V−1) =

√
Re, (32)

nd Re can be written as the product of partial reproduction numbers, for instance, Rh
0 and Rm

0 + j/Rh
0.

The substitution of Re = R0 + j in Eq. (32), for j = 1, results in �(F1V−1) =
√

R0 + 1, showing that DFE is always unstable for R0 > 0.
Vector f can be constructed in more two different ways, by removing qf�jm2[1 − (l1 + l2)/C] or �al2, that is,

f =
(

ˇm�im1 + �al2,
ˇh�

N
m2s, 0, 0, 0, 0

)T

,

r

f =
(

ˇm�im1,
ˇh�

N
m2s, qf�jm2

(
1 − l1 + l2

C

)
, 0, 0, 0

)T

,

here T stands for the transposition of a matrix. In both cases, diagonal element corresponding to the vertical transmission appears in the
ext generation matrix. The eigenvalues of F1V−1 are �4 = 0 and �5,6 given by the solution of

�2 − j� − R0 = 0.

ence, the spectral radius is given by

�(F1V−1) = 1
2

(j +
√

j2 + 4R0), (33)

hich is very difficult to interpret biologically.

.2.3. Comparison
With respect to the next generation method, all comments provided in the foregoing section are valid here. However, due to the

xclusion of exposed classes, the partial reproduction numbers are related to infectious classes. Additionally, the vertical transmission did
ot appear as a element of diagonal. Roberts and Heesterbeek (2003) established that the infection from one host to itself must appear
s a diagonal element. Sexually transmitted infection presented in Appendix B, however, presents the vertical transmission as a diagonal

lement.

In the dengue modelling with transovarian transmission, two  different threshold parameters were obtained from the Jacobian method.
ne was the basic reproduction number given by Re = R0 + j, Eq. (21). Other was �−1

e , Eq. (29), which is useful to relate the product of the
ractions of susceptibles at endemic steady state, bringing implicitly the basic reproduction number Re.



6

�

n

O
r

�

3

c

(
c
p

b
o
L

s

b
n
l

1
2

3

4

a

H

1

2

3

p
a
t
e

t
i
m
m

4 H.M. Yang / BioSystems 126 (2014) 52–75

Depending on the construction of vectors f and v, the next generation method yielded two  different spectral radius �(F1V−1) and
(F1V−1), given by Eqs. (31) and (32), respectively. Remember that the product of partial reproduction numbers is the basic reproduction

umber, and the spectral radius is the geometric mean of these quantities. Then, Re = �
(

F1V−1
)2

, for the basic reproduction number.

ther threshold, �(F1V−1) =
√

R0/(1 − j), is not defined at j = 1, where �(F1V−1) → ∞,  hence �(F1V−1) must not be defined as the basic
eproduction number. Rather, it is more convenient to link this threshold with the product of fraction of susceptibles, by the fact that(

F1V−1
)2 = �−1

e .

. Discussion

In the analysis of the stability of DFE, the common calculation in Jacobian and next generation methods was the eigenvalues of J2. Under
ertain conditions, J2 satisfies all criteria to be M-matrix, and all eigenvalues have negative real part.

The difference relies in the assessment of the eigenvalues of matrices F (disease transmission matrix, dimension time−1) and F1V−1

next generation matrix, dimensionless), remembering that F = F1 − V. The Jacobian method applied the Routh–Hurwitz criteria on the
haracteristic equation corresponding to F, while the next generation method evaluated the spectral radius of matrix F1V−1. Each method
resents inherent challenges with respect to calculations.

The stability of DFE by the Jacobian method in dengue modellings (with and without transovarian transmission) established that if
0 = det(F) > 0, then the Routh–Hurwitz criteria were satisfied. By two  different procedures of writing b0, two threshold parameters were
btained: the basic reproduction number (R0 or Re) and the product of the fractions of susceptible populations (�0 = 1/R0 or �e = (1 − j)/R0).
ikewise, the next generation method yielded also two  threshold parameters depending on the construction of the vectors f and v. The

pectral radii of the next generation matrix resulted in
√

Re (or
√

R0) and
√

�−1
e .

Roberts and Heesterbeek (2003) stated that “although a quantity derived in this way  (Jacobian method) will have the same threshold
ehaviour as the dominant eigenvalue of the next-generation matrix, it does not have the same biological interpretation and can therefore
ot be called the basic reproduction ratio or denoted by R0”, with which Heffernan et al. (2005) agreed. To shed some lights in this statement,

et the results form Jacobian and next generation methods be discussed.
Let the results from the Jacobian method be summarized:

. The disease related parameters were the entries of the matrix F, which was the reason to call F as the disease transmission matrix.

. By applying the Routh–Hurwitz criteria, there is a procedure to obtain a threshold parameter denoted R0 (or Re) that determines the
stability of DFE. When R0 < 1 (or Re < 1), all Routh–Hurwitz criteria are satisfied. Hence, R0 (or Re) alone plays a fundamental role in the
stability analysis.

. The model parameters in R0 (or horizontal transmission part of Re) can be arranged as the product of two partial reproduction numbers
Rh

0 and Rm
0 .

. In dengue model with transovarian route besides the horizontal transmission, the product of the fractions of susceptible populations was
not related to Re. Another threshold parameter was  obtained to attain this purpose (�e). The threshold parameter �e latently brought
Re.

Therefore, based on these four statements, the threshold value R0 (or Re), supporting clearly a biological interpretation, was  identified
s the basic reproduction number.

The main reasons for which the spectral radius of next generation matrix �(F1V−1) has biologically meaningful are (Roberts and
eesterbeek, 2003):

. For two types of hosts, each elements of the matrix F1V−1 provides the expected number of secondary cases in host type p that would
arise from a typical primary case in host type n in a susceptible population. Hence, F1V−1 is named the next generation matrix.

