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a  b  s  t  r  a  c  t

The  use  of  antiretroviral  therapy  has  proven  to be  remarkably  effective  in  controlling  the progression
of  human  immunodeficiency  virus  (HIV)  infection  and  prolonging  patient’s  survival.  Therapy  however
may  fail  and  therefore  these  benefits  can  be compromised  by  the  emergence  of HIV  strains  that  are
resistant  to the  therapy.  In view  of  these  facts, the  question  of  finding  the reason  for  which  drug-resistant
strains  emerge  during  therapy  has  become  a worldwide  problem  of  great  interest.  This paper  presents
eywords:
IV
ntiretroviral therapy
rug resistance
opf bifurcation

a deterministic  HIV-1  model  to examine  the  mechanisms  underlying  the  emergence  of drug-resistance
during  therapy.  The  aim  of this  study  is  to  determine  whether,  and  how  fast,  antiretroviral  therapy  may
determine  the  emergence  of  drug  resistance  by calculating  the  basic  reproductive  numbers.  The  existence,
feasibility  and  local  stability  of  the equilibriums  are  also analyzed.  By performing  numerical  simulations
we  show  that  Hopf  bifurcation  may  occur.  The  model  suggests  that  the  individuals  with  drug-resistant
infection  may  play  an  important  role  in  the  epidemic  of  HIV.
. Introduction

The availability of new and more potent antiretroviral ther-
py (ART) has been successful in delaying the progression of AIDS
isease and has dramatically improved the life expectancy of
IV infected patients. The initial goal of ART is to suppress HIV
iral replication below the level of clinical detection. Thereby the
mmune function is maintained and the disease progression is pre-
ented. However, there is a general agreement that ART is not
ffective in all patients and may  fail to achieve complete viral sup-
ression below the limit of viral detection. The suppression of viral
eplication by the use of ART is not in itself sufficient for clearing
he infection, and ART cannot therefore cure the HIV infection com-
letely. In view of these facts, in clinical practice, an ever increasing
umber of patients are reported to fail the therapy.

Although a clear definition does not exist (Gallant, 2000), treat-
ent failure can be measured in three ways: clinically, by disease
rogression and WHO  (World Health Organization) clinical stag-
ng; immunologically, using trends in CD4 counts over time, and
irologically, by measuring HIV viral loads.

∗ Corresponding author at: Faculdade de Medicina da Universidade de São Paulo,
IM01, HCFMUSP, Rua Teodoro Sampaio, 115, CEP: 05405-000, São Paulo, SP, Brazil.
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Viral load measurement is considered a more sensitive indicator
of treatment failure compared to clinical or immunological indica-
tors. However, because the definitions of clinical, immunological
and virological failure currently used in different settings represent
different biological end-points, it is still not clear which criteria are
optimal (WHO, 2006). Thus, while no consensus on ART monitoring
and the diagnosis of failure has been reached, there is a tendency
to reduce reliance on clinical failure definitions, expand the use
immunological criteria and use viral load testing for confirmation
of clinical/immunological failure (WHO, 2010).

One of the critical decisions in ART management is when to
switch from one regimen to another for treatment failure due to
resistance. The emergence of HIV drug resistance is of increasing
concern in countries where ART is widely used, and represents a
potential impediment to the achievement of long-term success in
treatment outcomes.

Epidemics of drug-sensitive and drug-resistant strains have
different dynamics. Epidemics of drug-sensitive strains were gen-
erated only by transmission (Massad et al., 1994; Carvalho et al.,
1996; Burattini et al., 2000; Moghadas et al., 2003; Moghadas
and Gumel, 2003; Sharomi et al., 2007), while epidemics of

drug-resistant strains are generated by both the transmission
of drug-resistant strains and the treated individuals who were
initially infected with drug-sensitive strains, but develop drug
resistance during treatment. Insights into HIV drug resistance

dx.doi.org/10.1016/j.biosystems.2011.11.009
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:silviamr@dim.fm.usp.br
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ave been obtained from a large number of mathematical models
Bonhoeffer et al., 1977; MacLean and Nowak, 1992; Nowak et al.,
997; Kirschiner and Webb, 1997; Wein et al., 1998; Gumel et al.,
000; Blower et al., 2000, 2001; Smith and Wahl, 2005; Baggaley
t al., 2005, 2006; Rong et al., 2007; Krakovska and Wahl, 2007a,b;
haromi and Gumel, 2008; Qiu and Feng, 2010; Hoare et al., 2010;
upervie et al., 2010). Although clinical studies are essential in elu-
idating the complex effects of teraphy, these models have played
n important role for understanding the pathogenesis of HIV-1
nfection, the drug therapy strategies used against it, and the emer-
ence of drug resistance.

The aim of this paper is to examine the mechanisms underly-
ng the emergence of HIV-1 drug-resistance during therapy. We
ropose a mathematical model to understand and to predict the
volution of the epidemic of HIV-1. The model tracks two  HIV-1
trains, one resistant to ART and one sensitive.

Due to the fact that drug-resistant strains are obviously less sen-
itive to ART, they are fitter than the drug-sensitive strains in the
resence of drug. In practice, it still remains unclear which assay is
ost appropriate to measure the fitness of HIV. Fitness is a complex

arameter aimed to describe the replicative and adaptability of an
rganism and it refers to the ability of an organism to adapt and
eproduce in a defined environment (Quiňones-Matheu and Arts,
001; Quiňones-Matheu, 2005). However, since the basic reproduc-
ive number is a commonly used measure of the absolute fitness of

 virus within a host (Gilchrist et al., 2004), here we will examine
he effect of ART on the HIV-1 fitness drug-resistant strains by ana-
yzing the reproductive number in the presence of ART. Hence, by
eriving the basic reproductive number important insights can also
e gained through our theoretical and numerical studies.

This paper is organized as follows. The model is described in
ection 2. In Section 3 we perform the steady-state analysis of the
odel. Section 4 is devoted to the numerical investigation of the

ystem, which confirms our theoretical results and illustrate the
ossible existence of behaviors, including periodic solutions and
opf bifurcation under certain parameter. We  also assess what
appens when therapy is switched to a less intensive maintenance
egimen. The conclusion section closes the paper.

. Model Formulation

To study the evolution of drug-resistant strains in the presence
f drug therapy in an environment in which the drug-sensitive
trains are already established, both drug-sensitive and drug-
esistant HIV-1 infections are considered. Our model’s assumption
s that drug-resistance can evolve directly during the therapy for

hatever reason, but it has only two outcomes. Either the drug-
esistant strains already existed before the onset of therapy, or the
rug-resistant strains evolved during therapy.

We  distinguish patients who respond to a regimen (who typi-
ally experience reduction in viral load to undectable levels), and
emain as a nonprogressor for a specified amount of time but may
xperience treatment failure, from those who do not respond and
ubsequently experience treatment failure. It is further considered
hat no effective treatment exists for individuals with the drug-
esistant HIV-1 infection (Hoare et al., 2010; Sharomi and Gumel,
008). This is in line with the fact that a drug-resistant strain is less
esponsive to therapy than a drug-sensitive strain (Blower et al.,
000), i.e., ART is more likely to fail in patients with drug-resistant
IV-1 infection because they have limited ability to achieve or
aintain complete viral suppression.
In this context, we assumed that the patients with drug-
ensitive HIV-1 infection may  evolve to either compartments
f “successfully treated” (i.e., satisfactory virus suppression) or
unsuccessfully treated” (treatment failure); however the drug-
esistant HIV-1 patients may  migrate only to a “state of failure”.
Fig. 1. Flow diagram of model (3).

