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a b s t r a c t

West Nile Virus is an arthropod-borne flavivirus that appeared for the first time in New
York City in the summer of 1999 and then spread prolifically within birds, with over
200 species having been infected. Mammals, such as humans and horses, do not develop
sufficiently high bloodstream titers to play a significant role in transmission, which is a
reason for considering the mosquito–bird cycle. In this paper we propose a model to study
bird involvement in transmitting West Nile Virus using a system of ordinary differential
equations considering the mosquito and several avian populations. A threshold value R0,
depending on the model’s parameters, is obtained that determines the disease level and
allows us to propose possible control strategies. We determine the effects regarding the
disease transmission considering the coexistence of two bird species, and then generalize
this taking into account several bird species. We conclude that knowledge of the relative
abundance of several bird species allows us to estimate with accuracy the risk for overall
West Nile Virus transmission. Also, the establishment of the disease at an endemic level can
be explained by the interaction between responsible populations of birds andmosquitoes.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

West Nile Virus (WNV) is an arthropod-borne flavivirus. The primary vectors ofWNV are Culex sppmosquitoes, although
the virus has been isolated from at least 29 other species of ten genera [1]. When an infectedmosquito bites a bird, the virus
is transmitted. A mosquito is infected when it bites an infected bird. Also, the virus can be passed via vertical transmission,
from a mosquito to its offspring.

One major feature of WNV spatial dissemination is the high velocity of geographic invasion and colonization. This is due
to the long flight range of birds, and the ubiquitous presence of mosquitoes. For instance, WNV was introduced into New
York City in 1999, and then propagated across the USA.WNV disease first appeared in North America in the summer of 1999,
with the simultaneous occurrence of an unusual number of deaths of exotic birds and crows in New York City, as reported
by DeBiasi and Tyler [2]. After five years, WNV was detected among birds in California, on the western side of the USA.

Mathematicalmodels, which did not encompass spatial dynamics, were developed by Kenkre et al. [3],Wonhamet al. [4],
Cruz-Pacheco et al. [5], Bowman et al. [6] and Foppa et al. [7]. Those models considered different aspects of WNV and
determined threshold conditions regarding control strategies. Kenkre et al. [3] studied the periodicity of the infection by
considering vertical transmission, an increase in the mortality due to infection and a disparity in the time scale. Wonham
et al. [4] considered the full life cycle of the mosquito. Cruz-Pacheco et al. [5] took into account experimental data from the
literature to estimate threshold values relating to several bird species. The effects of vertical transmission on the dynamic
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were also studied, aswell as a consideration of different recovery rates for different bird species. The corresponding discrete-
time model was studied by Jang [8]. In Bowman et al. [6], the authors coupled the human population to assess preventive
strategies. Foppa and Spilerman [7] studied the effect of the host mortality on incidence of the disease.

With respect to spatial models, Lewis et al. [9] considered the corresponding spatially homogeneous modeling proposed
by Wonham et al. [4]. They studied WNV propagation using traveling wave solutions as a simplified model, in which they
did not consider the vertical transmission, WNV death rate or a recovering avian subpopulation. The effects of vertical
transmission in the spatial propagation of the disease for different bird species were studied in Maidana and Yang [10].

We present a model to describe the dynamics of WNV, considering two and more avian populations interacting with
a mosquito population, since all cited papers dealt with just one species of bird. In recent experiments to evaluate
the transmission dynamics, Komar et al. [11] studied 25 birds species exposed to WNV by infectious mosquito Culex
tritaniorhynchus bites. We apply their estimation in our model, choosing the species that are more effective for WNV
transmission, determining the role of coexistence of birds in the disease propagation, and in the epidemic level.

The paper is structured as follows. In Section 2 a WNV model with two populations of birds is presented, which is then
analyzed in the steady state with stability analysis, and for which numerical results are provided. In Section 3 we generalize
the results for several bird species. Our conclusions are given in Section 4.

2. Model for the transmission of WNV in two avian populations

We propose a model which includes cross-infection between two avian populations and a vector population. The
densities are here denoted by N i(t) and Nv(t), where the subindexes, i = a, b, correspond to different avian populations.
Each avian population is divided into susceptible, infective and recovered subpopulations, named S i, I i and Ri, respectively,
while for the vector population, we consider susceptible and infected subpopulations, Sv and Iv .

We assume that for the avian populations the total population densities are allowed to vary, where 3i, for i = a, b, is
a constant recruitment rate due to birth and migration, and the death rate including emigration is µi. The bird population
varies, irrespective of WNV infection, according to

dN i

dt
= 3i − µiN i, i = a, b, (1)

resulting in N i = 3i/µi as a total population at equilibrium. With respect to the mosquito population, we assume that the
birth and death rates are equal to µv , resulting in a constant mosquito population Nv .

WNV is transmitted when an infected mosquito bites a susceptible bird, and, conversely, a susceptible mosquito is
infected when it bites infected birds. Let us define ri, i = a, b, as the rate of biting given by one mosquito in the i bird
species. Let us assign as rvi the rate of biting received by a bird species i when coexisting with the other species, in such a
way that the total number of bites given by mosquitoes and the total number of bites received by each species of bird in
coexistence with the other is ra Na

Na+Nb
Nv + rb

Nb
Na+Nb

Nv = rvaNa + rvbNb, resulting in

rvi = ri
Nv

Na + Nb
,

for i = a, b.
The transmission of WNV depends on the parameters related to the biting of mosquitoes rvi and ri, i = a, b, and on the

WNV transmission probabilities from vector to birds and from birds to vector, respectively, βi and βvi. We assume that the
mosquito population is homogeneously distributed in a region. The same assumption is used for two populations of birds,
which, additionally, do not compete among themselves for space or resources. Hence the infection rate per susceptible bird
for species i = a or b is given by:

βiri
Nv

Na + Nb

Iv
Nv

= ri
βi

Na + Nb
Iv,

and the overall infection rate per susceptible vector is given by

raβva
Ia

Na + Nb
+ rbβvb

Ib
Na + Nb

. (2)

Let us define the fractions of each population of birds in the steady state, disregarding WNV infection, to be assigned by
qi, i = a, b, and approximate them with the actual population considering the dissemination of WNV by

qi =
3i/µi

3a/µa + 3b/µb
≈

N i

Na + Nb
.
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By using this approximation, the per-capita infection rates in birds become

ri
βi

Na + Nb

N i

N i
Iv = ri

βi

N i

N i

Na + Nb
Iv ≈ riqi

βi

N i
Iv,

and, analogously, the rate in the mosquito population becomes

raβva
Ia
Na

Na

Na + Nb
+ rbβvb

Ib
Nb

Nb

Na + Nb
≈ raqaβva

Ia
Na

+ rbqbβvb
Ib
Nb

.

Weassume that the infectedmosquitoes transmitWNVduring their entire life-span, but that the infected birds recover at
a rate γi. The specific death rate associated with WNV in the avian population is αi, with αi ≤ γi, according to Cruz-Pacheco
et al. [5]. Another assumption is that mosquitoes can transmit WNV vertically, and the fraction of progeny of infectious
mosquitoes that is infectious is denoted by p, with 0 ≤ p < 1.

Based on the above assumptions and definitions of the parameters, the WNV model is the following:

dS i
dt

= 3i −
riqiβi

N i
IvS i − µiS i (3)

dI i
dt

=
riqiβi

N i
IvS i − (γi + µi + αi)I i (4)

dRi

dt
= γiI i − µiRi (5)

dN i

dt
= 3i − µiN i − αiI i (6)

dSv

dt
= µvSv + (1 − p)µv Iv −

raqaβva

Na
IaSv −

rbqbβvb

Nb
IbSv − µvSv (7)

dIv
dt

= pµv Iv +
raqaβva

Na
IaSv +

rbqbβvb

Nb
IbSv − µv Iv, (8)

with the conditions S i + I i + Ri = N i, for i = a, b, and Sv + Iv = Nv . The region:

� =


0 ≤ S i, 0 ≤ I i, S i + I i ≤ N i ≤

3i

µi
, 0 ≤ Iv ≤ Nv


is positively invariant.

Let us introduce into the system (3)–(8) the following dimensionless variables:

Si =
S i

3i/µi
, Ii =

I i
3i/µi

, Ri =
Ri

3i/µi
, Ni =

N i

3i/µi
, i = a, b, (9)

for avian populations, and

Sv =
Sv

Nv

, Iv =
Iv
Nv

,

for the vector population. Therefore, omitting Ri and Sv (both are decoupled from the system), the dimensionless system of
equations is:

dSi
dt

= µi − riqimi
βi

Ni
IvSi − µiSi (10)

dIi
dt

= riqimi
βi

Ni
IvSi − (γi + µi + αi) Ii (11)

dNi

dt
= µi − µiNi − αiIi (12)

dIv
dt

=


raqa

βva

Na
Ia + rbqb

βvb

Nb
Ib


(1 − Iv) − (1 − p)µv Iv, (13)

for i = a, b, where the relative abundance of mosquito population with respect to one bird speciesmi is

mi =
Nv

3i/µi
. (14)

The invariant region is the subset � = {0 ≤ Si, 0 ≤ Ii, Si + Ii ≤ Ni ≤ 1, 0 ≤ Iv ≤ 1}.
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We can take into account the total population size (3a/µa + 3b/µb) in Eq. (9) instead of the individual avian sub-
population (3i/µi) in order to obtain another dimensionless variable. In this case, a second dimensionless system depends
on the relative abundance of mosquitoes with respect to the total number of birds,mtotal, given by

mtotal =
Nv

3a/µa + 3b/µb
, (15)

instead of the Eq. (14) formi, and µi is changed to qiµi. Notice thatmtotal andmi, i = a, b, are related by

mtotal = qimi.

We will determine the equilibrium points and assess their stability.

2.1. Steady states of the model

The dimensionless system of Eqs. (10)–(13) has two steady states. The first one is the disease free equilibrium point given
by:

P0 = (1, 0, 1, 1, 0, 1, 0).

The second is the endemic state:

P∗
=

S∗

a , I
∗

a ,N
∗

a , S∗

b , I
∗

b ,N
∗

b , I∗v

,

where S∗

i , N
∗

i (i = a, b) and I∗v are given by

S∗

i =
µi − (γi + µi + αi) I∗i

µi
, N∗

i =
µi − αiI∗i

µi
, (16)

and

I∗v =

raqaβvaI∗a
N∗
a

+
rbqbβvbI∗b

N∗
b

raqaβvaI∗aN
∗

b + rbqbβvbI∗bN∗
a + µv(1 − p)N∗

aN
∗

b
, (17)

with I∗i <
µi

γi+µi+αi
. The values of I∗a and I∗b are given by the intersection of the curves:

Ia = Γa(Ib)
Ib = Γb(Ia),

where

Γa(Ib) =
Ib

AbI2b + BbIb + Cb


EbI3b + FbI2b + GbIb + Hb

,

and

Γb(Ia) =
Ia

AaI2a + BaIa + Ca


EaI3a + FaI2a + GaIa + Ha

,

with the coefficients Ai, Bi and Ci being given by
Ai = [βviµiriqi − αi(1 − p)µv]