. The spectral radius of the next generation matrix �(F1V−1), the geometric mean of partial reproduction numbers, was defined as the
basic reproduction number.

. The expected number of secondarily infected humans that result from a single infected human is R2
0, as two generations are required to

transmit an infection from human to human, the first being from human to mosquito and the second being from mosquito to human.

These statements deserve some comments.
With respect to the statement 1, the elements a31 and a13 of the next generation matrix F1V−1, given by Eq. (13), are different of the

artial reproduction numbers Rh
0 and Rm

0 , given by Eq. (7). However, a31 multiplied by N, and a13 divided by N are such that Na31 and a13/N
re the expected number of secondary exposed (not infectious) cases in humans and mosquitoes, respectively, that would arise from a
ypical primary exposed case in mosquito and human, respectively, in completely susceptible populations of humans and mosquitoes. The
lements a31 and a13 were denoted as Knp in Roberts and Heesterbeek (2003).

The above comment is valid for dengue with transovarian transmission modelling, but the elements are regarded to infectious popula-
ions, since exposed classes were removed. Moreover, the term regarding the vertical transmission did not appear as the diagonal element

n the next generation matrix. In Roberts and Heesterbeek (2003), vertically infected mosquitoes were introduced in the next generation

atrix as an element in the diagonal (K55), because this kind of infection occurs among individuals of the same species (mosquito to
osquito).
Let the statements 3 and 2, in this order, be considered.
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.1. About generation

Remember that R0 obtained as the spectral radius is the geometric mean of the secondary cases in humans (or mosquitoes) originated
rom a single infectious mosquito (or human). To encompass the complete cycle of transmission, Heesterbeek and Roberts (2007) introduced
he type reproduction number T, interpreting it as “the expected number of cases in individuals of type 1, caused by one infected individual
f type 1 in a completely susceptible population, either directly or through chains of infection passing through any sequence of the other
ypes”. The type reproduction number was defined as T = R2

0 in order to provide the expected number of secondary infections in humans
or mosquitoes) that would arise from a primary infected human (or mosquito), in fully susceptible populations (Adams and Boots, 2010;
eesterbeek and Roberts, 2007; Roberts, 2007). They also argued that T provides a direct link with the control effort required to eliminate

nfection.
For macroparasites, the basic reproduction number is defined as the average number of female offsprings per adult female worm that

urvive to reproduction in the absence of density-dependent constraints (Anderson and May, 1991). This definition clearly establishes the
otion that one species is generating offspring of the same species.

For instance, schistosomiasis is the human infection, which involves at least two  host species (human and snail), two  free-living trans-
ission stages of the parasite (cercariae and miracidia) and distinct environments. Humans are the principal definitive host for the five

chistosome species. Adult worms live in the venous system of intestine (S. mansoni, S. japonicum, S. mekongi and S. intercalatum) or the
rinary bladder (S. haematobium).  Eggs laid by adult worms are eliminated to an aquatic environment, where they hatch and become
iracidia. Miracidia must infect snails (intermediate host) that, after a period of time, release cercariae, which are the aquatic form that

nfect humans (definitive host). Once in the human body, cercaria suffer transformations until becoming adult worm. Two successive
nfective events in different hosts must occur to close the cycle of schistosome transmission. Hence, one generation implies the closing of
he transmission cycle, and the basic reproduction number is the average number of secondary adult worms  that one adult worm produces
uring her entire lifespan, disregarding what happens inside the infected snails (in fact, hundred of thousands of cercaria are released by
ne infected snail) (Yang and Coutinho, 1999; Yang, 2003).

Differently, dengue is a viral infection, but requires a vector to close its transmission cycle. First, an infectious human must be bitten
y susceptible mosquitoes, which become infectious and, then, bite susceptible humans. (The cycle can be initiated with one infec-
ious mosquito.) Due to infections by the same virus in two different populations, two generations were evoked (van den Driessche
nd Watmough, 2002). However, these two steps are partial contributions to close the transmission cycle, hence one generation must
ncompass occurrence of infections in both populations, that is, one species originating infection in the same species. It is not reasonable
hat the average number of mosquitoes infected by one infected human is the first generation, and the second generation is the average
umber of infected humans originated by one infectious mosquito (or, vice-versa).

The notion of one generation can be corroborated by Eq. (6) or (24), for instance, s∗m∗
1/m∗ = 1/Re. If the basic reproduction number Re

ould be estimated, this value is the product of two  fractions of susceptible populations. In another words, the indistinguishability between
wo susceptible populations demands that what happens in these populations must be considered as one generation.

The life cycle of A. aegypti is another example. There are two  different forms living in two  different environments. The female mosquito
ay eggs, which hatch in aquatic environment, and suffer successive transformations until emerging as adult mosquitoes. Hence, one
eneration must be understood when newly emerged mosquitoes replace the old population, despite the aquatic forms they have passed
y. This notion is found in the basic offspring number Q0.

.2. Spectral radius, geometric mean and partial reproduction numbers

In order to remove the divergence in the threshold parameters provided by Jacobian and next generation methods the following
efinition was introduced. The spectral radius of next generation matrix is in fact the geometric mean of the partial reproduction numbers,
ut is not the basic reproduction number; rather the product of these numbers is the basic reproduction number.

The partial reproduction numbers arise because dengue transmission is not a directly transmitted infection, but needs a vector to close
he cycle. Whenever mosquito population is demanded to close the transmission cycle in humans, the threshold parameters are determined
y the product between two partial reproduction numbers that characterize the infection in each population. But, this is also true when
n intermediate host is required to complete the transmission cycle, such as in the majority of macroparasite infections.

Roberts (2007) stated that “taking a geometric mean number of humans and mosquitoes seems a strange thing to do, although it is a
alid threshold quantity”. However, Williams (1937) stated that geometric mean in some biological experiments (estimation of number
f insects based on a series of collected data) provides a more exact interpretation of the results. Following this assertion, the definition
hat spectral radius is the geometric mean of partial reproduction numbers, but not the basic reproduction number, seems natural.