The above assumptions lead to a model involving the total pop-
ulation, Ñ divided into five epidemiologic classes: S̃, susceptible
individuals; ĨS , treatment-naive patients with drug-sensitive HIV-1
infection; ĨR, treatment-naive patients with drug-resistant HIV-
1 infection; Ẽ, successfully treated patients with drug-sensitive
HIV-1 infection; and F̃ , HIV-1 infected individuals in therapeutic
failure. The subscripts specify whether the infection is a drug-
sensitive (S) or a drug-resistant (R) strain. Note that the model
does not consider a class of individuals with clinical AIDS, com-
posed of patients who  progress to full-blown AIDS. We  assumed
this because of their illness, these patients do not play a role
in the dynamic of the transmission of the drug-resistant HIV-1
infection.

A flow diagram of the model is given in Fig. 1. In this study, all the
parameters of the model are positive. The vital dynamics includes
a “birth and immigration process” given by a constant recruitment
rate � and a “death process” given by natural mortality rate �, as
well as the progression rate to full-blown AIDS, described by the
parameter ˛. For simplicity, the same value of  ̨ is considered for
the individuals in therapeutic failure (F̃), drug-sensitive individuals
(ĨS) and drug-resistant individuals (ĨR).

Our assumption is that HIV transmission is represented by
pseudo mass-action incidence (Jong et al., 1994), i.e., the num-
ber of new infected individuals produced by random contacts
is proportional to the size of susceptible and infected individu-
als. In our model the susceptible individuals S̃ can be infected
with either a drug-sensitive or a drug-resistant HIV-1 strains,
so the number of new sensitive and resistant cases are respec-
tively ˜̌

SS̃ĨS and ˜̌
RS̃ĨR. The transmission coefficients, ˜̌

S and ˜̌
R,

specify the transmissibility of drug-sensitive and drug-resistant
HIV-1 strains, respectively. We  take ˇR = kˇS, where 0 < k < 1 rep-
resents the transmission level of the drug-resistant HIV-1 strains,
i.e., k indicates that drug-resistant strains are less transmissible
(i.e., less fitness) than drug-sensitive strains (Velasco-Hernandez
et al., 2002; Brown et al., 2003; Supervie et al., 2010; Hoare et al.,
2010).

We let εS be the treatment rate for the drug-sensitive HIV-1
infected patients; p (0 < p < 1) is the proportion of drug-sensitive
patients who are successfully treated; and (1 − p) represents the
proportion of the drug-sensitive patients who experience failure
during therapy. We  let � and ϕR denote the treatment failure rates
for the drug-sensitive and drug-resistant infected patients, respec-
tively.

Finally, to estimate the time at which resistance dominates, we
use the simplest possible assumption model, assuming that the rate
at which resistance emerges per unit time, �, is constant
The associated variables and parameters of the model are
described in Table 1.

Based on these assumptions, the dynamics of transmis-
sion is then formalized by the following nonhomogeneous
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Table 1
Description of variables and parameters for model (3).

Variables Description

S Susceptible individuals
IS Treated-naive patients with drug-sensitive HIV-1 infection
IR Treated-naive patients with drug-resistant HIV-1 infection
E  Successfully treated patients with drug-sensitive HIV-1

infection
F  HIV-1 infected individuals in therapeutic failure
Parameters Description
� Susceptibles recruitment rate (births and immigration) or

natural mortality rate
ˇS Transmission coefficient of the drug-sensitive virus
ˇR Transmission coefficient of the drug-resistant virus
εS Treatment rate for the drug-sensitive HIV-1 patients

(reciprocal time for the patient to achieve complete viral
suppression)

ϕR Treatment rate for the drug-resistant patients (reciprocal time
for  the patient to experience incomplete viral suppression or
viral rebound)

p Proportion of the successfully treated drug-sensitive HIV-1
individuals

�  Average time required for the drug-sensitive patients to
develop drug resistance after achieving complete viral

l
c⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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suppression
� Rate per unit time at which resistance emerges
˛  Progression rate to disease

inear system of ordinary differential equations with constant
oefficients

dS̃

dt
= � − ˜̌

SS̃ĨS − ˜̌
RS̃ĨR − �S̃

dĨS
dt

= ˜̌
SS̃ĨS − (εS + � + ˛) ĨS

dĨR
dt

= ˜̌
RS̃ĨR + � F̃ − (ϕR + � + ˛) ĨR

dẼ

dt
=  pεSĨS − (� + �) Ẽ

dF̃

dt
=  (1 − p)εSĨS + ϕRĨR + �Ẽ − (� +  ̨ + �) F̃ .

(1)

By summing up the above equations, the total population size
˜ (t) is variable with

dÑ

dt
= � − �Ñ − ˛(ĨS + ĨR + F̃). (2)

hen the treatment is effective in reducing disease progression,
.e.,  ̨ = 0, the population size Ñ evolves as an immigration model

ith natural mortality, i.e., according to dÑ/dt = � − �Ñ. This

quation has a single equilibrium Ñ = N0 = �/�, for any initial
alue of N0. Thus, in the long run the population size settles to this
onstant value. It follows from (2) that lim

t→∞
Ñ(t) ≤ �/� = N0.

The differential equation for Ñ implies that solutions of (1) start-
ng in the positive orthant R

5+, either approach, enter, or remain in
he subset R

5+ defined by

 = {(S̃, ĨS, ĨR, Ẽ, F̃)  ∈ R
5
+ : S̃ + ĨS + ĨR + Ẽ + F̃ ≤ N0}.

hus it suffices to consider solutions in region D. Solutions of the
nitial value problem starting in D and defined by (1) exist and are
nique on a maximal interval (Hale, 1980). Since solutions remain
ounded in the positively invariant region D, the initial value prob-

em is then well posed both mathematically and epidemiologically

Hethcote, 2000). Consequently, we have the following lemma.

emma  2.1. The biological feasible region D is positively invariant
nd attracts all solutions in R

5+.
tems 108 (2012) 1– 13 3

Hence, it is sufficient to consider the dynamics of the flow gen-
erated by model (1) in D.

Before analyzing the model (1) and to explore the stability
behavior of its equilibria, we  rescale the system by defining the new
variables: S = S̃/N0; IS = ĨS/N0; IR = ĨR/N0; E = Ẽ/N0, F = F̃/N0,
N = Ñ/N0 and parameters ˇS = N0 ˜̌

S and ˇR = N0 ˜̌
R. Using these

changes of variables and parameters, the system (1) becomes:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= � − ˇSSIS − ˇRS IR − �S

dIS

dt
= ˇSSIS − (εS + � + ˛) IS

dIR

dt
= ˇRSIR + �F − (ϕR + � + ˛) IR

dE

dt
= pεSIS − (� + �) E

dF

dt
= (1 − p)εSIS + ϕRIR + �E − (� +  ̨ + �) F,

(3)

and

dN

dt
= �(1 − N) − ˛(IS + IR + F),

so that the rescaled total population size is variable with
S + IS + IR + E + F = N ≤ 1.

3. Existence and Stability of Equilibria

In order to make the mathematical formulation compatible with
the real phenomenon it describes, we will study the evolution of
trajectories in the neighborhood of the steady state solution P = (S,
IS, IR, E, F) of the system (3).

