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a b s t r a c t

The successful elimination of vectorial and transfusional transmission of Chagas’ disease from some
countries is a result of the reduction of domestic density of the primary vector Triatoma infestans, of
almost 100% of coverage in blood serological selection and to the fact that the basic reproductive number
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of Chagas’ disease is very close to one (1.25). Therefore, congenital transmission is currently the only way
of acquiring Chagas’ Disease in such regions. In this paper we propose a model of congenital transmission
of Chagas’ disease. Its aim is to provide an estimation of the time period it will take to eliminate this form
of transmission in regions where vetorial transmission was reduced to close to zero, like in Brazil.

© 2009 Elsevier Ireland Ltd. All rights reserved.
emography

. Introduction

On June 9, 2006, the Pan American Health Organization (PAHO)
resented the Minister of Health of Brazil with the Interna-
ional Elimination of Transmission of Chagas’ Disease Certificate
Ministério de Saúde, 2007; PAHO, 2007). This act was the culmi-
ation of an intensive process that begun in 1991 with the Southern
one Initiative, a joint agreement between the governments of
rgentina, Bolivia, Brazil, Chile, Paraguay, Uruguay and Peru, to con-

rol Chagas’ disease by the elimination of the main vector, Triatoma
nfestans. This initiative has been highly successful and the preva-
ence area of the vector plummeted in the last years (Esgolts, 1970).
s a consequence, the current seroprevalence of children between
and 5 years in Brazil is of the order of 10−5, a clear indication that

ransmission, if it is occurring, is only accidental (Massad, 2008).
The successful elimination of vectorial and transfusional trans-

ission of Chagas’ disease from Brazil was a result of the reduction
f domestic density of the primary vector T. infestans and of almost
00% of coverage in blood serological selection. As mentioned in
irchhoff (2000), the basic reproductive number (R0) of Chagas’
isease was very close to one (1.25) (Kirchhoff, 2000), that is, not

ar from the elimination threshold. So, an average reduction of 25%
n the vector life expectancy (feasible thanks to the domestic habits
f T. infestans) was enough to reduce R0 below unit, and to achieve
he elimination of this form of transmission. Therefore, congenital

∗ Corresponding author.
E-mail address: silviamr@dim.fm.usp.br (S.M. Raimundo).

303-2647/$ – see front matter © 2009 Elsevier Ireland Ltd. All rights reserved.
oi:10.1016/j.biosystems.2009.11.005
transmission is currently the only way of acquiring Chagas’ Disease
in Brazil.

American trypanosomiasis (Chagas’ Disease) is a zoonosis
caused by the protozoan parasite Trypanosoma cruzi [4]. The disease
is characterized by two phases: acute and chronic.

The principal mechanism of Chagas’ disease transmission in
humans is through the bites of insect vectors called Triatoma sp
bugs (CDC, 2007). These blood-sucking bugs, in turn, get infected
by biting an infected animal or person. This vector belongs to
the subfamily Triatominae (Hemiptera: Reduviidae) (Lent et al.,
1994; Schofield, 1994, 2000) comprising 130 recognized species,
of which about a dozen are commonly involved in transmission of
the trypanosome to humans. Other forms of transmission include:
consumption of uncooked food contaminated with faeces from
infected bugs; congenital transmission (from a pregnant woman to
her baby); blood transfusion; organ transplantation; and accidental
laboratory exposure (CDC, 2007).

Congenital transmission may occur at any time of pregnancy,
in successive gestations and may affect twins. The infection may
produce pathology in the growing foetus. The consequences on the
newborn are variable, ranging from asymptomatic to severe clinical
manifestations. Congenital transmission cannot be prevented, but
early diagnosis of the newborn enables prompt treatment, achiev-
ing cure rates close to 100% (the treatment regimen should include

benznidazol between 5 and 10 mg/kg/d for 30–60 days or nifur-
timox at 10–15 mg/kg/d for 60 days) and thus avoiding progression
to chronic Chagas’ disease (Massad, 2008). It is a consensus that
congenital Chagas disease will be a pressing public health concern
until the pool of infected women of childbearing age decreases to

http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:silviamr@dim.fm.usp.br
dx.doi.org/10.1016/j.biosystems.2009.11.005
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nsignificant levels, which may happen only 30 years from now
Massad, 2008).