The suitability of the above definition is assessed considering tuberculosis (Appendix A). Under this new definition, in all three examples,
he basic reproduction number is given by Eq. (36). This result is totally expected because the model is the same, and the basic reproduction
umber must be uniquely determined, despite of different ways to construct transmission F1 and transition V matrices from vectors f̃ and

˜. In sexually transmitted infection with vertical transmission (Appendix B), different threshold parameters were obtained depending on
he construction (or factorization) of vectors f̃ and ṽ.

.3. Further discussion
The Jacobian method provided Procedures 1 and 2 to obtain two  different threshold parameters: The Procedure 1 yield the basic
eproduction number (R∗, a generic notation for the basic reproduction number obtained from models), and the Procedure 2, the product
f the fractions of susceptible populations at steady state (�∗, a generic notation). The next generation method also provided two thresholds,
hich were obtained by constructing different vectors f and v:
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. From the analysis of models, specially those with vertical transmission, the spectral radius provided
√

�−1∗ , when vector f contains only
states-of-infectiousness (corresponding to the Procedure 2 in the Jacobian method – the product of the fractions of susceptibles).

. If a particular combination of states-at-infection is introduced in vector f, the spectral radius was
√

R∗ (corresponding to the Procedure
1 in the Jacobian method – the basic reproduction number).

However, in modellings presenting only the horizontal route of transmission, the Procedures 1 and 2 of the Jacobian method provided
 unique threshold parameter, which is the basic reproduction number R0. The product of the fractions of susceptible populations �0 was
btained as the inverse of the basic reproduction number. Similarly, the next generation method, depending on the construction of vector
, provided a unique threshold given by the spectral radius n

√
R0, with n = 1, . . .,  4.

From horizontally transmitted infections (dengue without transovarian transmission in Section 2.1 and tuberculosis in Appendix A)
nd infections with additional vertical transmission route (dengue with transovarian transmission in Section 2.2 and sexually transmitted
nfection in Appendix B) modellings, a unique non-trivial equilibrium was obtained. This steady state became biologically feasible if R∗ > 1.
n the assessment of the stability of DFE by Jacobian and next generation methods, this steady state was  locally asymptotically stable when
∗ < 1, otherwise, unstable. Hence, at R∗ = 1 occurs forward bifurcation (backward bifurcation does not occur (Yang and Raimundo, 2010),
ence sub-thresholds do not exist).

In all models taken into account here, it is easy to observe that the independent term of the characteristic equation b0 = det(F), where F
s the disease transmission matrix, determined the stability of DFE (Leite et al., 2000). If b0 > 0, then all other Routh–Hurwitz criteria were
utomatically satisfied. Therefore, in the modellings presenting a unique non-trivial equilibrium point which appears when R∗ > 1 and DFE is
table when R∗ < 1, otherwise unstable, the following conjecture can be stated: The threshold parameters can be obtained by calculating b0
s det(F) and writing it according to the Procedures 1 and 2. This conjecture establishes that the task of obtaining the threshold parameters
y applying the Jacobian method is easy.

Notwithstanding, the next generation method has also a simplified version to calculate the basic reproduction number. Wesley et al.
2010) obtained a spectral radius in the form �(A) = 1

2 (a1 +
√

a2
1 + 4a2), but used a simplified threshold Rsim = a1 + a2. This usage can be

eneralized as a conjecture: Let the characteristic equation of order n corresponding to the next generation matrix F1V−1 be written as

�n − an−1�n−1 − · · · − a1� − a0 = 0, (34)

ith ai ≥ 0, for i = 0,· · ·,n − 1. Then, the basic reproduction number could be defined by the sum

R∗ = an−1 + · · · + a1 + a0. (35)

In dengue transmission modellings, above conjecture was  validated for the spectral radius obtained in Eqs. (15), (16), (32) and (33) which
re the basic reproduction numbers. This definition is also valid for Eq. (31), which provided the product of the fractions of susceptibles. In
uberculosis and sexually transmitted infection modellings, the conjecture could also be validated for the basic reproduction number, see
qs. (36), (37), (38), (50), (51), (52) and (53).

Above conjecture was obtained considering a single infection. When coinfections occur, let the characteristic equation corresponding
o the next generation matrix F1V−1 be written as

1(�)2(�) − 3(�) = 0,

here 1(�) and 2(�) are the characteristic polynomials corresponding to species 1 and 2, and 3(�) is the characteristic polynomial
nvolving cross infections. First, the basic reproduction numbers R1 and R2 corresponding to species 1 and 2 could be obtained by applying
he above conjecture, and the basic reproduction number R0 could the maximum between R1 and R2, that is,

R0 = max{R1, R2}.

econd, letting � = 1, the characteristic equation can be written as

1(1)2(1)
[

1 − 3(1)
1(1)2(1)

]
= 0,

nd the quocient 3(1)/[1(1)2(1)] could be defined as the overall reproduction number Rt, that is,

Rt = 3(1)
(R1 − 1)(R2 − 1)

.

From the drug sensitive and resistant strains modelling of M. tuberculosis proposed by Raimundo et al. (2014), by analyzing the inde-
endent term of the characteristic equation and also by applying the M-matrix theory, they obtained the basic reproduction numbers for
ensitive and resistant strains of tuberculosis Rs

0 and Rr
0. Another threshold was  Rt = Rc/[(Rs

0 − 1)(Rr
0 − 1)], where Rc is the reproduction

umber of appearance of resistant strain due to failure of drug treatment among sensitive tuberculosis individuals. Applying the next
1
eneration method, the characteristic equation corresponding to the next generation matrix is obtained as

(�2 − Rs
0)(�2 − Rr

0) − Rc� = 0.