3.1. Disease-Free Equilibrium

In the absence of infection, i.e., for IS = IR = 0, the model has the
disease-free equilibrium P(0) = (1, 0, 0, 0, 0) which is obtained by
setting the right-hand sides of system (3) to zero. To establish the
stability of this equilibrium, the Jacobian of the system is computed
and evaluated at P(0). The equilibrium P(0) is locally asymptotically
stable if the real part of the eigenvalues of the Jacobian matrix are
all negative. Specifically, the Jacobian of system (3) at P(0) is given
by

JP(0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

JP(0)

11 −ˇSS −ˇRS 0 0

0 JP(0)

22 0 0 0

0 0 JP(0)

33 0 �

0 pεS 0 JP(0)

44 0

0 (1 − p)εS �R � JP(0)

55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where JP(0)

11 = −�; JP(0)

22 = ˇSS − (εS + � + ˛); JP(0)

33 = ˇRS − (ϕR + � +
˛); JP(0)

44 = −(� + �) and JP(0)

55 = −(� + � + ˛).
The Jacobian (4) simplifies to give directly the three eigenvalues

	1 = − �, 	2 = ˇS − (εS + � + ˛) and 	3 = − (� + �), and the ones of the
submatrix of order 2,
A0 =
[

JP(0)

33 �

ϕR JP(0)

55

]
. (5)
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equilibrium P2 only when the reproductive number of the drug-
sensitive is greater than unity (RS > 1) and exceeds the reproductive
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Note that 	2 = ˇS − (εS + � + ˛) < 0 if ˇS < ˇ∗
S = εS + � + ˛, or

quivalently, if RS < 1, where

S = ˇS

ˇ∗
S

. (6)

The characteristic equation of the submatrix (5) can be recasted
s the quadratic polynomial

(	) = 	2 + a1	 + a0,

here

a1 = −ˇR + (ϕR + � + ˛) + (� +  ̨ + �),

a0 = −ˇR(� +  ̨ + �) + (� + ˛)(� +  ̨ + � + ϕR).

he Routh-Hurwitz conditions for the second order polynomial are
1 > 0 and a0 > 0, which imply in the following expressions

R < ˇ1
R = [2(� + ˛) + � + ϕR], (7)

nd

R < ˇ∗
R = (� + ˛)(� +  ̨ + � + ϕR)

(� +  ̨ + �)
. (8)

t is easy to verify that ˇ∗
R < ˇ1

R. Therefore, the Routh-Hurwitz cri-
eria is satisfied if the condition (8) holds, that is, if RR < 1, where

R = ˇR

ˇ∗
R

. (9)

ence, if RS < 1 and RR < 1, then all eigenvalues of Jacobian matrix
4) have negative real part. Therefore, we have established the fol-
owing result.

roposition 3.1. If the disease-free equilibrium P(0) = (1, 0, 0, 0, 0)
xists, it is locally asymptotically stable if both RS < 1 and RR < 1
old, otherwise it is unstable.

For the case of a single infected population, a very general prop-
rty of epidemic models states that a disease can be maintained in

 population only if each infected individual produces, on average,
ore than one new infection, i.e., if the basic reproductive num-

er satisfies R0 > 1. However, for our model this definition of R0
s insufficient. A more general basic reproductive number can be
efined as the number of secondary cases or new infections gener-
ted by both drug-sensitive and drug-resistant infected individuals.
ence, here we have defined RS and RR as the basic reproductive
umber of the drug-sensitive and the drug-resistant strains, respec-
ively. Thus, if both RS and RR are less than one, then the infection
ill be eradicated from the population. If, on the other hand, any

ne of or both the two reproductive numbers RS and RR are greater
han one, then both sensitive and resistant HIV-1 infected individu-
ls can establish an infection. Whether and how fast drug-resistant
trains are likely to spread through a drug-sensitive population, it is
etermined by their relative reproductive numbers. Therefore, the
asic reproductive number can provide a useful framework for the
athematical definition of drug resistance (Bonhoeffer and Nowak,

997).
.2. Endemic Equilibria

In the presence of infection, i.e., IS = IR /= 0, the system (3)
as two possible non-trivial equilibria. The boundary steady state
tems 108 (2012) 1– 13

P1 = (S1, 0, I1
R, 0, F1) at which only the drug-resistant individuals

are present has coordinates⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S1 = 1
RR

I1
R = �

ˇR
(RR − 1)

F1 =
[

ϕR

(� +  ̨ + �)

]
I1
R.

(10)

The interior steady state where there is a coexistence of both the
sensitive and the drug-resistant individuals P2 = (S∗, I∗S , I∗R, E∗, F∗)
has coordinates⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗ = 1
RS

I∗S = D1(RS − RR)
D2

I∗R

I∗R = �D2(RS − 1)
ˇSD1(RS − RR) + ˇRD2

E∗ = D1pεS(RS − RR)
D2(� + �)

I∗R

F∗ =
[

ϕR

(� +  ̨ + �)

]
I∗R + εS[�(1 − p) + �]

(� +  ̨ + �)(� + �)
I∗S ,

(11)

where D1 > 0 and D2 > 0 are given by

D1 = (� + ˛)(� + �)(εS + � + ˛)(� +  ̨ + � + ϕR),

D2 = �εSˇS[�(1 − p) + �].

Observe from the above expressions for the steady states (10)
and (11) that the drug-resistant population will always be present.
If RR < 1 and RS < 1, then the system (3) is inconsistent and there
is no feasible endemic equilibria in this case: S1 > 1, I1

R < 0 and
S∗ > 1. Thus, firstly we  require RR > 1 and/or RS > 1 to ensure the
existence and the feasibility of both endemic equilibria, P1 and P2.

Suppose now that I∗R > 0. Here also, it is easy to see that
whenever RR > max(RS, 1), then the system (3) has no feasible
coexistence endemic equilibrium P2, because I∗S < 0 and E∗ < 0.

If RR > max(RS, 1), then the average number of new infections
generated by a single drug-resistant infected individual exceeds
those generated by a single drug-sensitive infected individual.
Indeed, the two viral strains compete for the same resources, the
drug treatment. However, due to the reduced viral fitness (i.e.,
smaller transmissibility) of the drug-sensitive strain compared
with the drug-resistant strain, the drug-resistant population will
out-compete the sensitive one due to the competitive exclusion
principle. Therefore, the unique endemic equilibrium feasible is P1
at which only the drug-resistant individuals are present.

In contrast, the drug-resistant population cannot exist alone
if its viral fitness is reduced compared with the drug-sensitive
individuals. Despite of the fact that drug-resistant strains are less
responsive to the therapy, both drug-sensitive and drug-resistant
individuals will coexist whenever RS > RR.

Hence, which population will dominate depends on the fitness
of each population. It is clear that the model (3) has a coexistence
number of the drug-resistant (RS > RR). In such case, if RR > 1, then
both equilibria P1 and P2 are feasible. If RR < 1, then only P2 is
feasible.

Therefore, we  establish the following results:
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roposition 3.2. In the system (3),

(i) ifRS > 1andRR > 1then both endemic equilibria exist;
(ii) ifRR > 1then the single endemic equilibriumP1exists;
iii) ifRS > 1andRS > RRthen the single endemic

equilibriumP2exists;
iv) if neither (i), (ii) nor (iii) occur then there are no endemic equilib-

ria.

Next, we will show that these existence conditions also provide
onditions for the stability of the steady states.

.3. Stability Results

We  now study the stability of the endemic equilibrium points.
e begin with the Jacobian of system (3) at P1 = (S1, 0, I1

R, 0, F1)
amely

P1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

JP1
11 −ˇSS1 −ˇRS1 0 0

0 JP1
22 0 0 0

ˇRI1
R 0 JP1

33 0 �

0 pεS 0 JP1
44 0

0 (1 − p)εS �R � JP1
55

⎤
⎥⎥⎥⎥⎥⎥⎦

, (12)

here JP1
11 = −(ˇRI1

R + �); JP1
22 = −ˇSS1 − (εS + � + ˛); JP1

33 =
ˇRS1 − (� +  ̨ + ϕR); JP1

44 = −(� + �) and JP1
55 = −(� + � + ˛).