αi

µi
Bi = 2αi(1 − p)µv − βviµiriqi − (1 − p)µv(γi + µi + αi)Ri

0
Ci = µi(1 − p)µv(Ri

0 − 1),

(18)

which are the same as obtained by Cruz-Pacheco et al. [5] and Maidana and Yang [10], and Ri
0 is the contribution of the i-th

bird species for the basic reproduction number R0 (see below) given by

Ri
0 =

(riqi)2 miβiβvi

(1 − p)µv (γi + µi + αi)
=


refi
2

miβiβvi

(1 − p)µv (γi + µi + αi)
, (19)



N.A. Maidana, H.M. Yang / Mathematical and Computer Modelling 53 (2011) 1247–1260 1251

Fig. 1. The curves Γa and Γb are obtained using the values of parameters for Morning dove and Canada goose, respectively.

with refi = riqi being the effective rate of biting by one mosquito in the i-th bird species. Finally, the coefficients Ei, Fi, Gi and
Hi are functions of Ai, Bi and Ci:

Ei =
αk

µk
Ai +

α2
i

µi
βvkrkqk

Fi =
αk

µk
Bi − 2αiβvkrkqk −

αiβiβvkmiriqirkqk
µi

Gi =
αk

µk
Ci + βvkrkqk (µi + αiβimiriqi + βimiriqi)

Hi = −µi
βiβvkmiriqirkqk
(γi + µi + αi)

, i ≠ k, i, k = a, b.

(20)

When twobird species are living in same region, a positive solution given by (16) and (17) always exists forRa
0 > 1 orRb

0 >
1. In other words, one bird species (for instance, Ra

0 > 1) could maintain WNV infection even when the other bird species
is not effective in transmitting WNV alone (due to Rb

0 < 1). This is a consequence of the WNV transmitting effectiveness
of the species and the relative number of birds in the region, with qa + qb = 1. When both species are not so effective,
that is, Ra

0 < 1 and Rb
0 < 1, a positive solution always exists if R0 = Ra

0 + Rb
0 > 1, where the basic reproduction number

encompassing the coexistence of two bird species is given by

R0 = Ra
0 + Rb

0. (21)

The condition R0 > 1 states that the sum of angles from Γa to the Ia-axis, denoted by θa, and from Γb to the Ib-axis,
denoted by θb, is less than π/2 (see Fig. 1).

To prove both assertions, let us write

Γi(Ik) =
IkPi(Ik)
Qi(Ik)

,

where the polynomials are

Pi(Ik) = AkI2k + BkIk + Ck

and

Qi(Ik) = EkI3k + FkI2k + GkIk + Hk,

for i ≠ k, and i, k ∈ {a, b}, where the coefficient are given by Eqs. (18) and (20).
We have two cases:
(1) Let us suppose that Ra

0 > 1 or Rb
0 > 1. Let us assume that Ra

0 > 1 (the equations are symmetric with respect to a, b).
If rb = 0, from Eq. (17), we have Ib = 0 and Pb(I∗a ) = 0. Hence, the solution is the same as for a single species and, according
to Cruz-Pacheco et al. [5] and Maidana and Yang [10], we have I∗a <

µa
γa+µa+αa

. I∗a increases with rb and in the limit case
(rb → ∞), using Eq. (11), we have I∗a and I∗b satisfying the equations:αa (γa + µa + αa) I2a − (raqamaβa + µa) (γa + µa + αa) Ia + raqamaβaµa = 0

βbmb


1 −

γb + µb + αb

µb
Ib


= 0,

(22)
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from which we obtain I∗a <
µa

γa+µa+αa
, as the case p = 1 in Cruz-Pacheco et al. [5], and the asymptote I∗b =

µb
γb+µb+αb

. As in
the case of a single species, the solution of the i infected subpopulation of bird species is bounded by µi

γi+µi+αi
.

(2) If Ra
0 < 1 and Rb

0 < 1, the curves Γa and Γb intersect if the sum of their angles at the origin is less than π/2 (see Fig. 1).
Now, we show that this condition is equivalent to Ra

0 + Rb
0 > 1.

Let us write

Qa(Ib) = IbPa(Ib)
αa

µa
+ Ta(Ib),

where

Ta(Ib) = raqaβvaIb

[
αb

µb
I2b −


2αb +

αbβbmbrbqb
µb


Ib + µb + βbmbrbqb (αb + 1)

]
+ Hb.

Observe that T ′
a(Ib) > 0, and, since Hb < 0, we have Ta(Ib) < 0, for Ib ≪ 1. Similarly, Pa(Ib) < 0 and P ′

a < 0, then we
have:

Γ ′

a =
PaTa + Ib(P ′

aTa − PaT ′
a)

Q 2
a

> 0. (23)

Hence, Γa and Γb (by the symmetry between indices a and b) are increasing functions, and they intersect if the sum of
the angles with respect to the corresponding axis is less than π/2 (see Fig. 1), in other words

θa + θb < π/2 ⇒ θa < π/2 − θb.

Applying the tangent function (tan) on both sides of inequality, which is an increasing function, we have

tan(θa) < tan(π/2 − θb) = cot(θb) =
1

tan(θb)
.

By Eq. (23) we have Γ ′
a(0) > 0 and Γ ′

b(0) > 0, then:

tan(θa) <
1

tan(θb)
⇔ Γ ′

a(0) <
1

Γ ′

b(0)
⇔ Γ ′

a(0)Γ
′

b(0) < 1 ⇔

⇔
Cb

Hb

Ca

Ha
=

rbqbβvb

raqaβva


−1 +

1
Rb
0


raqaβva

rbqbβvb


−1 +

1
Ra
0


< 1 ⇔

⇔
(1 − Rb

0)(1 − Ra
0)

Rb
0R

a
0

< 1 ⇔

⇔1 < Ra
0 + Rb

0. �

Notice that when Ra
0 + Rb

0 < 1, then θa + θb > π/2, and there is no intersection between the curves.
Let us discuss R0 given by Eq. (21). Recall that in the case of a single bird species, we have

R0 =
r2mββv

(1 − p)µv(γ + µ + α)
,

and that a positive solution for infective birds (I) exists wheneverR0 > 1. Both results were obtained by Cruz-Pacheco et al.
[5] andMaidana and Yang [10], and the model describesWNV infection is effective in one species and other bird species are
refractory to WNV infection, or, those species located in different regions that are not crossing. Hence, in each region, we
must have R0 > 1 for WNV being prevalent.