1 S.M. Raimundo – personal communication.
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he reproduction numbers Rs
0 and Rr

0 can be obtained by applying above conjecture, Eq. (35). Letting � = 1, and writing the characteristic
quation as

(1 − Rs
0)(1 − Rr

0)

[
1 − Rc

(Rs
0 − 1)(Rr

0 − 1)

]
= 0,

hen Rt = Rc/[(Rs
0 − 1)(Rr

0 − 1)].

. Conclusion

The basic reproduction number is the expected (average) number of secondary cases. When two  hosts are involved in the transmission,
he magnitude of the transmission from one host to other, and vice-versa, can vary greatly (several orders of magnitude). In this situation,
he spectral radius being interpreted as the geometric mean sounds reasonable in the biological world. However, defining the spectral
adius of next generation matrix as the basic reproduction number resulted in some troubles. One is the explanation that the square root
n the spectral radius is due to the requirement of two  generations to close the disease transmission. Another is the discrepancy with the
acobian method.

In this paper, the definition that the basic reproduction number is the product of the partial reproduction numbers was maintained
n two methods. This definition eliminated an apparent conflict between Jacobian and next generation methods in predicting the basic
eproduction number: By the fact that the spectral radius is the geometric mean of partial reproduction numbers, both methods predicted
he same basic reproduction number. Moreover, the ambiguous definition of two  basic reproduction numbers presented in Table 1 in van
en Driessche and Watmough (2002) can be removed. Also, there is no need to state that “the expected number of secondarily infected
umans that result from a single infected human is R2

0, as two generations are required to transmit an infection from human to human,
he first being from human to mosquito and the second being from mosquito to human” (Roberts and Heesterbeek, 2003). Therefore, the
ntroduction of type reproduction number is unnecessary.
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ppendix A. Directly transmitted infection

To present further discussions about the definition that spectral radius is the geometric mean of partial reproduction numbers, but this
roduct is the basic reproduction number, a tuberculosis model is studied. The model is slightly different that used as an example in van
en Driessche and Watmough (2002): one more infectious compartment is introduced (E1) in order to present a didactic example.

The tuberculosis transmission model considers that the population is divided into five compartments, namely, individuals susceptible to
uberculosis (S), exposed individuals without immune response (E), latent individuals (E1), infectious individuals (I) and treated individuals
Tb). Latent individuals are those who mounted an effective immune response, restricting M.  tuberculosis in granulomas (Yang, 2012).
usceptible and treated individuals enter the exposed compartment at rates ˇ1I/N and ˇ1Tb/N, respectively, where the constant population
s N = E + E1 + I + S + Tb. Infected individuals progress to the latent compartment at the rate �1, which in turn progress to the infectious class at
he rate �2. Infectious individuals are treated at rate g. All newborns are susceptible, and all individuals die at the rate d. Then, tuberculosis
ransmission model is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
E = ˇ1

SI

N
+ ˇ2

TbI

N
− (d + �1)E

d

dt
E1 = �1E − (d + �2)E1

d

dt
I = �2E1 − (d + g)I

d

dt
S = dN − dS − ˇ1

SI

N

d

dt
Tb = gI − dTb − ˇ2

TbI

N
.

FE is given by (E = 0, E1 = 0, I = 0, S = N, Tb = 0).
Let the next generation method be applied. The infective classes are E, E1 and I. Hence, instead of full vectors f and v, only the first three

lements are shown, designated by vectors f̃ and ṽ, which are⎡
⎢ˇ1

SI

N
+ ˇ2

TbI

N

⎤
⎥ ⎡

(d + �1)E
⎤

f̃ = ⎢⎣ 0

0

⎥⎦ and ṽ = ⎢⎣−�1E + (d + �2)E1

−�2E1 + (d + g)I

⎥⎦ .
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atrices F1 and V are derived as

F1 =

⎡
⎣ 0 0 ˇ1

0 0 0

0 0 0

⎤
⎦ and V =

⎡
⎢⎣

d + �1 0 0

−�1 d + �2 0

0 −�2 d + g

⎤
⎥⎦ ,

nd the matrices V−1 and F1V−1 can be evaluated, resulting in

V−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
d + �1

0 0

�1

(d + �1)(d + �2)
1

d + �2
0

R0

ˇ1

�2

(d + �2)(d + g)
1

d + g

⎤
⎥⎥⎥⎥⎥⎦ and F1V−1 =

⎡
⎢⎢⎣

R0
ˇ1�2

(d + �2)(d + g)
ˇ1

d + g

0 0 0

0 0 0

⎤
⎥⎥⎦ ,

here the basic reproduction number R0 is given by

R0 = ˇ1�1�2

(d + �1)(d + �2)(d + g)
. (36)

he eigenvalues corresponding to the next generation matrix F1V−1 are �1,2 = 0 and �3 = R0, and, hence �(F1V−1) = R0. This same threshold
an be obtained applying the Jacobian method (there is only horizontal transmission, then Procedures 1 and 2 defined in the main text
ield R0 = �−1

0 ). Hence, the spectral radius is exactly the basic reproduction number, because the geometric mean of a number is itself.
Next two examples treat the cases where the terms �1E and �2E1 are removed from ṽ and put in f̃ .