The Jacobian matrix (12) gives explicitly two eigenvalues,
amely 	1 = − (� + �) < 0, and 	2 = ˇSS1 − (εS + � + ˛). Substituting
he value of S1 (see (10)), we have 	2 = ˇS(1/RR − 1/RS) < 0 if and
nly if

R > RS. (13)

he remaining eigenvalues are found by the corresponding third
egree characteristic equation

3(	) = (ˇRI1
R + � + 	)(� +  ̨ + 	)(ϕR + � +  ̨ + � + 	)

− (� + 	)ˇRS1(� + � +  ̨ + 	). (14)

e now consider the characteristic polynomial (14) in terms of
he basic reproductive numbers. We  rewrite (14) as a third degree
olynomial, in its following closed-form F3(	) = 	3 + a2	2 + a1	 + a0,
here

a2 = ˇRS1 + ˇRI1
R + [ϕR + 2(� + ˛) + � + �]

a1 = ��(ϕR + � +  ̨ + �) + [ϕR + 2(�  + ˛) + �]�(RR − 1)

a0 = �(� + ˛)(ϕR + � +  ̨ + �)(RR − 1).

By using the Routh-Hurwitz criteria it follows that a0 > 0, a1 > 0,
3 > 0 and a1a2 − a0 > 0 if and only if RR > 1. Therefore, we establish
he following stability result:

roposition 3.3. The endemic equilibrium point P1 =
S1, 0, I1

R, 0, F1) exists and it is locally asymptotically stable if
oth RR > 1 and RR > RS hold.

Similarly, we have the corresponding Jacobian matrix of (3) at
he steady state P2 = (S∗, I∗S , I∗R, E∗, F∗) given by⎡

⎢⎢⎢
JP2
11 −ˇSS∗ −ˇRS∗ 0 0

ˇSS∗ JP2
22 0 0 0

∗ P

⎤
⎥⎥⎥
P2 = ⎢⎢⎢⎣
ˇRIR 0 J 2

33 0 �

0 pεS 0 JP2
44 0

0 (1 − p)εS �R � JP2
55

⎥⎥⎥⎦
, (15)
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where JP2
11 = −(ˇSI∗S + ˇRI∗R + �); JP2

22 = −[ˇSS∗ + (� +  ̨ + εS)]; JP2
33 =

ˇRS∗ − (� +  ̨ + ϕR); JP2
44 = −(� + �) and JP2

55 = −(� + � + ˛).
The corresponding fifth degree characteristic polynomial for the

steady state P2 is

F5(	) = (JP2
44 − 	)(ˇS)2S∗I∗S [(JP2

33 − 	)(JP2
55 − 	) − ϕR�]

+ (JP2
44 − 	)ˇSˇRI∗RS∗�(1 − p)εS − ˇSˇRI∗SS∗��pεS

+ 	�ϕR(JP2
44 − 	)(JP2

11 − 	) − 	[(JP2
44 − 	)(JP2

55 − 	)] det A = 0,

(16)

where

A =
[

JP2
11 − 	 −ˇRS∗

ˇRI∗R JP2
33 − 	

]
.

To verify the stability of the equilibrium point P2 we
look at the Routh-Hurwitz stability criterion. We  know
that the stability conditions for a fifth degree polyno-
mial P(	) = 	5 + b1	4 + b2	3 + b3	2 + b4	 + b5 hold if and only
if (i) bi > 0 (i = 1, . . .,  5), (ii) b1b2b3 > b2

3 + b2
1b4 and (iii)

(b1b4 − b5)(b1b2b3 − b2
3 − b2

1b4) > b5(b1b2 − b3)2 + b1b2
5 (May,

1973).
Here, we need some clarifications. Theoretically, the closed-

form expression of the characteristic polynomial (16) can be found
after some manipulations. However, the coefficients bi are very
complex, thereby making impossible to verify these conditions ana-
lytically. Therefore, the stability analysis will be explored only by
numerical methods in the next section. However, before proceed-
ing with the numerical analysis of our model, a useful explicity
condition for the stability of P2 can be obtained from the indepen-
dent term of (16),

b5 =
{

[�(1 − p)εS + �εS](εS + � + ˛)�ˇRD1

D2
I∗R + k1

}
(RS − RR),

where

k1 = (� + �)(� + ˛)(ϕR + � +  ̨ + �)(εS + � + ˛) > 0.

Recall that the drug-resistant steady state P1 exists and it is
locally asymptotically stable if only if RR > 1 and RR > RS hold.
Further, the coexistence steady state P2 exists if and only if RS > 1
and RS > RR, from which it follows that b5 > 0. On the other hand,
it is also known that a sufficient condition for instability amounts
to b5 < 0. However, notice that b5 < 0 implies RS < RR, and in such
case the only endemic equilibrium locally asymptotically stable is
P1 (see Eq. (13)).

We  conjecture therefore that in such case when b5 > 0, P1 is
unstable, then RS > RR, and the only endemic equilibrium that
exists and can be locally asymptotically stable is the coexistence
equilibrium point P2.

Hence, we now establish the following result. The coexistence
equilibrium point P2 = (S∗, I∗S , I∗R, E∗, F∗) exists and it can be locally
asymptotically stable whenever RS > 1 and RS > RR.

Fig. 2 shows that if a probability of drug resistance emerging
during treatment exists, only four epidemiological outcomes are
possible. This in fact depends on both drug-sensitive and drug-
resistant fitness, specified by the effective reproductive numbers,
RS and RR, respectively.

All the existence and stability results for the model (3) are sum-
marized in Table 2.
4. Numerical Investigations

In this section we illustrate some of the theoretical results
obtained in this paper. We  will integrate the system (3) by fourth
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Fig. 2. Steady states of model (3) and stability regions (the steady states in bold type
is  stable in that region).

Table 2
Stability of trivial and endemic equilibria (see Fig. 2).

Fitness conditions Eventual epidemiological outcomes

RS < 1, RR < 1 Disease eradication: P(0) stable
RS < 1, RR > 1, RS < RR Persistence of HIV-1 drug-resistant

population: P1 stable
RS > 1, RR > 1, RS < RR Persistence of HIV-1 drug-resistant

population: P1 stable
RS > 1, RR > 1, RS > RR Persistence of both HIV-1 drug-sensitive and

drug-resistant populations: P2 stable
RS > 1, RR < 1, RS > RR Persistence of both HIV-1 drug-sensitive and

drug-resistant populations: P2 stable
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Fig. 3. Profile of populations of the endemic equilibrium P2 as a function of drug treatme
In  (a) the proportion of drug-sensitive (I∗

S
) and the drug-resistant infected (I∗

R
) individuals;

endemic  equilibrium (solid curve) and UEE stands for the unstable endemic equilibrium (
occur  at ε1

S
= 1.26 (H1) and ε2

S
= 1.56 (H2). For 0 < εS < ε1

S
and ε2

S
< εS < εthres

S
= 1.7119 t

the  endemic equilibrium P2 is unstable and the solution converges to a stable limit cycle.
tems 108 (2012) 1– 13

order Runge–Kutta method, and the results of the simulations will
be displayed graphically.

The objective of these simulations is to provide useful insights
about the emergence of drug-resistance by considering both the
“optimistic” and the “pessimistic” scenarios. For this purpose, we
will explore the variation of both treatment rates and transmission
coefficients, which also vary over the interval where the system (3)
undergoes a Hopf bifurcation. Baseline parameters were selected
after a review of literature and are presented as follows.