Let us consider two different coexisting bird species, each one contributing Ri
0 to the overall R0. For bird species a, when

isolated, we must have

Ra
0 =

r2amaβaβva

(1 − p)µv(γa + µa + αa)
,

where ma = Nv/ (3a/µa). When species a coexists with species b and consists of a fraction qa of the total population, it
contributes to the overall R0 as

Ra
0 = (qa)2 Ra

0,

according to Eq. (19), and the overall reproduction number is calculated using the equation

R0 = (qa)2 Ra
0 + (qb)2 Rb

0. (24)

If we suppose two identical populations, b = a and qa = 0.5, we have R0 = Ra
0/2, instead of R0 = Ra

0. This result shows
that when a population of birds is doubled while the vector population is unchanged, the reproduction number must be
diminished by half, as expected, because the number of bitings among birds is decreased by half.
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Table 1
The basic reproduction number obtained for one bird species only using the epidemiological and demographical parameters given in [5,11]. We assumed
p = 0.007, Dohm et al. [12], Goddard et al. [13] and Turell et al. [14],ma = 5, ra = 0.5, Pacheco et al. [5], qa = 0.5 and qb = 0. We evaluate Ra

0 = (qa)2 Ra
0 .

Common name βa βva γa(day−1) αa(day−1) µa(day−1) µv(day−1) Ra
0

Common grackle 1.0 0.68 0.33 0.07 0.0001 0.06 8.91
Blue jay 1.0 0.68 0.26 0.15 0.0002 0.06 8.69
House sparrow 1.0 0.53 0.33 0.1 0.0002 0.06 6.46
American robin 1.0 0.36 0.33 0.0 0.0002 0.06 5.71
House finch 1.0 0.32 0.18 0.14 0.0003 0.06 5.24
American crow 1.0 0.5 0.31 0.19 0.0002 0.06 5.24
Ring-billed gull 1.0 0.28 0.22 0.1 0.0003 0.06 4.58
Black-billed magpie 1.0 0.36 0.33 0.16 0.0001 0.06 3.85
Fish crow 1.0 0.26 0.36 0.06 0.0002 0.06 3.24
Mallard 1.0 0.16 0.33 0.0 0.0002 0.06 2.54
Morning dove 1.0 0.11 0.59 0.0 0.0002 0.06 0.98
Northern flicker 1.0 0.06 1 0.0 0.0002 0.06 0.31
Canada goose 1.0 0.1 3.33 0.0 0.0002 0.06 0.16

In the case of the total population size (3a/µa +3b/µb) being used in order to obtain a dimensionless system, we obtain
for Ri

0 the expression

Ri
0 =

(riqi)2 mtotalβiβvi

(1 − p)µv (γi + µi + αi)
=


refi
2

mtotalβiβvi

(1 − p)µv (γi + µi + αi)
,

where mtotal is given by Eq. (15). Using the relation mtotal = qama, we can define R̂a
0, in terms of the total number of birds

mtotal, as

R̂a
0 = qaRa

0 =
r2amtotalβaβva

(1 − p)µv (γa + µa + αa)
,

and the contribution of species a to the overall reproduction number is given by

Ra
0 = qaR̂a

0,

resulting in

R0 = qaR̂a
0 + qbR̂b

0. (25)

Now for two identical populations, b = a and qa = 0.5, we have R0 = R̂a
0. We stress the fact that R̂a

0 is not the re-
production number of isolated species a, while Ra

0 is. The reason is that R̂a
0 is expressed in terms of the relative abundance

of mosquitoes with respect to the total population of birds mtotal instead of ma. When we increase the total population, we
expect that R0 decreases proportionally due to the increase in the denominator ofmtotal in R̂i

0, because we have:

mtotal =
Nv

3a/µa + 3b/µb
<

Nv

3i/µi
= mi, i = a, b.

In general, the basic reproduction number of WNV in an isolated population of birds (from models dealing with one
bird species) is calculated by considering the abundance of mosquitoes with respect to this species, that is, Ra

0. When in
coexistence with another species (we are supposing that there is no kind of interaction between the two populations of
birds, which implies that their numbers are not altered when they coexist), there is a decrease in the biting rates among
birds by the factor qi due to the increase in the total population of birds. A second dimensionless system allows us to take
into account the total population size 3a/µa + 3b/µb, yielding R̂i

0, which is not the reproduction rate of isolated species.
In themodel, the vector population is constantNv , but also is fixedwhen in interactionwith two bird species. Conversely,

bird species vary according to Eq. (1), but their populations are summed, increasing the total size in comparisonwith isolated
bird species. If wemodify themodel by allowing the size of vector population to be dependent on the bird populations, then
mosquitoes can increase in number when coupling with two bird species. As a consequence, the relative abundance of
mosquitoes with respect to birds is not altered, for instance,

m =
Nva + Nvb

3a/µa + 3b/µb
,

and R0 can then be the sum of the isolated reproduction number multiplied by the relative abundance of the species, the
factor qi.

We illustrate our findings. In Table 1 we present the values of the model parameters and the basic reproduction number
Ra

0 of each isolated bird species with respect to the transmission ofWNV. All values are fixed, except when explicitly stated.
We are not considering the effects of bites in the other population of birds, letting qb = 0.
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Table 2
Basic reproduction number R0 = Ra

0 +Rb
0 for two coexisting bird species calculated using the epidemiological and demographic parameters given in [5,11],

with refa = refb = 0.25.