.1. Adding one state-at-infection

In this example, the progression to latent class is considered as an infective event, where Diekmann et al. (2010) called E as the
tate-at-infection, while I as the state-of-infectiousness. In this case, f̃ and ṽ are

f̃ =

⎡
⎢⎢⎣

ˇ1
SI

N
+ ˇ2

TbI

N

�1E

0

⎤
⎥⎥⎦ and ṽ =

⎡
⎢⎣

(d + �1)E

(d + �2)E1

−�2E1 + (d + g)I

⎤
⎥⎦ ,

rom which F1 and V are derived as

F1 =

⎡
⎢⎣

0 0 ˇ1

�1 0 0

0 0 0

⎤
⎥⎦ and V =

⎡
⎢⎣

d + �1 0 0

0 d + �2 0

0 −�2 d + g

⎤
⎥⎦ .

he matrices V−1 and F1V−1 can be evaluated, resulting in

V−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
d + �1

0 0

0
1

d + �2
0

0
�2

(d + �2)(d + g)
1

d + g

⎤
⎥⎥⎥⎥⎥⎦ and F1V−1 =

⎡
⎢⎢⎢⎣

0
ˇ1�2

(d + �2)(d + g)
ˇ1

d + g
�1

d + �1
0 0

0 0 0

⎤
⎥⎥⎥⎦ .

he eigenvalues corresponding to the next generation matrix F1V−1 are �1 = 0, �2,3 = ±
√

R0, where R0 is given by Eq. (36), and, hence,

(F1V−1) =
√

R0. Defining the partial reproduction numbers as Rˇ1
0 = ˇ1�2/[(d + �2)(d + g)] and R�1

0 = �1/(d + �1), then R0 = Rˇ1
0 R�1

0 , and
he spectral radius is written as

�(F V−1) =
√

Rˇ1 R�1 . (37)
1 0 0

In the case of adding one state-at-infection, the same threshold obtained before is retrieved if the spectral radius and the reproduction

umber obey R0 = �
(

F1V−1
)2

.
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.2. Adding two states-at-infection

In this example, the progressions to latent and to infectious classes E and E1 are considered the states-at-infection. In this case, f̃ and ṽ
re

f̃ =

⎡
⎢⎢⎣

ˇ1
SI

N
+ ˇ2

TbI

N

�1E

�2E1

⎤
⎥⎥⎦ and ṽ =

⎡
⎢⎣

(d + �1)E

(d + �2)E1

(d + g)I

⎤
⎥⎦ ,

rom which F1 and V are derived as

F1 =

⎡
⎢⎣

0 0 ˇ1

�1 0 0

0 �2 0

⎤
⎥⎦ and V =

⎡
⎢⎣

d + �1 0 0

0 d + �2 0

0 0 d + g

⎤
⎥⎦ .

he matrices V−1 and F1V−1 can be evaluated, resulting in

V−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
d + �1

0 0

0
1

d + �2
0

0 0
1

d + g

⎤
⎥⎥⎥⎥⎥⎦ and F1V−1 =

⎡
⎢⎢⎢⎢⎣

0 0
ˇ1

d + g
�1

d + �1
0 0

0
�2

d + �2
0

⎤
⎥⎥⎥⎥⎦ .

he eigenvalues corresponding to the next generation matrix F1V−1 are �1,2,3 = 3
√

R0, where R0 is given by Eq. (36), and, hence, �(F1V−1) =
R0. Defining the partial reproduction numbers as Rˇ1

0 = ˇ1/(d + g), R�1
0 = �1/(d + �1) and R�2

0 = �2/(d + �2), then R0 = Rˇ1
0 R�1

0 R�2
0 , and the

pectral radius is written as

�(F1V−1) = 3
√

Rˇ1
0 R�1

0 R�2
0 . (38)

In the case of adding two states-at-infection, the same threshold obtained before is retrieved if the spectral radius and the reproduction

umber obey R0 = �
(

F1V−1
)3

.
Summarizing, the definition that the spectral radius is the geometric mean of partial reproduction numbers, but the product of these

artial numbers is the basic reproduction number, provided the same R0, given by Eq. (36), for three different manners of constructing
ectors f̃ and ṽ.

ppendix B. Vertical transmission in sexually transmitted infections

Diekmann et al. (2010) analyzed a model for sexually transmitted infection with vertical transmission (see end of this Appendix for
riticism to this modelling). They considered an SIR model for a heterosexually transmitted infectious disease that may also be transmitted
ertically. The indices 1 and 2 stand for, respectively, female and male populations with sizes N1 and N2. As new-born individuals are not
mmediately sexually active, they took J1 and J2 to be the numbers of infected juveniles. For adults, they took S1 and S2 to be the numbers
f susceptible adults, and I1 and I2 to be the numbers of infected adults. They assumed that both the length of the pre-sexual period (�−1

1
nd �−1

2 ) and the length of the infectious period (�−1
1 and �−1

2 ) are large compared to the latency period, so they neglected the latter. They
ssumed that all females are generating descendants without considering mating, and the sex ratio of offspring is one-to-one, but here
ifferent ratio is considered: k for the fraction of females, and 1 − k, for males. A fraction p of offspring is vertically infected by infected
others. The population was considered constant, then natality and mortality rates are considered equal, denoted by �.
Based on above descriptions, the infected subsystem comprised by the states-at-infection (J1,J2) and the states-of-infectiousness (I1,I2)

s given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
J1 = kp�I1 − (�1 + �)J1

d

dt
I1 = �1J1 + ˇ1

I2
N2

S1 − (�1 + �)I1

d

dt
J2 = (1 − k)p�I1 − (�2 + �)J2

d I1

(39)
dt
I2 = �2J2 + ˇ2 N1

S2 − (�2 + �)I2,

here the equations for susceptible populations were not shown.
Let special epidemiological parameters be introduced. These parameters are divided according to horizontal and vertical transmissions.
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1 Horizontal transmission.  The partial reproduction numbers Rf
0 and Rm

0 are defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rm
0 =

ˇ2
1

N1
N2

�1 + �

Rf
0 =

ˇ1
1

N2
N1

�2 + �
,

(40)

and the basic reproduction number R0 corresponding to horizontal transmission is the product of these numbers, or

R0 = Rf
0Rm

0 = ˇ1ˇ2

(�1 + �)(�2 + �)
. (41)

Rf
0 (or Rm

0 ) is the average number of women (or men) infected by one infected man  (or woman), during his (or her) infectious period,
introduced in a completely susceptible populations of men  and woman. Hence, R0 is the average number of secondary infectious women
originated by horizontal transmission from one primary infectious woman  introduced in a completely susceptible populations of men
and woman.