Because of several studies (Fatkenheuer et al., 1997; Snedecor,
2005) have reported treatment failure within the first year of
therapy in a substantial portion of treated patients, we  consider
1 ≤ ϕR ≤ 2 and 1 ≤ � ≤ 2 (6 months to 1 year). Moreover, drug resis-
tance would develop (on average) in 3–5 years (Vardavas and
Blower, 2007), so we consider 0.2 < � < 0.33. The average progres-
sion time to AIDS for HIV infected patients is 14 years (Vardavas
and Blower, 2007), we take then  ̨ = 1/14 years. The inflow of at-
risk susceptible adults is chosen to be � = 0.0147 per year (WHO,
2011). Finally, we  take p = 0.6 (Gumel et al., 2001). It is important
to stress that such limited efficacy of therapy (60%) may  be due
to many reasons including sub-optimal usage of the regimen, poor
compliance, poor absorption of certain drugs, etc.

Unless otherwise stated, the baseline parameters set and the
initial conditions values are summarized in Table 3.

Next, in Figs. 3–10 both “optimistic” and “pessimistic” scenar-
ios are shown. It should be mentioned that only the dynamic of
infected subpopulations (I∗S and I∗R) are shown because the other
subpopulations have a similar pattern.
4.1. “Optimistic” Scenario

The “optimistic” scenario assumes that the drug treatment will
be sufficiently potent to eradicate the disease.
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rate (ε
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nt rate (εS) with ˇS = 1.8, ˇR = 0.45. All other parameter values are listed in Table 3.
 in (b) the total proportion of infected individuals (I∗

S
+ I∗

R
). SEE stands for the stable

dotted curve). H denotes Hopf bifurcation, and it shows that two  Hopf bifurcations
he endemic equilibrium P2 exists and it is asymptotically stable. For ε1

S
< εS < ε2

S
,
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Table 3
Baseline values of some key model parameters for model (3),  with sources (see
Section 4.1).

Parameters Values

ϕR 2 years−1

� 1/2 years−1

� 1/4 years−1

 ̨ 1/14 years−1

� 1/68 years−1

p 0.60
Variables Values
S(0) 0.004
IS(0) 0.004
IR(0) 0.001
E(0) 0
F(0) 0
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Fig. 8. Time plot (a) and phase portrait (b) of system (3) using the same parameter
values as in Fig. 3, except that εS = 1.6. It shows disappearance of the stable limit cycle
and convergence of the solution to the stable endemic equilibrium P2, regardless of
initial conditions.
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Fig. 9. Time plot (a) and phase portrait (b) of system (3) using the same param-
alues as in Fig. 3, except that εS = 1.4. It shows that a stable periodic solution exists
nd  the unique biologically viable equilibrium P2 is unstable, regardless of initial
onditions.

Figs. 3–8 illustrate this scenario with ˇS = 1.8 and ˇR = 0.45 (i.e.,
 = 0.25) as εS increases. Under this “optimistic” scenario, the solu-
ion of the system (3) is originally in region V, at which only P2
xists and can be locally and asymptotically stable (see Table 2).
n such case, since the endemic equilibrium P1 is not feasible, as εS
ncreases, the solution will converge to the disease-free equilibrium
(0), corresponding to the region I (see Fig. 2). It is also important to
nderline that in such case a Hopf bifurcation may  occur, so a stable

imit cycle can bifurcate from the unstable endemic equilibrium P2.
Fig. 3 shows that as the therapy becomes more effective (i.e.,

s the time for the patient to achieve complete viral suppression is
maller), the prevalence of drug-sensitive individuals (I∗S ) is reduced
ramatically, and in spite of the increase in the prevalence of drug-
esistant individuals (I∗R) (Fig. 3a), the total prevalence of HIV-1
nfected individuals (I∗S + I∗R) still decreases (Fig. 3b).

Fig. 3 also shows a bifurcation diagram for the system (3), where
S is choosen as a bifurcation parameter. Although the critical val-
es of the bifurcation could not be found analytically due to the high

imension of the system (3),  this task can be performed numeri-
ally. The simulations show that there exist two critical values (εi

S ,
 = 1, 2) where the model (3) undergoes a Hopf bifurcation. At the

eter values as in Table 3. It illustrates one of the “pessimistic-case” scenario with
ˇS = 1.8, ˇR = 1.35, εS < εthres∗

S
which shows damped oscillations of infected individ-

uals  followed by convergence to the endemic equilibrium P2, regardless of the initial
conditions.
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= 0, P2 becomes unstable and the only endemic equilibrium that exists
nd is locally asymptotically stable is P1.

oint H1, where ε1
S = 1.26, and at the point H2, where ε2

S = 1.56.
oreover, for εS = ε1

S , we have RS = 1.331 and RR = 0.739; for

S = ε2
S , RS = 1.092 and RR = 0.739. Therefore, as εS increases,

S > 1 is decreasing, RR < 1 is constant (note that RR does not
epend on εS) and RS > RR.

It is also noted from Fig. 3 that whenever 0 < εS < ε1
S , the equi-

ibrium P2 exists and is locally asymptotically stable (solid curve),
nd the Hopf bifurcation takes place when εS crosses ε1

S to the left
εS < ε1

S ). It then folows that the equilibrium solution P2 loses sta-
ility (dotted curve). From Lemma  1, it follows that every solution
f the equations in model (1) with initial conditions in R

5+ tends
owards D as t→ ∞.  Hence, if both equilibrium points P1 and P2 of
he system (1) are unstable whenever εS ∈ [ε1

S , ε2
S ] = D1 ⊂ D, and

 attracts all solutions in R
5+, then a stable periodic solution bifur-

ates from P2, as εS crosses ε1
S to the left. In the same way, when εS

rosses ε2
S to the left (εS < ε2

S ), P2 becomes locally asymptotically
table (solid curve) once again. Moreover, we also define εthres

S as
he threshold value for which P2 is locally asymptotically stable.

Thus, for 0 < εS < ε1
S and ε2

S < εS < εthres
S P2 is locally asymp-

otically stable, i.e., the characteristic polynomial (16) has one pair
f complex eigenvalues with negative real parts. For ε1

S < εS < ε2
S

he endemic equilibrium P2 is unstable, i.e., the characteristic poly-
omial (16) has one pair of complex eigenvalues with positive
eal parts. In these three cases the others three eigenvalues are
eal, negative and distincts. Moreover, at εS = ε1

S and at εS = ε2
S ,

he characteristic polynomial (16) has one pair of pure-imaginary
igenvalues, 	 = ± 0.0702i  and 	 = ± 0.0405i, respectively. Hence,
he system (3) undergoes a supercritical Hopf bifurcation with the
ppearance of a stable limit cycle when εS passes through ε1

S ; and
 subcritical Hopf bifurcation with the disappearance of the stable
imit cycle and the convergence of the solution to the equilibrium
2, when εS passes through ε2

S .
For εS = εthres

S = 1.7119, we have RS = 1.0 and RR = 0.739. The
haracteristic polynomial (16) has one eigenvalue 	 = 0, while the
thers have real parts of the same sign (negative) and hence, the
ndemic equilibrium P2 cannot be a saddle point. In such case,
2 = P(0), and the only point that exists is the trivial equilibrium, P(0).

Hence, for values of εS > εthres
S , the endemic equilibrium P2 is

o longer feasible. So, the only equilibrium that exists and is locally
symptotically stable is the trivial equilibrium, P(0). It then follows
hat RS < 1 and RR < 1, corresponding to region I (see Fig. 2).
The bifurcation values (ε1
S and ε2

S ) are showed in Fig. 4a and b.
he complex root (	 = a + bi,  with a and b real numbers) of charac-
eristic polynomial (16) for the steady state P2 is plotted versus εS.
tems 108 (2012) 1– 13 9

Fig. 5 shows the plotting of the Routh-Hurwitz conditions for the
characteristic polynomial (16) using the baseline values in Table 3,
ˇS = 1.8, ˇR = 0.45 and 0 < εS < εthres

S . Panel (a) shows the plot of
the coefficients bi; panel (b) gives the curve of the second stability
condition, b1b2b3 − b2

3 + b2
1b4; and panel (c) gives the plot of the

third condition (b1b4 − b5)(b1b2b3 − b2
3 − b2

1b4) − b5(b1b2 − b3)2 +
b1b2

5. The first two  conditions are satisfied for all values of εS, while
the third one does not hold for ε1

S < εS < ε2
S .