In this paper we propose a model of congenital transmission
f Chagas’ disease. The model is divided into core and non-core
roups. The idea of a core group is a small, highly active segment
f the population which can, in some cases, propagate the disease
o effectively that it cannot be eradicated (Kribs-Zaleta, 1999). The
core group” is defined as the set of individuals who had a level of
isk behavior sufficient to generate viable chains of transmission
n a population and the infection would die out or maintain into
he population in the absence of this core group. Since core group
ndividuals contribute to disease transmission they are very impor-
ant targets for effective prevention. Borrowing this idea we define
he infected subpopulations, that is, the infected children and their

others with Chagas’ disease as a core group. Our aim is to provide
n estimation of the time period it will take to eliminate this form of
ransmission in regions where vetorial transmission was reduced
o close to zero, like in Brazil.

The paper is structured as follows. In the next section we
escribe the model, in Section 3 we analyse its equilibrium and

ts stability, Section 4 we illustrate the theoretical results of model
iving numerical simulations and a final discussion of the results
onclude the paper.

. The Model

As mentioned above the core group is comprised by individuals
nfected with the chagasic parasite. Our goal is to follow-up this
ore group in order to investigate the trend of the core population.
he total population (N) of our model is, then, divided in core-non-
ore groups which are partitioned into eight classes according to
heir epidemiologic significance: Gi, women with Chagas’ disease;
wi, infected female children born to chagasic mothers (vertically

nfected children); Bwint , untreated and infected female children;
un, uninfected pregnant women; Bwun, uninfected female children
orn to chagasic mothers; ; Bmi, infected male children born to cha-
asic mothers; Bmint , untreated and infected male children; Bmun,
ninfected male children born to chagasic mothers. Therefore our
ore group comprises the infected females (G∗

i
, Bw∗

i
and Bw∗

int
) and

he infected males (Bmi and Bmint); while the non-core group is
onstituted by the females and males uninfected (Gun, Bwun and

mun).

The transmission model is shown schematically in Fig. 1.
In this study, we consider a cohort of chagasic pregnant women

hat can generate uninfected and infected newborns. Clinical stud-
es show that most women refuse being tested, and consequently,

Fig. 1. The flow diagram of the Chagas’ disease transmission.
ms 99 (2010) 215–222

most positive cases are diagnosed at pregnancy, during the pre-
natal routine hospital care (Massad, 2008). We also assume that
the infant females who were not infected with the parasite (but
are born to chagasic mothers) are recruited into the uninfected
pregnant class and can generate uninfected newborns.

We assume that: all the parameters of the model are posi-
tive; the vital dynamics includes a birth process given by natality
rate � and a death process given by natural mortality �; the
parameter ˛i is the disease-related death rate, where ˛1 is the
disease-related death rate of women with Chagas’ disease, while
˛2 is the disease-related death rate of untreated children. Let p
(0 ≤ p ≤ 1) be the proportion of chagasic children born to chaga-
sic mothers and (1 − p) the proportion of uninfected children born
to chagasic mothers. Let us define k (0 ≤ k ≤ 1) as the proportion of
female children among all newborns. We assume that women with
Chagas’ disease have lower fertility rate than uninfected women,
named, respectively, �′ and �. This assumption is based on the
observation by Bittencourt (1976), according to whom in 24 placen-
tas of chagasic women, the most consistent findings were villous
and intervillous inflammatory infiltrates. Amastigotes of T. cruzi
were found mostly in the chorionic villi and in the chorionic plate,
and less frequently in the fetal membranes, which would be respon-
sible for an important number of miscarriages. We have, then, �k
as the proportion of female children born to uninfected mothers.
On the other hand, we have �′k as the proportion of female chil-
dren born to mothers with Chagas’ disease; among them we have
�′kp as the proportion of chagasic newborns and �′k(1 − p) as the
proportion of uninfected newborns.