. Vertical transmission.  The vertical reproduction numbers Rf
v and Rm

v are defined by⎧⎪⎨
⎪⎩

Rm
v = (1 − k)p�

�1 + �

�2

�2 + �
Rf

0

Rf
v = kp�

�1 + �

�1

�1 + �
,

(42)

where the first term is the average number of male ((1 − k)p�/(�1 + �)) or female (kp�/(�1 + �)) offsprings from an infected woman,
and the second term is the probability of surviving male (�2/(�2 + �)) or female (�1/(�1 + �)) juvenile class and entering in the adult
class. Hence, Rf

v is the average number of infected daughters originated from one infectious woman that become adults, and Rm
v is the

average number of infected women originated from infected sons of one infectious woman  that become adults and infect women during
their infectious period, in a completely susceptible populations of men  and women. Notice that Rm

v encompasses vertical and horizontal
transmissions. Additionally, it is clear that Rf

v < 1, and Rm
v can assume any value.

DFE is given by (J∗1 = 0, I∗1 = 0, J∗2 = 0, I∗2 = 0), plus (S∗
1 = N1, S∗

2 = N2) for the susceptible populations. The stability of DFE is assessed by
acobian and next generation methods.

.1. Jacobian method

Let the Jacobian method be considered. The matrices F1 and V are given by

F1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 ˇ1
N1

N2

0 0 0 0

0 ˇ2
N2

N1
0 0

⎤
⎥⎥⎥⎥⎥⎦ and V =

⎡
⎢⎢⎢⎢⎣

�1 + � −kp� 0 0

−�1 �1 + � 0 0

0 −(1 − k)p� �2 + � 0

0 0 −�2 �2 + �

⎤
⎥⎥⎥⎥⎦ , (43)

rom which the matrix F = F1 − V is obtained as

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

−(�1 + �) kp� 0 0

�1 −(�1 + �) 0 ˇ1
N1

N2

0 (1 − k)p� −(�2 + �) 0

0 ˇ2
N2

N1
�2 −(�2 + �)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

he characteristic equation corresponding to disease transmission matrix F is

�4 + b3�3 + b2�2 + b1� + b0 = 0, (44)

here the coefficients are⎧⎪⎪⎪⎪⎪⎪⎪⎨
b3 = �1 + �1 + �2 + �2 + 4�

b2 = g2

{
1 − (�1 + �)

[
R0

(�2 + �)
g2

+ Rf
v

(�1 + �)
g2

]}
(45)
⎪⎪⎪⎪⎪⎪⎪⎩

b1 = g1

{
1 − (�1 + �)

[
R0

(�1 + �2 + 2�)(�2 + �)
g1

+ Rf
v

(�2 + �2 + 2�)(�1 + �)
g1

+ Rm
v

(�2 + �)(�2 + �)
g1

]}
b0 = g0(1 − Rv),
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ith the auxiliary parameters g2, g1 and g0 being given by⎧⎪⎨
⎪⎩

g2 = (�1 + �)(�1 + �) + (�2 + �)(�2 + �) + (�1 + �1 + 2�)(�2 + �2 + 2�)

g1 = (�1 + �)(�1 + �)(�2 + �2 + 2�) + (�2 + �)(�2 + �)(�1 + �1 + 2�)

g0 = (�1 + �)(�2 + �)(�1 + �)(�2 + �),

nd the basic reproduction number Rv is given by

Rv = R0 + Rf
v + Rm

v , (46)

here R0, Rf
v and Rm

v are given by Eqs. (41) and (42). Notice that all quocients appearing in b2 and b1 are lower than 1.
The Routh–Hurwitz criteria for the polynomial (44) are b3 > 0, b1 > 0, b0 > 0 and b3b2b1 > b2

1 + b2
3b0. Defining 
 as 
 = b3b2b1 − b2

1 − b2
3b0,

t is given by


 = b1Rm
v

�1(�1 + �)(�2 + �)(�2 + �)
�2

+ b2
3g0(R0 + Rf

v + Rm
v ) + b1h1

{
1 − (�1 + �2 + 2�)(�1 + �) ×

[
R0

(�2 + �)
h1

+ Rf
v

(�1 + �)
h1

]}
+ b3h2 ×

{
1 − (�1 + �1 + 2�)(�2 + �2 + 2�)(�1 + �)

[
R0

(�1 + �2 + 2�)(�2 + �)
h2

+ Rf
v

(�2 + �2 + 2�)(�1 + �)
h2

+ Rm
v

(�2 + �)(�2 + �)
h2

]}
,

here⎧⎪⎨
⎪⎩

h1 = (�1 + �1 + 2�)(�1 + �)(�1 + �) + (�2 + �2 + 2�)(�2 + �)(�2 + �)

h2 = (�1 + �1 + 2�)(�1 + �)(�1 + �) ×
[
(�2 + �)(�2 + �) + (�2 + �)2 + (�2 + �)2

]
+ (�2 + �2 + 2�)(�2 + �)(�2 + �)

×
[
(�1 + �)(�1 + �) + (�1 + �)2 + (�1 + �)2

]
.

otice that if Rv < 1, all the Routh–Hurwitz criteria are satisfied, and DFE is locally asymptotically stable.
The independent term b0 = det(F) in Eq. (45) was  obtained, using the definition given in Eq. (46), from

b0 = g0

[
1 − ˇ1ˇ2(�1 + �)(�2 + �)

g0
−

ˇ1
N1
N2

�2(1 − k)p�(�1 + �) + kp��1(�2 + �)(�2 + �)

g0

]
.

otice that the Procedure 1 defined in the main text were applied (K1 = g0 and K2/K1 = Rv). By this procedure, there is a unique way  to
efine Rv, the secondary cases. From the foregoing stability analysis, DFE is stable if Rv < 1, and bifurcates at Rv = 1, and this parameter
as called the basic reproduction number.