It follows that whenever 0 < εS < ε1
S and ε2

S < εS < εthres
S , the

Routh-Hurwitz stability criterion holds, i.e., all eigenvalues of equa-
tion (16) have negative real part, and so the equilibrium point P2
is locally asymptotically stable. Otherwise, i.e., for ε1

S < εS < ε2
S ,

Routh-Hurwitz stability criterion does not hold, and P2 is unstable.
Hence, changes in the parameter εS may  cause a Hopf bifurcation
in our model (Moghadas and Alexander, 2006; Zhou et al., 2007). In
practical terms this means that while the disease remains endemic
in the population it will fluctuate periodically over time rather than
remaining at a fixed level.

Figs. 6–8 show some “optimistic” scenarios. The top panel gives
the profiles of prevalence of infected individuals (I∗S and I∗R), while
the bottom panel displays the phase portraits for them. The val-
ues of the treatment rate (εS) were chosen according to bifurcation
diagram in Fig. 3, and the other parameter values are the base-
lines values depicted in Table 3. The results show that there is a
unique feasible and locally asymptotically stable endemic equilib-
rium given by P2 whenever 0 < εS < ε1

S and ε2
S < εS < εthres

S .
In Fig. 6, P2 = (0.5489, 0.0052, 0.0095, 0.0055, 0.0696) is shown

to be locally asymptotically stable for εS = 0.9 < ε1
S . Fig. 6b displays

the phase portraits by showing the convergence of the solution to
P2.

Fig. 7, for εS = 1.4, which is larger than ε1
S but less than ε2

S , the
trajectory shown is a stable periodic solution, as in this case the
unique biologically viable equilibrium P2 is unstable. The bottom
panel illustrates the appearance of a stable limit cycle.

In Fig. 8, for εS = 1.6, which is slightly larger than ε2
S but less than

εthres
S the feasible equilibrium P2 = (0.9378, 0.0002, 0.0015, 0.0004,

0.0099) is shown to be locally asymptotically stable. The bottom
panel illustrates a disappearance of the stable limit cycle and the
covergence of the solution to the stable endemic equilibrium, P2.

It is worth mentioning that a Hopf bifurcation is only possi-
ble from the non-trivial equilibrium P2 and the parameter values
were chosen for this purpose. It is clear from the “optimistic case”
scenario that as the efficiency level of the treatment increases
(εS → εthres

S ), the prevalence of total infected individuals decreases,
even if the resistant population has a higher prevalence. In this
scenario, at the “optimal” treatment regimen (i.e., the “shortest”
time for the patient to achieve viral suppression, εthres

S ), both P2

and P(0) are feasible. For εS > εthres
S , RS < 1 and RR < 1 and the

prevalence of infected individuals converges to zero. Therefore,
the smaller the fitness of both drug-sensitive and drug-resistant
virus and the shortest the time for the drug-sensitive patient to
achieve viral suppression, the faster the eradication of disease. In
such case the proportion of drug-sensitive individuals is smaller
than the proportion of drug-resistant individuals. Epidemiologi-
cally, the “optimistic-case” scenario implies that if infectiousness
of drug-resistant strains was reduced (either by increasing condom
usage in treated patients or by developing more effective drugs
for successful treatment – viral suppresion), then HIV-1 could be
eliminated from the population.

4.2. “Pessimistic” Scenario
In contrast, under the “pessimistic” scenario, the drug resis-
tance will dominate initially because the drug treatment is efficient
to eliminate only the drug-sensitive population. In such scenario,
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Fig. 11. Time plot of the proportion of drug-resistant infected individuals with
ˇS = 0.045, ˇR = 0.45, εS = 2 and ϕR increasing. The other parameters and the ini-
tial  conditions are the same as those in Table 3. The endemic equilibrium P1 is
locally asymptotically stable if 0 < ϕR < ϕthres

R
= 1.389, while for ϕR > ϕthres

R
,  the
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t is still necessary a more effective treatment for drug-resistant
atients to eliminate the disease.

Figs. 9 and 10 illustrate the “pessimistic-case” scenario, with
S = 1.8, ˇR = 1.35 (i.e., k = 0.75). These parameters values were
ppropriately chosen such that the solution of the system (3) is
riginally in the region IV,  at which both P1 and P2 exist, but where
nly P2 can be locally and asymptotically stable (see Table 2). It
hould be noted that in this “pessimistic-case” scenario the Hopf
ifurcation cannot occur and both P1 and P2 are feasible, such that
he solution of the system jumps from one to the other point. That
s, the solution of the system is originally in region IV,  then goes to
he region III and after to region II, as εS increases (see Fig. 2).

In Fig. 9a, P2 = (0.2712, 0.0131, 0.0157, 0.0061, 0.1079, 0.0288)
s shown to be locally asymptotically stable εS = 0.4. Fig. 9b dis-
lays the phase portraits of them by showing the convergence of
he solution to P2.

In Fig. 10,  when εS increases from zero to εthres∗
S = 0.7242, we

ave RR > 1 constant, RS > 1 is decreasing, with RS > RR, such
hat P2 is the only endemic equilibrium locally asymptotically sta-
le, corresponding to the region IV.  For εS = εthres∗

S , RS = RR > 1
nd P2 = P1. In such case, the characteristic polynomial (16) has one
igenvalue 	 = 0, while the others have real parts of the same sign
negative) and hence, the endemic equilibrium P2 cannot be a sad-
le point. Moreover, P2 becomes unstable for εS > εthres∗

S = 0.7242,
o the only endemic equilibrium that exists and is locally asymp-
otically stable is P1. In such case, RR > 1 is constant, RS > 1 is
ecreasing, but RS < RR, which correspond to the region III.  More-
ver, as εS is increasing, RS < 1 is decreasing and RS < RR which
orresponds to the region II (see Fig. 2).

In other words, since the use of treatment can reduce RS below
R, the sensitive strain would be eliminated from the community

ia competitive exclusion, as εS increases.
Thus, in the “pessimist” scenario, the widespread use of

reatment can increase the drug-sensitive strain (competitive
xclusion), so that the proportion of drug-sensitive individuals will
xceed a drug-resistant one, but in the long run, the drug-resistant
opulation will dominate (the competitive exclusion wins). That is,
he greater the fitness of the drug-resistant virus and the shortest
he time for the drug-sensitive patient to achieve viral suppression,
he faster the emergence of drug resistance. In such case the pro-
ortion of drug-resistant individuals is greater than the proportion
f drug-sensitive individuals.

Moreover, the “pessimistic” scenario also implies that if
nfectiousness of drug-resistant strains cannot be reduced, HIV
rug-resistant individuals will not be eliminated from the popu-

ation even for the case when the treatment for the drug-sensitive
atients is highly effective and, consequently, the drug resistance
ill dominate.

However, the prevalence of the drug resistance could decreases
f the treatment for drug-resistant patients (ϕR) becomes more and

ore effective. This scenario is illustrated in Fig. 11 where the val-
es of the transmission coefficients (ˇS and ˇR) were chosen such
hat the solution of the system (3) is originally in region II (see
ig. 2).