Sexually immature female children (Bwun and Bwint) reach the
reproductive ages at constant rates � and m�. So �−1 is the average
age at which the uninfected children are sexually active and eventu-
ally become pregnant. Note that we have � > �, that is, the average
age to generate the first descendant (�−1) is lower than the surviv-
ing time (�−1). Let us assume that chagasic female children reach
the reproductive age later than uninfected children, which delay
is given by the parameter m, 0 ≤ m ≤ 1. Since �

′
< � and m� < �,

it easy to see that the chagasic women generate less descendants
than the uninfected one.

The model includes the treatment of infected children (Bwi and
Bmi) born to chagasic mothers. The treated patients are cured at a
constant rate �, with �−1 being the average period of time of heal-
ing. Let q (0 ≤ q ≤ 1) and r (0 ≤ r ≤ 1) be the proportions of treated
female and male children, respectively. Consequently, (1 − q)� and
(1 − r)� are the probability that treatment failure occurs for what-
ever reason.

The dynamics of vertical transmission are formalized by the
following homogeneous linear system of ordinary differential
equations with constant coefficients
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dGi

dt
= m � Bwint − (� + ˛1) Gi

dBwi

dt
= �′ k p Gi − (� + �)Bwi

dBwint

dt
= � (1 − q) Bwi − (m� + � + ˛2)Bwint

dGun

dt
= � Bwun − � Gun

dBwun

dt
= �

′
k (1 − p) Gi + � k Gun + � q Bwi − (� + �)Bwun

dBmi

dt
= �′(1 − k ) pGi − (� + �)Bmi

dBmint

dt
= � (1 − r) Bmi − (� + ˛2)Bmint

dBmun

dt
= �′(1 − k )(1 − p) Gi + � (1 − k) Gun + � r Bmi − �Bmun,

(1)
where the total population is N = Gi + Bwun + Bwi + Bwint +
Gun + Bmi + Bmint + Bmun, and

dN

dt
= �′ Gi + �Gun − �N − ˛1Gi − ˛2(Bwint + Bmint).
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hese equations represent the rates of change of each class and are
xpressed in terms of the parameters described previously.

The total population is divided into three groups: the core group
ormed by the infected females (G∗

i
, Bw∗

i
and Bw∗

int
), the uninfected

roup formed by the health females (Gun and Bwun) and the male
roup (Bmi, Bmint and Bmun). To simplify we assumed that the
nalysis of the system (1) is reduced to women groups only. The
ore group presents a special dynamic. The healthy newborns are
emoved from the core group going to the uninfected population.
owever, there is not external input to the core group because we
re disregarding chagas vector transmission. Hence the source of
ndividuals in this core group is the infected new borns generate
y chagasic mothers due to vertical transmission. We analyse the
ehavior of these two subpopulations.

With no vaccine available for large-scale public health inter-
entions, the main control strategy relies on prevention of Chagas
ransmission by eliminating the domestic insect vectors and
ontrolling the transmission by vertical transmission and blood
ransfusion. Our model deals with intervention by drug treatment
f infection described by the parameter q.

. Analysis of the Model

Here our main objective is to follow-up the core group to esti-
ate the elapsed time required to decrease the pool of infected
omen to insignificant levels or eradicate it. Note that there are

hree ways to exit from the core group: (a) by the disease induced
ortalities, ˛1 and ˛2; (b) by treating effectively the proportion

f female infected newborns, q, who are cured (in the case, q = 1
eans that all infected newborns are cured); and (c) by avoiding

r interrupting the congenital transmission (when p = 0, all new-
orns are uninfected) through effective treatment of pregnants. In
rder to reach our goal, we performed the analysis for the homo-
eneous linear system (1) in matrix form as ẋ = M x, where x ∈ R7,
otx = (dx/dt) and M is a 7 × 7 constant matrix (Esgolts, 1970;
AHO, 2007).