R0 = Ra
0 + Rb

0 Blue jay Common grackle Fish crow Morning dove Northern flicker Canada goose

Blue jay 17.38 17.6 11.93 9.67 9 8.85
Canada goose 8.85 9.07 3.4 1.14 0.47 0.32

In Fig. 1 we show the curves Γa and Γb, taking into account the values of parameters for Morning dove (a) and Canada
goose (b), considering equal biting rates, refa = refb = 0.25 (two per day), which result in Ra

0 = 0.98 and Rb
0 = 0.16. As

isolated species, they do not transmit the virus, however when they are allowed to coexist (for instance, one species invades
the habitat of the other species), then the transmission of the virus persists, and an endemic point exists. Note that Rb

0 is
smaller than Ra

0, so I∗b is smaller than I∗a .
Table 2 shows the variation of R0 for Blue jay and Canada goose coexisting with other species. The value of R0 for two

coexisting bird species is calculated using the basic reproduction number of each isolated species, given in Table 1, assuming
that ma = mb = 0.5, and considering that the two species are 50% of the total bird population we assigned qa = qb = 0.5.
The per capita rate is constant for all species, ra = rb = 0.5, one every two days Cruz-Pacheco et al. [5].

For Blue jay (assigned to Ra
0) coexisting with other species, the increment in R0 from other species is proportionally very

low, since their contribution Rb
0 is very small. Blue jay increases at least the double of the value of Ra

0. For Canada goose
(assigned to Ra

0), in some cases, the disease does not occur, but when we consider coexistence with other species with high
Rb
0, then the disease could be transmitted, and R0 could increase considerably. For example, Canada goose has Ra

0 = 0.16,
but when coexisting with Blue jay, the transmission of WNV increases considerably to R0 = 8.85.

The Morning dove, as a single species, does not transmit WNV disease (R0 = 0.98), but it transmits WNV when
considering its coexistence with any other species. The different bird species that inhabit a certain region play an essential
role in WNV transmission.

Another important fact we observe is that when two populations of birds are coexisting, R0 is less than half of the greatest
Ri

0 calculated for one isolated species, taking into account qi = 1 (all mosquitoes biting this species). This means that the
greatest Ri

0 for one isolated species overestimates R0 for the coexistence. This is a consequence of number of the total bird
population, which decreases the value of R0. This result agrees with that obtained for the model of one bird species: if the
number of a single bird population increases, R0 decreases in the same proportion. For example, if we consider Blue jay as a
single species, we have R0 = 34.69, see Maidana and Yang [10], and when we consider Common grackle with R0 = 35.64,
which is of the same order, for the coexistence we obtain R0 = 17.6 (Table 2) due to a doubled total bird population.

2.2. Stability of the trivial equilibrium point

The following Theorem, concerning the trivial equilibrium point, is established:

Theorem 2.1. If 0 ≤ p < 1, then the disease free equilibrium point P0 is unique and is locally asymptotically stable for
Ra
0 + Rb

0 < 1. When Ra
0 + Rb

0 > 1, P0 becomes unstable.

Proof. The characteristic polynomial of the Jacobianmatrix evaluated at the trivial equilibriumpoint of the system (10)–(13)
is written as p(x) = −p1(x)p2(x)p3(x), where we have two second order polynomials

p1(x) = (x + µa)
2,

p2(x) = (x + µb)
2,

both having two double negative roots, and a third degree polynomial

p3(x) = x3 + a2x2 + a1x + a0,

with coefficients

a2 = γa + µa + αa + γb + µb + αb + (1 − p)µv > 0
a1 = (γa + µa + αa) (γb + µb + αb) + (1 − p)µv


(γa + µa + αa)(1 − Ra

0) + (γb + µb + αb)(1 − Rb
0)


a0 = (1 − p)µv (γa + µa + αa) (γb + µb + αb)

1 − Ra

0 − Rb
0


.

If Ra
0 + Rb

0 < 1, then the stability of P0 follows directly from Routh–Hurwitz criteria, since a0 > 0, a2 > 0 and

a2a1 > (γb + µb + αb) (1 − p)µv


(γa + µa + αa)


1 − Ra

0


+ (γa + µa + αa) (1 − p)µv


(γb + µb + αb)


1 − Rb

0


> (1 − p)µv (γa + µa + αa) (γb + µb + αb)


1 − Ra

0 − Rb
0


= a0.

If Ra
0 + Rb

0 > 1, the condition a0 < 0 implies that p3(0) < 0, and p3 always has a positive root.
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The stability of the nontrivial equilibrium point P∗ for Ra
0 + Rb

0 > 1 is assessed numerically, because the eigenvalues are
roots of a fifth degree polynomial.

Considering αa = αb = 0, then Na → 1 and Nb → 1. The global stability in �, of the trivial equilibrium point P0, can be
proved using the LaSalle–Lyapunov Theorem [15], considering the following Lyapunov function:

V = (γb + µb) βvaraqaIa + (γa + µa) βvbrbqbIb +

[
(γb + µb) βaβvar2a q

2
ama + (γa + µa) βbβvbr2b q

2
bmb

(1 − p)µv

]
Iv.