Remembering that P2 is not feasible in region II, the solution
f the system will converge either to P1 or to P(0), as ϕR increases.
ence, P1 and P(0) jump from one to the other, and P1 loses its

tability at the critical stability boundary ϕthres
R = 1.389. Thus, the

ndemic equilibrium P1 is locally asymptotically stable whenever
 < ϕR < ϕthres

R . For ϕR = ϕthres
R , RS < 1 and RR = 1 and P1 = P(0) (see

0). There is no Hopf bifurcation from the equilibrium solution P1,
he characteristic polynomial (16) has one eigenvalue 	 = 0, while

he others have real parts of the same sign (negative) and hence, the
ndemic equilibrium P1 cannot be a saddle point. For ϕR > ϕthres

R , P1
s no longer feasible because some of its coordinate assumes neg-
tive values (see Fig. 11,  I∗R < 0). Hence, the only equilibrium that
only endemic equilibrium that exists and is locally asymptotically stable is the trivial
equilibrium, P(0).

exists and is locally asymptotically stable is the trivial equilibrium,
P(0), which correspond to the region I (see Fig. 2).

Fig. 11 shows the plot of proportion of drug-resistant infected
individuals, with ˇS = 0.045 and ˇR = 0.45, εS = 2 constant, but ϕR

is increasing. In such case, RS < RR, RR > 1 is decreasing and
RS < 1 is a constant (RS does not depend on ϕR). Observe that
the smaller the time, such that the patient experiences incomplete
viral suppression (i.e., the larger the drug efficacy, ϕR), the lower
the prevalence of drug-resistant individuals.

4.3. Discussion

The stability results and the conditions for Hopf bifurcation to
occur for the model (3) are as follows: (i) If RS < 1 and RR < 1, then
the infection-free steady state P(0) is locally asymptotically stable.
Otherwise, it is unstable. (ii) If RR > 1, then the steady state, P1,
exists. It is locally asymptotically stable if RR > RS for 0 < εS <
εthres∗

S . Otherwise, it is unstable. (iii) If RS > 1 and RS > RR then
P2 exists and it is locally asymptotically stable for 0 < εS < ε1

S or
ε2

S < εS < εthres
S , and it is unstable for εS ∈ (ε1

S , ε2
S ). Furthermore, the

system (1) exhibits Hopf bifurcations at εS = ε1
S and εS = ε2

S and for
ε1

S < εS < ε2
S exists a stable limit cycle; (iv) if neither (ii) nor (iii)

occur then there is no endemic equilibria.
Hence, having numerically established (a) the existence and sta-

bility of the model equilibria and (b) that a Hopf bifurcation is
only possible from the equilibrium P2, we can now discuss some
important biological implications.

It is worth remembering that in both the “pessimistic” and the
“optimistic” scenarios, the proportion of drug-sensitive individuals
initially exceeds the proportion of drug-resistant individuals. How-
ever, as εS increases from zero to its threshold value, the proportion
of drug-sensitive individuals undergoes a fast decrease whereas the
proportion drug-resistant individuals increases very slowly. There

is a value of εS for which the two populations are at the same level,
and past this value, the proportion of drug-resistant individuals will
dominate.
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ig. 12. Profiles of proportion of HIV infected individuals with ˇS = 1.8, ˇR = 0.45, a
nfected  population (I∗

S
, thick line) and drug-resistant infected population (I∗

R
, thin 

hick  line) and the drug-resistant infected population (I∗
R
, thin line).

Firstly, in the “pessimistic-case” scenario we  observed that, as
S increases, the drug-resistant individuals cannot be completely
uppressed, but their level can be kept at a low level when 0< εS <
thres∗
S . Past the value εthres∗

S , the number of drug-resistant individ-

als becomes dominant and the value εthres∗
S represents the lowest

rug treatment level where the ART allows two  strains to coexist.
or ε > εthres∗

S the drug-sensitive virus would probably be replaced
y the resistant virus. As a result, the drug-resistant individuals
ominate and the drug-resistance epidemic starts to propagate
mong the population. It is important to note that under therapy
hen εS> εthres∗

S the drug-sensitive virus can be suppressed even
hen the basic reproductive number RS is greater than one. This

s not surprising because the two virus strains compete for exactly
he same resources, hence the resistant strain becomes more fit
RR > RS) and will outcompete the sensitive one due to the com-
etitive exclusion principle.

In contrast, in the “optimistic” scenario, as εS increases, the
rug-resistant individuals can be completely suppressed, due to
he occurrence of Hopf bifurcation from the non-trivial equilib-
ium point P2. To investigate the stability of the periodic solutions
ssociated with the Hopf bifurcation occurring in this scenario, we
ould invoke the criterion for super or subcritical Hopf bifurcations
iven by (Guckenheimer and Holmes, 1983). This leads however
o intractable calculations. We  thus examined the stability of this
opf bifurcation numerically and will try to explain it epidemio-

ogically now. From Figs. 3–8 we observed that the proportion of

he infected individuals is kept at low level as εS crosses into the
egion defined by [H1, H2]. At εS = ε1

S the endemic equilibrium P2
oses its stability, but around it limit cycles arise via a Hopf bifur-
ation. In this situation, when a stable limit cycle surrounds the
creases. The left column (a): the time plot of the first peak of both drug-sensitive
The right column (b): the time plot of both drug-sensitive infected population (I∗

S
,

unstable endemic equilibrium, the proportion of the infected indi-
viduals tends to a periodic function and the infection will therefore
exhibit regular oscillations. Hence, the infection has periodic out-
breaks as time evolves and furthermore it will persist as time flows.

For ε2
S < εS < εthres

S , the number of drug-resistant infected indi-
viduals dominates, but at much lower level compared with 0 <
εS < ε1

S . As εS approaches εthres
S , the number of HIV-1 infected indi-

viduals keeps decreasing, so that the steady state P2 decreases
to zero. Thus, at εS = εthres

S , P2 loses its stability, and as a result,
the HIV-1 infected individuals are completely wiped out, i.e., the
only existing equilibrium which is locally asymptotically stable
is then the trivial equilibrium, P(0). It is important to note that
under drug therapy the two viral strains compete for exactly the
same resources, but the steady state level undergoes a substantial
decrease and remains at a very low level when εS approaches εthres

S .
The two  strains coexist but neither the drug-sensitive nor the drug-
resistant can persist because of their reduced fitness (RS < 1, RR <
1). Consequently, for εS ≥ εthres

S , both strains are completely sup-
pressed and the infection will be eradicated.

The Hopf bifurcation shows the existence of a region of insta-
bility in the neighborhood of an endemic equilibrium where the
population survives undergoing regular fluctuations. Throughout
our numerical analysis, we  have made it clear that this limit cycle
is just one of the stable limit cycles bifurcating from the endemic
equilibrium P2. However, another insight from our numerical study
could also explain the emergence of the epidemic cycles: treatment

can interact with both sensitive and resistant strains and cause
resonance. Although resonance is known to occur in physics and
engineering, in biology and medicine its presence is less recognized.
Some application cases of treatment of HIV infection have revealed
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his phenomenon when the antiretroviral drugs cannot reduce the
iral load (Breban and Blower, 2006).

Here we also suggest that the phenomenon of resonance could
elp us to explain why certain oscillations appear only for certain
alues of treatment rate. In this way, Fig. 12 shows the occurrence of
nfection outbreaks for constant treatment rates with ˇS = 1.8 and
R = 0.45 for 0 < εS < εthres

S . With these parameter values of the
ransmission coefficients, as εS increases, RS > 1 decreases and RR

s constant and smaller than unity.
In Fig. 12a the profiles of population of HIV-1 infected individ-

als (I∗S and I∗R) against time show that, as the treatment rate (εS)
ncreases, the smaller and slower the amplitude of the first peak
f drug-sensitive infected population (I∗S ) is, the higher and slower
he amplitude of the first peak of drug-resistant infected popula-
ion (I∗R) becomes. As εS approaches ε1

S = 1.26, where the system
3) undergoes a Hopf bifurcation, the two populations coexist, and
he amplitudes of the first peak of both population are about the
ame. However, as εS increases, the drug-resistant population gains

 competitive advantage (competitive exclusion) and the ampli-
ude of the first peak of drug-resistant population is higher than
he one shown by the drug-sensitive population. These dynamics
f both populations could indicate a resonance phenomenon.