The algebraic technique of diagonalizing the square matrix
is used to reduce the linear system (1) to an uncoupled

inear system. We define the linear transformation of coordi-
ates y = M̃−1x, where M̃ is the invertible matrix. Then x =

˜ y, ẏ = M̃−1ẋ = M̃−1Mx = M̃−1MM̃y, where M̃−1MM̃ is diagonal
atrix. This uncoupled linear system has the solution y(t) =

iag [e�1t , . . . , e�7t] y0, where y0 is the initial condition and �i are
igenvalues of the matrix M. Thus, the general solution of the
ystem ẋ = M x is of the form X = ∑

c(i)
i

M̃e�it , i = 1, . . . , 7. Investi-
ating the trajectories of the some solutions Xi = Xi(t), i = 1, . . . , 7
f the system ẋ = Ax may be reduced to investigating the stability
f a trivial solution, that is, the point of the system of equations
ocated at the origin, Xi = 0, i = 1, . . . , 7. This point is asymptot-
cally stable when all roots �i of the characteristic equation are
egative (if real) or have negative real parts (if complex). Thus, due
o the presence of factors e�it , the trajectories whose initial values
ie in any ı—neighborhood of the origin enter an arbitrarily small
—neighborhood of the origin and, as t → ∞, they approach the
rigin. Otherwise, if at least one root �i is positive (if real) or has
ositive real parts (if complex), the trajectories have the same shape
s in the preceding case, but they evolve in the opposite direction.
ow, as t increases, trajectories originating at points that are arbi-

rarily close to the origin recede from it without bound, and so the
rivial solution is unstable. In this way all the possibilities for the

oots �i /= 0 can be analysed; note that the case �i = 0, is excluded
y the condition det M /= 0.

However, if det M = 0 then the characteristic equation |M −
I| = 0 has a zero root. Assuming that �1 = 0, then the general solu-
ion will be the form Xi(t) = c(1)

1 M̃ +
∑

c(i)
i

M̃e�it , i = 2, . . . , 7. If one
ms 99 (2010) 215–222 217

of these roots has negative real parts, then as t → ∞, the points on
every trajectory approach to the point Xi(t) = c(i)

1 M̃, lying on this
trajectory. The trivial solution is stable, but there is no asymptotic
stability. Indeed, in that case, the trivial solution is a singular point.
To find singular points one must first find a set of points in which
the conditions of existence and uniqueness theorem are violated.
Of course, not every point at which these conditions are violated is
a singular point, since the conditions are sufficient for the existence
and uniqueness of the solution, but are not necessary.

In order to make a real phenomena compatible to its mathe-
matical description we studied the position of trajectories in the
neighborhood of the trivial solution Xi = 0, i = 1, . . . , 7 of the sys-
tem (1). The matrix M is given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 0 m� 0 0 0 0

�′k (1 − p) a22 �q 0 �k 0 0 0

�′kp 0 a33 0 0 0 0 0

0 0 �(1 − q) a44 0 0 0 0

0 � 0 0 a55 0 0 0

�′(1 − k) p 0 0 0 0 a66 0 0

0 0 0 0 0 �(1 − r) a77 0

�′(1 − k) (1 − p) 0 0 0 �(1 − k) � r 0 a88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11 = −(� + ˛1)

a22 = −(� + �)

a33 = a66 = −(� + �)

a44 = −(m� + � + ˛2)

a55 = a88 = −�

a77 = −(� + ˛2).

The characteristic equation related to the matrix A has eight
eigenvalues; three of them, �1 = −(� + �), �2 = −(� + ˛2) and �3 =
−� are straightforwardly calculated while the other four are related
to the matrix

A0 =

⎡
⎢⎢⎢⎢⎢⎣

a11 0 0 m� 0

�′k (1 − p) a22 � q 0 �k

�′k p 0 33 0 0

0 0 �(1 − q) a44 0

0 � 0 0 a55

⎤
⎥⎥⎥⎥⎥⎦

. (2)

The matrix A0 has the following characteristic equations:

P1(�) = ā0�2 + ā1� + ā2 = 0, (3)

with
⎧⎪⎨
⎪⎩

ā0 = 1

ā1 = (� + �) + �

ā2 = �k
[
�th − �

]
,

(4)

where �th is given by

�th = � (� + �)
, (5)
k�

and

P2(�) = a0�3 + a1�2 + a2� + a3 = 0, (6)
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Table 1
Parameter values used in simulations.