The orbital derivative of V is given by:

V̇ = − (γb + µb) βaβvar2a q
2
amaIv(1 − Sa) − (γa + γb) βbβvbr2b q

2
bmbIv(1 − Sb)

− (γa + µa) (γb + µb) βvbrbqbIb

1 −


Ra
0 + Rb

0


(1 − Iv)


− (γa + µa) (γb + µb) βvaraqaIa


1 −


Ra
0 + Rb

0


(1 − Iv)


= − (γb + µb) βaβvar2a q

2
amaIv(1 − Sa) − (γa + γb) βbβvbr2b q

2
bmbIv(1 − Sb)

− (γa + µa) (γb + µb) βvbrbqbIb

1 −


Ra
0 + Rb

0


+

Ra
0 + Rb

0


Iv


− (γa + µa) (γb + µb) βvaraqaIa

1 −


Ra
0 + Rb

0


+

Ra
0 + Rb

0


Iv

,

which is less than zero for Ra
0 + Rb

0 < 1. The maximal invariant sets are determined by V̇ = 0, and we have two situations:

(1) When Ia = Ib = Iv = 0, we are dealing with the (Sa, Sb)-plane. From Eqs. (10)–(13) we have:

dSa
dt

= µa − µaSa

dSb
dt

= µb − µbSb,

which results in Sa → 1 and Sb → 1, when t → ∞.
(2) When Sa = Sb = 1 and Ia = Ib = 0 we have

dIv
dt

= −(1 − p)µv Iv,

which results in Iv → 0, when t → ∞. �

2.3. Numerical results

In this section we study the effects in the WNV dynamics when we deal with the coexistence of two avian species.
Numerical results are obtained using values given in Table 1.

Let us first simulate a single bird species and two bird species, in which one is not a WNV transmitter. If we consider
qa = 1 and qb = 0, our model reproduces that considered by Cruz-Pacheco et al. [5] for a single bird population, where the
second bird population has no influence in the dynamic. Assuming mosquitoes bite once every two days, we have a biting
rate ra = 0.5, the same as considered by Cruz-Pacheco et al. [5], and hence we have refa = 0.5 × 1 = 0.5. For the values of
parameters related to the American crow, we can observe in Fig. 2(a) that the peak of the infected bird population is 0.29,
as was obtained by Cruz-Pacheco et al. [5]. In this case we are considering only the American crow population, and all the
mosquitoes are biting this bird species. This kind of assumption resulted in higher value for the reproduction number, which
resulted in Ra

0 = 20.9718, using Eq. (19).
Another approachwas given inWonham et al. [4]. That is, mosquitoes bite other bird populations but their contributions

are not taken into account. Assuming that crows are 20% of the total population of birds, then we have qcrow = 0.2, that is
refa = 0.5 × 0.2 = 0.1. All other bird species compound qb = 0.8, but by the fact that their bitings are not being measured,
we are tacitly letting rb = 0, hence refb = 0. Using these parameter values in the simulation of the model, we observe in
Fig. 2 (b) that the peak of infected birds is less than 0.01, a considerable difference from the peak of 0.29 obtained for a biting
rate refa = 0.5. The relative abundance of one species with respect to others reduced the effective biting rate refa = 0.1, and
the disease does not remain endemic because R0 = Ra

0 = 0.838872 < 1.
When we are not considering mosquitoes biting other bird species, but a single species only (Fig. 2(b), with biting rate

refa = 0.1), we are also assuming that the other species are not allowed to be infected. This fact must decrease the number
of infected mosquitoes and, consequently, decrease the infected american crows when compared with two coexisting bird
species. These features can be assessed by the model for two populations of birds. We study two cases.
American crow and Blue jay

The Blue jay inhabits the east and center of the USA, and the American crow is in greater numbers in the east than in the
center of the USA, and does not inhabit the west. In the east, these two species coexist [16].
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a b

Fig. 2. Graphs of the proportion of infected American crow population. (a) Considering only the American crow population, i.e., 100% of the population
and refa = 0.5. (b) Considering only the American crow population being measured with respect to WNV transmission, and taking into account that it is
20% of the total bird population, i.e., refa = 0.1, and refb = 0. The initial values are S0a = 1, I0a = 0, N0

a = 1 and I0v = 0.01.

Fig. 3. Graph of the infected bird proportions considering coexistence between Blue jay and American crow. Blue jay is 80% of the total population
(refb = 0.4) and American crow, 20% (refa = 0.1). The initial values are S0i = 1, I0i = 0, N0

i = 1 and I0v = 0.01.

We can consider that the American crow population is 20% of the total population of birds, and the Blue jay population
is 80%. Hence, the biting rates are refa = 0.5 × 0.2 = 0.1 and refb = 0.5 × 0.8 = 0.4 for American crow and Blue jay,
respectively.

We can observe in Fig. 3 that the peak of the infected American crow subpopulation increases from 0.0084 to 0.19, when
we consider the Blue jay population together with the American crow population. This is due to the fact that infected Blue
jay birds produce many new infected mosquitoes, which in turn are able to infect American crow birds at an endemic level
even though the reproduction number is lower than unity when isolated.

If we consider thatmosquitoes are biting only the American crow population (refa = 0.1 and refb = 0), the peak of infected
birds is underestimated in comparison with the peak for the American crow population in coexistence with the Blue jay
population. Furthermore, R0 for American crow increases greatly: for refa = 0.1 and refb = 0, we have R0 = 0.838872, but
for refa = 0.1 and refb = 0.4, we have R0 = 23.0977, an increase of around 30 times due to Blue jay.

If we consider that 100% of the bird population is American crow (refa = 0.5) the peak is overestimated. This is due to
some mosquitoes biting Blue jay, instead of biting only American crow, therefore, decreasing the infected American crow
subpopulation. The peak of the proportion of infected birds decreases from 0.3 (Fig. 2(a)) to 0.2 (Fig. 3). In Fig. 3 we can see
the infected American crow and Blue jay subpopulations.