In Fig. 12b we also notice that the drug-resistant population
lways decays more slowly than the drug-sensitive population,
ven at resonance (ε1

S < εS < ε2
S ). At resonance, the system (3)

esponds strongly to perturbation and therefore the populations
uctuate widely, whereas when the system is far from resonance
uctuation (0 < εS < ε1

S and ε2
S < εS < εthres

S ) the oscillations are
amped and decrease in amplitude when the system approaches
he equilibrium point. Fig. 12b also shows that for smaller εS (i.e.,

 larger time is needed for the patient to achieve complete viral
uppression), the drug-sensitive population dominates, i.e., the
arger time to the drug-sensitive patient to achieve complete viral
uppression, the smaller the possibility of the emergence of a drug-
esistant population. Therefore, with smaller εS, we  have RS > RR,
nd the drug-sensitive outbreak substantially dominates the one
f the drug-resistant population. Although the use of antiretrovi-
al appears to be essential to fight the drug-sensitive strain, it can
otentially lead to the spread of drug-resistance. Unfortunately,
he treatment does not completely block the emergence of the
rug-resistant population. Therefore, increasing εS (i.e., allowing a
maller the time for the patient to achieve complete viral suppres-
ion), leads to a reduction of drug-sensitive strains, followed by a
eduction in the drug-sensitive population. Furthermore, increase
n the treatment rate εS enhances the spread of the drug-resistant
opulation and leads to the coexistence of outbreaks, followed by a
harp increase in the drug-resistant infected population. Therefore,
ith higher εS, RS is reduced to about unity, and the drug-resistant

utbreak substantially dominates the one of the drug-sensitive
opulation.

Summarizing, for lower values of εS the drug-sensitive strain
RS > 1) dominates and feeds the drug-resistant strain (RR < 1),
hich alone is incapable of self-maintenance. On the other hand,

or higher values of εS the drug-resistant strain dominates, due to
igh feeding from drug-sensitive strain, which declines in inci-
ence (RS approaches one). As a consequence, the non-trivial
quilibrium point is stable. The change of dominance from drug-
ensitive strain to drug-resistant strain does not occur at exactly
ne value of εS, but occurs gradually. At intermediated values of εS,
.e., ε1

S < εS < ε2
S , where neither the drug-sensitive strain nor the

rug-resistant strain dominates, the non-trivial equilibrium point
oses its stability, and regular oscillations arise, i.e., the system has
 limit cycle. Hence, the stable equilibrium point can be related
o dominance of one of the strains, while the limit cycle can be
nderstood as a gradual change of dominance from one strain to
nother.
tems 108 (2012) 1– 13

5. Conclusion

In this work we have studied the global behavior of an HIV-1
epidemic model in the presence of antiretroviral drugs by com-
bining qualitative and numerical analyses. We  developed a simple
mathematical model to explore the following questions: if the drug
treatment is effective against the drug-sensitive strain, then under
what conditions will the drug-resistant strain emerge? Which is
the less intensive drug-regimen (optimal treatment) that will be
successful in maintaining the drug-resistant strain at low levels?
What is the prevalence of both drug-sensitive and drug-resistant
populations in the case where eradication does not occur?

In this way, the model allowed different scenarios, including the
most pessimistic and optimistic situations, to evaluate the perfor-
mance of “optimal” treatment that minimizes the risk of resistance
emergence. As the reproduction numbers (RR, RS) vary, we have
shown that there are two  possibilities for the outcome of the dis-
ease transmission. First, the disease will disappear as time evolves.
Second, there is a region such that if the initial conditions lies in it,
drug-resistance can emerge and persist even though the treatment
rate (εS) becomes more and more effective. We  have shown that
the system (3) undergoes a Hopf bifurcation, and there exist some
values of the treatment rate such that system (3) has a stable limit
cycle.

Thus, optimistically, even though drug-resistance evolves dur-
ing therapy, the treatment should be administered so that the
patient achieves complete virological suppression. However, our
simulations show that the treatment fails to contain the infection
and large outbreaks of resistant cases can emerge (Figs. 6–8).  More-
over, since the transmission fitness of resistant strains is generally
lower than the one of the sensitive strains, the spread of the infec-
tion could still be reduced by decreasing the time to the patient to
achieve complete viral suppression. In such case, as εS approaches
its threshold value (εthres

S ), the total population of HIV-1 infected
individuals (I∗S + I∗R) begins to decrease. According to our “optimist
case” scenario the infection could be eradicated. Hence, for eradica-
tion to occur, the drug regimen must roughly be as powerful against
drug-resistant as it is against drug-sensitive strains.

From the expressions of the infected steady states we  also
observed that the drug-resistant populations will always be
present. Because of the reduced viral fitness of the drug-resistant
strain compared with the drug-sensitive strain, RR < RS , both
the drug-sensitive and the drug-resistant strains will coexist, and
the treatment fails primarily due to the drug-sensitive virus. If
RR > max(RS, 1) then the drug-resistant populations outcompete
the drug-sensitive populations. If highly transmissible resistant
strains emerge (even though they are less transmissible than the
drug-sensitive strains) they will significantly reduce the beneficial
overall impact of antiretroviral therapies on the HIV-1 epidemic.

Great efforts should be made to prevent cases of acquired resis-
tance developing during treatment, because these cases can lead to
cases of transmitted resistance. Although it has not been possible
to distinguish the mechanisms experimentally, our model suggests
that under therapy the drug-sensitive strain can be suppressed
even when RS > 1. We  conclude that if drug-resistant HIV-1 is
transmitted less frequently than drug-sensitive HIV-1 then there
is coexistence of both resistant and sensitive strains. However, if
drug-resistant HIV-1 is transmitted substantially more frequently
than drug-sensitive HIV-1 then there is competition between both
resistant and sensitive strains, and the drug-resistant population
emerges while the drug-sensitive population will go to extinction.

Another important question raised by human infectious dis-

eases is what determines which oscillations dominate in a given
situation. Some diseases, particularly childhood diseases such as
measles, whooping cough and rubella, as well influenza and res-
piratory syncytial virus (RSV), also show seasonal variation in
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ncidence, although the underlying causes remain uncertain. The
tandard method to address this problem is based on the bifurca-
ion diagram. Although such diagrams provide a geometric map of
he bifurcations there is little insight provided into why the diagram
as the shape and structure it has. In this paper we have pre-
ented an alternative insight that could be based on the resonance
ather than on bifurcation structure. The oscillations which are not
amped, or damp very weakly, can also be produced in determin-

stic epidemic models in several ways, which amount essentially to
ake the model complex. So what we have not attempted in this

aper is an algebraic analysis of this phenomenon and the finding
f an expression for resonance peaks. Our objective was to under-
tand only the structure of these sustained oscillations, in particular
he epidemiological conditions under which they appear and dis-
ppear. We  have used two visualization techniques to investigate
he behavior of an epidemiological model under external forcing,
amely the treatment: the bifurcation diagram and the resonance
iagram. However, it seems that the precise mechanism underlying
he existence of the cycles has not so far been elucidated because
t involves the analysis of stochastic systems, and also because it
nvolves concepts such as resonance, which are more familiar to
hysicists than biologists. Thus, in a future paper we  intend to apply
hese approaches to much simpler model than the HIV model pre-
ented in this paper, modeling the evolution of drug resistance with
n evolutionary stochastic process.
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