Definition Value

� Death rate 0.01667 years−1

� = �′ Natality rate Variable, years−1

� Reproductive age 0.0667 years−1

˛1 Disease-related death rate of chagasic
pregnant women

0.01 years−1

˛2 Disease-related death rate of untreated
children

0.01 years−1

� Treatment rate 0.1 years−1

p Proportion of chagasic children born to
chagasic mothers

0.1

k Proportion of female children among all
newborns

0.5

m Likelihood of chagasic sexually immature 0.9

F
v
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ith

a0 = 1

a1 = (m� + � + ˛2) + (� + ˛1) +
(

� + �
)

a2 = (m� + � + ˛2) (� + ˛1) + [(m� + � + ˛2) + (� + ˛1)]
(

� + �
)

a3 = �(1 − q)kpm�
(

�∗ − �
′)

,
(7)

here �∗ is given by

∗ =
(� + ˛1)

(
� + �

)
(m� + � + ˛2)

�(1 − q)pm�k
, (8)

f q /= 1 and p /= 0. When p = 0, or q = 1, we have �∗ → ∞. In both
ases, the three eigenvalues corresponding to (6) are negatives,
iven by � = −

(
� + �

)
, � = −(� + ˛1) and �3 = − (m� + � + ˛2).

We now show that the signs of roots of both characteristic Eqs.
3) and (6) determine the behavior of the trajectories of system (1).

First, it is straightforward to note that the characteristic Eq. (3)
as negative real parts if � < �th, where �th is given by Eq. (5).
owever, to show that the roots of the characteristic Eq. (6) have
negative real part we apply M-matrix criteria (see Appendix A).
ence, to ensure the roots of the characteristic Eq. (6) have negative

eal part, it is necessary � < �th and �′ < �∗, where �th and �∗ are
iven by (5) and (8), respectively.

Finally, showing that �th < �∗ implies in that if � < �th, then
he roots of both characteristic Eq. (3) and (6) always have negative
eal part. In addition for � = �th, one gets ā2 = 0, such as the char-
cteristic Eq. (3) has a zero and negative roots; while for � > �th, it
as positive and negative roots. We point out that for � > �th the
oots of the characteristic Eq. (6) always have negative real part. In
articular, for � = �∗ the polynomial (6) has a zero and complex
oots with negative real part.

Therefore, for � < �th the trajectories of system (1) converge
symptotically to the trivial solution, that is, all populations go to
xtinction. For � = �th the trajectories converges asymptotically
o finite value, such that the uninfected populations reach to finite
alues G∗

un, Bw∗
un and Bm∗

un; while the populations with Chagas’ dis-

ase go to zero. For � > �th the nature of the trajectories have two
ifferent behaviors. For �th < � ≤ �∗ the uninfected populations

ncrease unbounded, G∗
un, Bw∗

un and Bm∗
un; while the populations

ith Chagas’ disease go to zero. For � > �∗ all trajectories increase
ithout limit, that is, all populations increase unbounded.

ig. 2. The profiles of populations for number of individuals, where � < �th . (a) The varia
ertical transmission.
female children become pregnant
q, r Proportion of treated female and male children 0.5

The polynomial P1(�) is related to the dynamical behavior of
uninfected women classes (Gun and Bwun), while P2(�), is related to
the core group (G∗

i
, Bw∗

i
and Bw∗

int
). The male classes (Bmi, Bmint and

Bmun), being decoupled from the dynamical system, do not affect
the dynamical behavior of the system (the negative eigenvalues are
linked to these groups).

The main objective is to show that if �∗ increases then the per-
sistence of the core group in the population is avoided. According to
Eq. (8), �∗ increases when (a) the disease induced mortality rates,
˛1 and ˛2, increase; (b) the proportion p of infected children who
are treated increases; and (c) the successful treatment of preg-
nants that avoids the vertical transmission increases such that the
probability of vertical transmission p decreases.

Clearly, note that when p = 0 or q = 1, we have �∗ → ∞ as
pointed above. Hence, the core group goes to extinction for all val-
ues of the natality rate �′. The curve of �′ with respect to these
parameters takes a hyperbolic shape, showing asymptotes when
p → 0 and q → 1. On the other hand, when the effective treatment
decreases the disease induced mortality rates ˛1 and ˛2, result in a
linear decreasing in �∗. As a consequence, the core group could be

maintained in the population.