With respect to the mosquito population, we can observe in Fig. 4 that the model for a single bird species, for the pair
refa = 0.5 and refb = 0, underestimates the peak of the proportion of infected mosquitoes obtained when two species are
considered, refa = 0.1 and refb = 0.4.
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Fig. 4. Graph of the proportion of infected mosquitoes. The initial values are S0i = 1, I0i = 0, N0
i = 1 and I0v = 0.01.

a b

Fig. 5. Graph of the proportion of infected subpopulation for coexisting Blue jay and Common grackle, considering that each species is 50% of the total
population (refa = rbv = 0.25). (a) graph of the proportion of infected birds. (b) graph of the proportion of infectedmosquitoes. The initial values are S0i = 1,
I0i = 0, N0

i = 1 and I0v = 0.01.

This is due to the fact that mosquitoes that bite American crow also bite Blue jay, which is one of the most effective birds
at transmitting WNV. Hence, this increases the proportion of infected mosquitoes. For the pair refa = 0.1 and refb = 0, the
peak of infected mosquitoes does not exist. The curve of infected mosquitoes when considering two populations is closer
to the curve obtained with a single biting rate refa = 0.5 than for refa = 0.1. For refa = 0.1, the curve of infected mosquitoes
decreases slowly (Fig. 4). Determining the incidence of WNV in mosquitoes is important because they transmit the disease
to the human population.
Blue jay and Common grackle

Blue jay is a bird that inhabits the east of the USA, with some birds accounted for in the center but none in the west.
Common grackle inhabits the east of USA as well. These two species are encountered in New York, and hence can be amajor
factor in WNV transmission. We assume in the model refa = refb = 0.25, i.e., 50% of each population in the east.

In Fig. 5(a) we see the peak of the infected bird proportion for the pair of species Blue jay and Common grackle. We can
observe that the peak for infected Blue jay in this pair of species is 0.28, less than 0.33, which is the peak observed in the
pair Blue jay and American crow. This is a consequence of our considering in the pair Blue jay and American crow that Blue
jay is 80% of the total population.

If we consider the total infected subpopulation, i.e., the sum of the peaks of coexisting infected birds, we have for the pair
Blue jay and Common grackle a peak 0.28+ 0.28 = 0.56, and for the pair Blue jay and American crow, 0.33+ 0.19 = 0.52.
This is a consequence of Blue jay and Common grackle being the most effective species in WNV transmission. The peak of
infected Blue jay when coexisting with Common grackle decreases, but the total infected peak increases. In Fig. 5(b) we
observe the peak of infected mosquitoes. The proportion of infected mosquitoes is similar for the pair Blue jay and Common
grackle and for the pair Blue jay and American crow.
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a b

Fig. 6. (a) Cyclic fronts graphic for Blue jay and Common grackle (refa = refb = 0.25). (b) Cyclic front graphic for Blue jay (refa = 0.25, refb = 0). The initial
values are S0i = 1, I0i = 0, N0

i = 1 and Iv = 0.01.

In Fig. 6 is shown the cyclic front of the epidemic. In Fig. 6(a) we show the coexistence between Blue jay and Common
grackle (refa = refb = 0.25). In Fig. 6(b) we show only the Blue jay population (refa = 0.25 and refb = 0), i.e., considering
another population that does not transmitWNV.When we consider the coexistence of the species, the second peak appears
earlier and is higher than for one species. In the mosquito population the same effect is observed. This fact is important
when control strategies are considered.

3. Generalization of the model — several bird species

In each region several bird species can coexist, hence we consider now a natural generalization of the model (3)–(8) to n
bird species. The dimensionless version is given by:

dSi
dt

= µi − riqimi
βi

Ni
IvSi − µiSi (26)

dIi
dt

= riqimi
βi

Ni
IvSi − (γi + µi + αi)Ii (27)

dNi

dt
= µi − µiNi − αiIi (28)

dIv
dt

=


n−

i=1

riqi
βvi

Ni
Ii


(1 − Iv) − (1 − p)µv Iv, (29)

for i = 1, . . . , n. The threshold value for this model is:

R0 =

n−
i=1

(riqi)2 miβiβvi

(1 − p)µv (γi + µi + αi)
,

or

R0 =

n−
i=1


refi
2

miβiβvi

(1 − p)µv (γi + µi + αi)
,

using refi = riqi.
The stability of the trivial point (free of disease) is given by the roots of an n + 1 degree polynomial whose degree 0

coefficient depends on R0, as in the case n = 2 shown in previous section. It is easy to check that for R0 > 1 the equilibrium
point is unstable, because the independent coefficient is less than zero, and hence a positive real root always exists (as in the
case of two species n = 2 in previous section). The stability for R0 < 1 can be checked numerically. In the previous section
we used the Routh–Hurwitz criterion in order to assess the stability of the trivial equilibrium point of the model with only
two bird species. The threshold is an average of the thresholds with respect to the single model for an isolated species that
inhabits a region. Hence the threshold is an average of the effectiveness of the bird species in a region.
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If we consider the bird species that inhabit the south-east of USA, and the average number of birds of each species in that
region [16], we can assume that: the percentage of House sparrow, Common grackle, American robin, Fish crow (only exists
in south-east) is 18% each, and American crow and Morning dove is 15% each. For the first four we have refi = 0.09 and for
the last two, refi = 0.075. Hence, we have the following Ri

0’s (using values given in Table 1): House sparrow, R1
0 = 0.83,

Common grackle, R2
0 = 1.15, American robin, R3

0 = 0.74, Fish crow, R4
0 = 0.42, American crow, R5

0 = 0.47 and Morning
dove, R6

0 = 0.08. Hence we obtain as the total reproduction number:

R0 =

6−
i=1

Ri
0 = 3.69.

In the south-west region we have 20% of House sparrow, 17% of House finch andMorning dove, and 13% of Ringed-billed
gull, Mallard and American crow. We have the effective biting rates refi = 0.1, refi = 0.08 and refi = 0.07, respectively.
Hence, we have the following Ri

0’s: House sparrow, R1
0 = 0.84, House finch, R2

0 = 0.54, Morning dove, R3
0 = 0.1, Ringed-

billed gull, R4
0 = 0.36, Mallard R5

0 = 0.2 and American crow R6
0 = 0.41. We obtain in this case, as the total reproduction

number:

R0 =

6−
i=1

Ri
0 = 2.45.