The basic reproduction number Rv given by Eq. (46) has a clear biological interpretation. Let one infectious woman be introduced in
 completely susceptible populations of men  and women, and count the average number of secondary infectious women originated by
his infected woman. This woman can infect other women  by infecting directly adults. On average, this woman infects Rm

0 men, and each

an infects Rf
0 women. Hence, there is R0 infected women originated from a single woman  by horizontal transmission. The other route of

nfection is through vertical transmission. Vertically infected daughters from a single infected woman  must grow up and become adults,
hich number on average is given by Rf

v. Notwithstanding, each vertically infected man  must grow up and, then, infects on average Rf
0

omen, resulting in a total of Rm
v infected women. Hence, the overall average infectious women  originated from a single infectious woman

y horizontal and vertical transmissions is given by Rv.
Remember that Rv, given by Eq. (46), is not a good parameter to be related to the fractions of susceptible populations �v. Following the

rocedure 2 defined in the main text, the coefficient b0 given by Eq. (45) is written in the form K3(1 − R0/K4), that is,

b0 = g0[1 − (Rf
v + Rm

v )](1 − �−1
v ),

here the inverse of the product of susceptible populations �−1
v is

�−1
v = R0

1 − (Rf
v + Rm

v )
, (47)

ith R0, Rf
v and Rm

v being given by Eqs. (41) and (42). (K3 > 0 implies that Rf
v + Rm

v < 1, and for Rf
v + Rm

v = 1, �v = 0.) From foregoing stability
nalysis, DFE is stable if �−1

v < 1, and bifurcates at �−1
v = 1.

Notice that �−1
v must appear (not verified) in the product of the susceptibles in the steady state which could be

S∗
1

N1

S∗
2

N2
≡ �v = 1 − (Rf

v + Rm
v )

R0
≡ 1

R0
− Rf

v + Rm
v

R0
,

ith clear biological interpretation. The term 1/R0 is the decreasing in the fractions of susceptible populations due to the horizontal
ransmission, while the term (Rf

v + Rm
v )/R0 is the additional decreasing due to vertical transmission. Again, the sum of the numerator and

enominator in the last term is the basic reproduction number, hence �−1
v brings indirectly this idea. The appearance of R0 in latter term
hows that the vertical transmission is a consequence of horizontal transmission. The partial number Rf
v does not depend on the horizontal

ransmission rates ˇ1 and ˇ2, but Rm
v depends only on Rf

0, that is, on ˇ1. Vertically infected males must grow up, and then, infect females.

or this reason the diminishing in the susceptible populations by vertical transmission depends on Rf
0.
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.2. Next generation method

The next generation matrix is constructed taking into account the states-at-infection (J1,J2) and the states-of-infectiousness (I1,I2).

.2.1. Considering only states-of-infectiousness
Considering only the states-of-infectiousness, the vectors f and v from system of equations (39) are given by

f =

⎡
⎢⎢⎢⎢⎢⎣

0

ˇ1
I2
N2

S1

0

ˇ2
I1
N1

S2

⎤
⎥⎥⎥⎥⎥⎦ and v =

⎡
⎢⎢⎢⎢⎣

−kp�I1 + (�1 + �)J1

−�1J1 + (�1 + �)I1

−(1 − k)p�I1 + (�2 + �)J2

−�2J2 + (�2 + �)I2

⎤
⎥⎥⎥⎥⎦ ,

rom which F1 and V are derived, given by Eq. (43).
The matrices V−1 and F1V−1 can be evaluated, resulting in

V−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 + �

˛

kp�

˛
0 0

�1

˛

�1 + �

˛
0 0

�1�1 �1(�1 + �)
1

�2 + �
0

�1�1�2

�2 + �

�1(�1 + �)�2

�2 + �

�2

(�1 + �)(�2 + �)
1

�2 + �

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

here �1 = (1 − k)p�/[(�2 + �)˛], and

F1V−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
Rm

v

1 − Rf
v

�1

�1 + �

Rm
v

1 − Rf
v

Rf
0

�2

�2 + �
Rf

0

0 0 0 0
Rm

0

1 − Rf
v

�1

�1 + �

Rm
0

1 − Rf
v

0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

he eigenvalues of F1V−1 are �1,2 = 0 and �3,4 given by the solution of

�2 − Rm
v

1 − Rf
v

� − R0

1 − Rf
v

= 0.

ence, spectral radius corresponding to the next generation matrix F1V−1, �(F1V−1), is given by

�(F1V−1) = 1
2

⎧⎨
⎩ Rm

v

1 − Rf
v

+

√[
Rm

v

1 − Rf
v

]2

+ 4
R0

1 − Rf
v

⎫⎬
⎭ , (48)

hich does not have an easy and direct biological interpretation. R0, Rf
v and Rm

v are given by Eqs. (41) and (42).
According to Eq. (35) regarding to the conjecture formulated in the main text, the product of the fraction of susceptibles could be given

y

�−1
v = R0 + Rm

v

1 − Rf
v

, (49)

hich seems wrong (Rm
v appears in the numerator).