In the next section we will perform the numerical simulations
to determine the velocity in which the trajectories of the subpop-
ulations of the core group tend to the extinction.

tion of both uninfected and chagasic pregnant women populations. (b) The role of
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Fig. 3. The profiles of populations for number of individuals for � > �∗ .
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ig. 4. For �th < � < �∗ , (a) shows the profiles of women uninfected populations G
isease Gi , Bwi and Bwint going to zero.

. Numerical Analysis

In this section, we illustrate the theoretical results of model (1)
iving numerical simulations of the equilibrium and its trajecto-
ies. We integrate the system (1) by Runge–Kutta method of fourth
rder using the set of the parameter values given in Table 1, where

ne gets �th = 0.0417 and �∗ = 1.7976. The initial values pro-
ided to system (1) are given by Gi(0) = 275.000, Bwun(0) = 1.500,
wi(0) = 8.250, Bwint(0) = 8.250, Gun(0) = 50.000, Bmi(0) = 8.250,
mint(0) = 8.250 and Bmun(0) = 1.500.

ig. 5. For � = �th , (a) shows the profiles of women uninfected populations Gun and Bwun

i , Bwi and Bwint going to zero.
d Bwun reaching finite values; while (b) shows the profiles of women with Chagas’

The results of numerical simulations are displayed graph-
ically in Figs. 2–7. Here, for simplicity, we are making � =
�′.

Fig. 2 shows the profiles of number of individuals, where � =
0.006 years−1, with � < �th. It can be seen that in the absence
of immigration into the community, and with the natality rate �

below its threshold value, the total population will become extinct
after some time. Fig. 2a shows the variation of uninfected new-
borns and their mothers; while the role of vertical transmission is
explicitly shown in Fig. 2b.

reaching finite values; while (b) shows the profiles of women with Chagas’ disease
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Fig. 7. The time evolution of women with Chagas’ disease when treatment is applied
20 S.M. Raimundo et al. / B

In Fig. 3 it is shown that for � > �∗, where � = 60 years−1, all
opulations increase unbounded. It is seen that the population of
usceptible female children Bwun increases faster than the others.

Fig. 4 shows that for �th < � < �∗, where � = 0.6 years−1, the
ninfected women populations, Gun and Bwun, increase unbounded
Fig. 4a), while the women with Chagas’ disease populations Gi, Bwi

nd Bwint go to zero (Fig. 4b).
By comparing Figs. 3nd 4 it is noted that the decrease in the

ate of natality of the community decreases the population with
hagas’ disease. Other way to reduce the population with Chagas’
isease is by allowing the critical natality rate �∗ to surpass actual
atality rate �. This helps reducing the Chagas’ disease prevalence
s well. Thus, if the birth of children from chagasic pregnant is con-
rolled or these newborns are under effective treatment or other
ontrol mechanisms, the overall infective population will remain
nder control and the disease can be kept under control. Conse-
uently, the vertical transmission of the disease can be reduced
ignificantly.

Fig. 5a and b shows that by controlling the natality rate, � = �th,
he values of women with Chagas’ disease population is reduced
nd it would be eradicated after some time.

Fig. 6 describes the profile of chagasic women population (Gi)
ith increasing values of ˛1 = ˛2 = 0; 0.01; 0.02; 0.05 from top

o bottom and � = 0.05. Observe that as the greater the disease
nduced mortalities, the smaller is the elapsed time to reduce
he women with Chagas’ disease population. However, the drug
reatment of chagasic individuals and the application of effective
reatment to avoid vertical transmission tend to decrease the dis-
ase induced mortality rates. Hence, the better the screening and
reatment of chagasic individuals, the more they survive and the
reater the time to reduce the population with Chagas’ disease.