The mosquito Culex quinquefasciatus is the most common in the south of USA, and we can consider βa = 0.52 [13,10] for
all the species, instead of that given in Table 1. For this value we obtain for the south-east, R0 = 1.92 and for south-west,
R0 = 1.27, a smaller value. The lower incidence of WNV in the south can be explained as a combination of bird coexistence
and the lower effectiveness of the mosquitoes.

4. Conclusion

In this paper we proposed a model to study the coexistence of two avian populations in the transmission dynamics of
West Nile Virus. Furthermore the model was generalized for several avian populations.

We analyzed the effects of considering different values for the biting rates as found in the literature. The biting rate can be
assigned assuming an isolated species (ra), or one species coexistingwith another species in a certain proportion (refa = qara).
According to the assumption for the biting rate, the level of incidence (measured by the peak) and the reproduction number
are completely different. The different results come from the manner in which the relative abundance of mosquitoes with
respect to the avian populations is considered: in an isolated bird species, we have ma, while for one species transmitting
WNV in coexistence with another that is not a transmitter, we usedmtotal.

Let us assume that in a region infested bymosquitoes (Culex spp) there is just one species of bird. Among themosquitoes,
Culex pipiens and Culex tarsalis are the most effective transmitters of WNV, followed by C. tritaniorhynchus, while C.
quinquefasciatus is the least effective. In the case of an isolated bird species, we obtained

R0 = R0 =
r2mββv

(1 − p)µv(γ + µ + α)
,

due to the fact that all mosquitoes bite a single population of birds.
In general different birds species coexist. Let us assume that one species of bird (for instance, species denoted by a) is a

transmitter ofWNV,while the remaining species of birds are less competent, and are gathered together in a non-transmitting
group. The size of the mosquito population is fixed, and at this moment the total population of birds is fixed too (that is,
equal to the isolated population, thenm is fixed). In this situation we obtained the reproduction number

R0 =
(raqa)2 maβaβva

(1 − p)µv (γa + µa + αa)
+

(rbqb)2 mbβbβvb

(1 − p)µv (γb + µb + αb)
,

where qa + qb = 1. For simplicity, let us deal with the non-transmitting species of birds by letting βb = 0. In this case, we
have, from Eq. (24), a diminished value

R0 = Ra
0 = (qa)2 R0,

showing that the relative abundance of bird species plays an important role in WNV transmission. The coexistence of two
or more avian populations can result in the maintenance of the disease settling at an endemic level if R0 =

∑n
i=1 R

i
0 > 1.

Hence, knowledge about the relative abundance of several bird species allows us to estimatewith accuracy the risk of overall
WNV transmission.

Now, the bird populations are allowed to vary, aiming to assess the spread of WNV by migratory movements. As we dis-
cussed above, in a regionwe have several coexisting bird species. Let us assume that this region is free ofWNV.Migratory in-
fected birds can disseminateWNV over a long range. If R0 =

∑n
i=1 R

i
0 > 1,WNV epidemics are triggered along themigratory

routes, and the disease settles at an endemic level. Otherwise, the disease fades out. Notice that the contribution of each
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species of birds is

Ri
0 =

(riqi)2 miβiβvi

(1 − p)µv (γi + µi + αi)
,

depending on βi and βvi, the WNV transmission probabilities, respectively, from vector to bird (of species i) and from bird
to vector. This fact shows that the effectiveness of mosquitoes to transmit WNV is as important as the effectiveness of birds.

We obtained the estimation of the overall R0 by considering the six most effective species of birds: House sparrow,
Common grackle, American robin, Fish crow, American crow and Morning dove. In the south-east of the USA, we estimated
R0 = 3.69, with R0 = 2.45 for the south-west of the USA. Taking into account the mosquito C. quinquefasciatus, which is
the most common in the south of USA and less effective in transmitting WNV, we estimated R0 = 1.92 and R0 = 1.27 for,
respectively, the south-east and south-west of the USA.

In USA there are effective birds (for instance, Blue jay and Common grackle) as well as effective mosquitoes (for instance,
C. pipiens and C. tarsalis) at transmitting WNV. The north–south migratory routes of birds in the USA spread WNV cases
along this movement. However, the establishment of the disease at an endemic level can be explained by the interaction
between effective populations of birds and mosquitoes. The migratory route of birds also reach Mexico. However, in
Mexico WNV was not established. Even though WNV could be spread by infected birds, due to less effective mosquitoes (C.
quinquefasciatus [17]) at transmitting this virus, Mexico is free of this disease (R0 =

∑n
i=1 R

i
0 < 1). The long rangemigratory

routes of birds can spread WNV, but the complete establishment at an endemic level is strongly influenced by the capacity
of mosquitoes to transmit the virus (for instance, the role played by C. tarsalis in the east-west dissemination of WNV in the
USA [18]).

For this reason, a field study is necessary to determine, in each region, the effectiveness of the avian and mosquito
populations to transmitWNV in order to estimate the risk of the disease. In placeswheremore effective avianpopulations are
present, the infected level are high, having implications on the adopted mosquito reduction strategies to result in R0 < 1,
Bowman et al. [6]. Another way of controlling WNV transmission consists in importing and releasing refractory, or very
inefficient, WNV transmitter bird species, but with a high affinity to receive bites frommosquitoes. By doing this, the overall
R0 can be diminished below unity, and WNV disease fades out.

In a future work we will study traveling waves of WNV infection promoted by the migration of an effective avian
population into a region where avian populations are very inefficient transmitters of WNV.
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