.2.2. Adding states-at-infection
In this case, the vectors f and v from system of equations (39) are given by

f =

⎡
⎢⎢⎢⎢⎢⎢⎣

kp�I1

ˇ1
I2
N2

S1

(1 − k)p�I1

ˇ2
I1 S2

⎤
⎥⎥⎥⎥⎥⎥⎦

and v =

⎡
⎢⎢⎢⎢⎣

(�1 + �)J1

−�1J1 + (�1 + �)I1

(�2 + �)J2

−�2J2 + (�2 + �)I2

⎤
⎥⎥⎥⎥⎦ .
N1

he eigenvalues of F1V−1 (F1 and V are not shown) are �1,2 = 0 and �3,4 given by the solution of

�2 − Rf
v� − (R0 + Rm

v ) = 0.
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ence, the spectral radius of the next generation matrix F1V−1 is

�(F1V−1) = 1
2

[
Rf

v +
√(

Rf
v

)2
+ 4(R0 + Rm

v )

]
, (50)

ubstantially different from that given by Eq. (48). The application of Eq. (35) regarding to the conjecture formulated in the main text
esults in the basic reproduction number Rv = R0 + Rm

v + Rf
v.

However, if the term of growing up of females is introduced in vector f, then

f =

⎡
⎢⎢⎢⎢⎢⎢⎣

kp�I1

ˇ1
I2
N2

S1 + �1J1

(1 − k)p�I1

ˇ2
I1
N1

S2

⎤
⎥⎥⎥⎥⎥⎥⎦

and v =

⎡
⎢⎢⎢⎢⎣

(�1 + �)J1

(�1 + �)I1

(�2 + �)J2

−�2J2 + (�2 + �)I2

⎤
⎥⎥⎥⎥⎦ ,

nd the next generation matrix F1V−1 is given by

F1V−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 Rf
�

�1 + �

�1
0 0

�1

�1 + �
0 Rf

0
�2

�2 + �
Rf

0

0 Rf
�

�2 + �

�2

1

Rf
0

0 0

0 Rm
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

he spectral radius corresponding to this next generation matrix, �(F1V−1), is given by

�(F1V−1) =
√

R0 + Rf
� + Rm

v , (51)

here R0, Rf
v and Rm

v are given by Eqs. (41) and (42). Two  eigenvalues of F1V−1 are �1,2 = 0.
There are other two ways of constructing vector f. One is

f =
(

kp�I1, ˇ1
I2
N2

S1, (1 − k)p�I1, ˇ2
I1
N1

S2 + �2J2

)T

,

here T stands for the transposition of a matrix. One of the eigenvalues is �1 = 0, and �2,3,4 are solutions of the characteristic equation

�3 − Rf
v�2 − R0� − Rm

v = 0. (52)

ther is

f =
(

kp�I1, ˇ1
I2
N2

S1 + �1J1, (1 − k)p�I1, ˇ2
I1
N1

S2 + �2J2

)T

,

here T stands for the transposition of a matrix. One of the eigenvalues is �1 = 0, and �2,3,4 are solutions of the characteristic equation

�3 − (R0 + Rf
v)� − Rm

v = 0. (53)

n both situations, Eq. (35) regarding to the conjecture formulated in the main text results in the basic reproduction number Rv = R0 +
m
v + Rf

v, given by Eq. (46).

.3. Comparison

The basic reproduction number Rv given by Eq. (46) can be related to the spectral radius �(F1V−1) given by Eq. (51) through Rv =(
F1V−1

)2
. Again, the definition of the spectral radius as the geometric mean of partial reproduction numbers, but not the basic reproduction

umber, resulted in same expression for Rv.
However, the inverse of the product of susceptible populations �−1

v , Eq. (47), obtained from the Jacobian method is different from that
btained from the next generation method �(F1V−1), given by Eq. (48), or the simplified threshold given by Eq. (49). Maybe the difference

rises due to infeasibility of the modelling.

Let the full model be considered. The model assumes constant population of female and male populations. This assumption is guaranteed
f additional births (�1 and �2) replenish deaths, that is, �1 = �(B1 + J1) and �2 = �N2 − (1 − k)�(S1 + I1 + R1). Additionally, natality and

ortality rates must obey the relation � = �/k. Another assumption is that all adult females (susceptible, infectious and recovered) are able
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o generate descendants disregarding mating with male. Hence, the system of equations (39) should be completed including the equations
or susceptible juveniles (B) and adults (S), and recovered persons (R). The full dynamical system becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
B1 = �J1 + �[S1 + (1 − p)I1 + R1] − �1B1

d

dt
J1 = p�I1 − (�1 + �)J1

d

dt
S1 = �1B1 − ˇ1

I2
N2

S1 − �S1

d

dt
I1 = �1J1 + ˇ1

I2
N2

S1 − (�1 + �)I1

d

dt
R1 = �1I1 − �R1,

(54)

or female population, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
B2 = �(B2 + J2 + S2 + I2 + R2) − 1 − k

k
p�I1 − (�2 + �)B2

d

dt
J2 = 1 − k

k
p�I1 − (�1 + �)J2

d

dt
S2 = �2B2 − ˇ2

I1
N1

S2 − �S2

d

dt
I2 = �2J2 + ˇ2

I1
N1

S2 − (�2 + �)I2

d

dt
R2 = �2I2 − �R2,

(55)

or male population. The infective classes J1 and J2 are slightly different from Eq. (39).
To the system of equations (39) juvenile and recovered compartments were added, resulting in Eqs. (54) and (55). In this modelling, the

nfectious periods of female and male adults are �−1
1 and �−1

2 , respectively, which are the periods of time from the infection to recovery.
owever, the newborns must spend first �−1

1 and �−1
2 periods of time to become adults, and then spend additional �−1

1 and �−1
2 periods of

ime to become recovered. That is, the infected but not infectious juveniles never can be recovered from the infection during the periods
f time �−1

1 and �−1
2 , which are approximately 13–18 years. If the model is applied to HIV (human immunodeficiency syndrome) infection,

t seems that infected children, if reaching adulthood (Yang et al., 2003), may  not transmit infection by using appropriate protection
echanisms. By improving the model, maybe the square of the spectral radius �(F1V−1) and �−1

v could be equal.
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