Let us now investigate the influence of treatment of infected
omen and the caring of pregnants to reduce the vertical trans-
ission. Fig. 7 shows the time evolution of women with Chagas’
isease when treatment is applied on the core group with values of
= 1, q = 1; p = 0, q = 0, p = 1, q = 0.5 and p = 1, q = 0 from bot-

om to top and � = 0.05. We disregard the variation in the disease
nduced mortality rates, as discussed above. Hence the impacts of
reatment of chagasic individuals (q) and the caring of pregnant

ig. 6. The profile of women with Chagas’ disease population (Gi) with increasing
alues of ˛1 = ˛2 = 0; 0.01; 0.02; 0.05 from top to bottom and � = 0.05.
on the core group with values of p = 1, q = 1; p = 0, q = 0, p = 1, q = 0.5 and p =
1, q = 0 from bottom to top and � = 0.05. By increasing the treatment rate (p = 1)
and the proportion of treated female and male children (q = 1), the spread of the
disease can be reduced more quickly.

women to avoid vertical transmission (p), are assessed. When the
proportion of treated individuals increases (0 ≤ q ≤ 1) or the ver-
tical transmission is avoided (0 ≤ p ≤ 1), we have the increase in
�∗, and when q → 1 or p → 0, we have �∗ → ∞. As �∗ increases the
time to reduce the population with Chagas’ disease increases.

5. Conclusion

In this paper, a linear mathematical model is proposed and anal-
ysed to study the transmission of Chagas’ disease in a population of
varying size without recruitment into the infected women popu-
lation. Here, we allowed only the vertical transmission, since the
vectorial transmission was eliminated in Brazil and many other
countries. The model was, then, divided in core-non-core groups
and we studied the decreasing trend of the core population.

By analysing the model, we have found a critical parameter that
regulates the size of core group population, the threshold natality
rate �∗, which depends on mortality rate, average age at which the
chagasic children are sexually active and eventually become preg-
nant, and proportions of female children among all newborns and
of treated individuals. This threshold shows that infected babies
continuously maintains the infective population, but if the thresh-
old value is higher than the natality rate �′, then the core group
decreases.

The screening and treatment of the infected pregnants result in:
(a) decrease in the vertical transmission (p decreases), (b) increase
in number of the infected individuals under treatment (q increases),
and (c) decreases the disease induced mortality rates (˛1 and ˛2
decrease). The overall effect on the threshold parameter �∗ is its
increasing, because the decrease in the mortality rates is less sen-
sitive than the variation in the proportions p and q.

The decrease in the parameter �∗ leads the core group to follow

a decreasing trend in the size. And, as we have shown, much lower
this value, more quickly the infected population goes to extinction.
Thus, the spread of the disease should be controlled by way of pro-
moting effective treatment to keep the infected population under
control.
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Therefore, we can take 0 < ε < −(1/A)a4 such that the third
inequality of the system (9) is satisfied when � < �∗.
S.M. Raimundo et al. / B

Congenital transmission of T. cruzi infection is the last way of
cquiring the disease in Brazil. The success in the control of vector-
ransmitted Chagas’ disease and screening programmes in blood
anks has uncovered the public health relevance of congenital
ransmission, which has been gradually emerging in vector-free
uburban areas and non-endemic cities (Schijman, 2006). The main
ifficulty in controlling it is due to the lack of a proper pre-natal
rogramme that could diagnose the infection in candidate moth-
rs and a safe chemoprophylaxis that could reduce the likelihood of
ertical transmission. This is the greatest challenge in eradicating
hagas’ disease from Brazil since there still remain an estimated
000 to 16,000 new cases per year of congenital transmission
Schijman, 2006). Although congenital transmission cannot be pre-
ented, early diagnosis enables prompt treatment of newborns,
chieving cure rates close to 100% (Schijman, 2006).

Presently there are about 3.5 million people living with Chagas’
isease in Brazil (Kropf et al., 2003). It would be very convenient
o have an estimate of the time when the disease can be consid-
red eradicated, that is, when there is no individual living with
he disease. For this, it is necessary to project the current num-
er of individuals considering the age-dependent prevalence and
ortality rates.
Assuming the estimated age distribution of Chagas’ disease

revalence (WHO, 2007) and mortality rate (IBGE, 2007a), Massad
2008) calculated, with demographic models (Smith and Keyfitz,
977), the half-life of each age cohort. In the age cohort of 15–29
ears, for instance, the half-life was estimated to be 30 years.
his implies that, from the current 480,000 estimated cases in this
ohort, 240,000 will still be alive in 30 years from now. Also, from
he current 227,500 estimated cases for the age cohort of 0–4 years,
n 40 years there will be 113,750 alive individuals, and so on. There-
ore, even if the transmission were completely interrupted now, it
ould take several decades before complete eradication of cases.

It is possible, with the use of mathematical models to fore-
ast (Massad et al., 2005) the total number of Chagas cases from
ertical transmission. So, assuming that from the currently esti-
ated 2.5 million cases of Chagas’ disease, 51% or 1.785 millions

re women. Assuming also the estimated age distribution of Chagas’
isease prevalence (WHO, 2007) and mortality rate (IBGE, 2007a),
nd the age distribution of women fertility (IBGE, 2007b) and gen-
ral mortality rate for Brazil (IBGE, 2007c), we can estimate the time
volution of cases of congenital Chagas’ disease.

Finally, we would like to point that the linear model proposed in
his paper may not be the ideal one for accurate forecast. However,
t explains, in a simple way the main features of the congenital
ransmission of Chagas’ disease. In a future work we will focus on
n alternative nonlinear stochastic models for this purpose.
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ppendix A.

In this appendix we shall prove, by the use of M-matrices, that
or � < �th the trajectories of system (1) converge asymptotically
o the trivial solution, that is, all populations go to extinction.

The stability properties of A0 (2) are determined by using the
ell-known results on M-matrices. Our reference on this topic are

iven in Bittencourt (1976) and IBGE (2007a).

efinition. We say that a matrix A = [a ] is a non-singular M-
ij n× n
atrix if aij ≤ 0, i /= j, and there exists a matrix B ≥ 0 and a real

umber s > 0 such that A = sI − B and s > �(B), the spectral radius
f B. �

The following equivalences are well-known.
ms 99 (2010) 215–222 221

Proposition 1. A is a non-singular M-matrix if and only if the real
part of each of its eigenvalues is greater than zero.

Proposition 2. A is a non-singular M-matrix if and only if all diagonal
entries are positive, and there exists a positive diagonal matrix D, such
that AD is strictly diagonal dominant, that is,

aij di > 	|aij|dj , i = 1, . . . n.

Looking at our matrix (2) we observe that its diagonal entries
are negative. We consider the matrix −A0, so its diagonal elements
are positive. According to Proposition A.2, −A0 is a non-singular M-
matrix if and only if there exists numbers d1, d2, d3 and d4 bigger
than zero such that the following inequalities are satisfied

(� + ˛1) d1 > m� d4

(� + �) d2 > �
′
k (1 − p) d1 + � q d3 + � k d5(

� + �
)

d3 > �′ k p d1

(m� + � + ˛2) d4 > � (1 − q) d3

�d5 > �d2

(9)

Let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d3 = 1,

d1 = m��(1 − q) + [m�(� + ˛1) + (m� + � + ˛2)]ε
(m� + � + ˛2)(� + ˛1)

d4 = �(1 − q) + ε

(m� + � + ˛2)

d2 = C1 + �k

(� + �)
d5 + m��k(1 − p)ε

(m� + � + ˛2)(� + ˛1)(� + �)

d5 = (� + �)(1 − p)�′

(�th − �)
C1 + m�ε

(�th − �)k(m� + � + ˛2)(� + ˛1)

(10

where ε > 0 and

C1 = �′k(1 − p)m��(1 − q) + �q (m� + � + ˛2) (� + ˛1)
(m� + � + ˛2) (� + ˛1) (� + �)

.

Obviously, the first three inequalities given by (9) hold and, to
ensure d5 > 0, we require

� < �th (11)

Furthermore, substituting the Eq. (10) into the third inequality
of system (9) we have

a4 + ε A < 0,

where

a4 = �′kpm��(1 − q) − (� + ˛1) (� + �)(m� + � + ˛2),

and A > 0 given by

A = �′kp [m� (� + ˛1) + (m� + � + ˛2)]

(m� + � + ˛2) (� + ˛1)
(

� + �
) . (12)

Thus the third inequality of the system (9) yields

ε < − 1
A

a4, (13)

and, to ensure ε > 0, we require a4 < 0.
Finally showing that �th < �∗, this implies that if � < �th the
system (9) has positive solution.

This implies that −A1 is a non-singular M-matrix for � < �th.
From Proposition A.1 it follows that the eigenvalues of A0 have
negative real part.
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