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a b s t r a c t

In this work, we propose a spatial model to analyze the West Nile Virus propagation across the USA,

from east to west. West Nile Virus is an arthropod-borne flavivirus that appeared for the first time in

New York City in the summer of 1999 and then spread prolifically among birds. Mammals, such as

humans and horses, do not develop sufficiently high bloodstream titers to play a significant role in the

transmission, which is the reason to consider the mosquito–bird cycle. The model aims to study this

propagation based on a system of partial differential reaction–diffusion equations taking the mosquito

and the avian populations into account. Diffusion and advection movements are allowed for both

populations, being greater in the avian than in the mosquito population. The traveling wave solutions of

the model are studied to determine the speed of disease dissemination. This wave speed is obtained as a

function of the model’s parameters, in order to assess the control strategies. The propagation of West

Nile Virus from New York City to California state is established as a consequence of the diffusion and

advection movements of birds. Mosquito movements do not play an important role in the disease

dissemination, while bird advection becomes an important factor for lower mosquito biting rates.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

West Nile Virus (WNV) is an arthropod-borne flavivirus. The
primary vectors of WNV are Culex spp. mosquitoes, although the
virus has been isolated from at least 29 more species of 10 genera
(Campbell et al., 2002). When an infected mosquito bites a bird,
the virus is transmitted. A mosquito is infected when it bites an
infected bird. Also, the virus can be vertically transmitted from a
mosquito to its offspring.

The intensity of transmission to human depends on the
abundance and feeding patterns of infected mosquitoes, on the
local ecology and behaviors that influence human exposure to
mosquitoes (Hayes et al., 2005). Mammals, such as humans and
horses, do not develop sufficiently high bloodstream titers to play
a significant role in the transmission (DeBiasi and Tyler, 2006;
Hayes, 1989), and this is a reason to consider the mosquito–bird
cycle.

One major feature of WNV spatial dissemination is the high
velocity of geographic invasion and colonization. This is due to the
long distance flight of birds, and to the ubiquitous presence
of mosquitoes. For instance, WNV was introduced in New York
ll rights reserved.
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City in 1999, and then propagated across the USA. After
five years, WNV was detected among birds in California, western
USA.

Mathematical models which did not encompass spatial
dynamics were developed by Kenkre et al. (2005), Wonham
et al. (2004), Cruz-Pacheco et al. (2005) and Bowman et al. (2005).
Those models considered different aspects of the WNV disease
and determined threshold conditions with respect to control
strategies. Kenkre et al. (2005) studied the periodicity of the
infection considering vertical transmission, increase in mortality
due to infection and time scale disparity. Wonham et al. (2004)
considered the whole mosquito’s life cycle. Cruz-Pacheco et al.
(2005) took into account experimental data from the literature to
estimate threshold values regarding several species of birds. The
effects of vertical transmission on the disease dynamics were also
studied, and different recovery rates were considered for different
species of birds. In Bowman et al. (2005), they added the human
population in order to assess preventive strategies.

With respect to spatial models, Lewis et al. (2006) considered
in their model the corresponding spatially homogeneous model-
ing proposed by Wonham et al. (2004). They studied the
propagation of WNV using traveling wave solutions for a
simplified model, which did not consider vertical transmission,
as well as the mortality rate induced by WNV disease and the
recovered avian subpopulation. Aiming to determine the biologi-
cal invasion of WNV from the east to the west coast of the USA, we
develop a spatio-temporal model to study this propagation as a
consequence of the zoonotic characteristic of WNV.

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
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Since Fisher (1937) proposed a model to study the propagation
of an advantageous gene in terms of reaction–diffusion equation, a
large number of studies have been made about the biological
invasion process using that kind of reaction–diffusion equation.
The first work to describe the spatial propagation of a disease was
developed by Källen et al. (1985). In that work, a directly
transmitted infectious disease model was studied to describe
the propagation of rabies among foxes. A simple model developed
in terms of the reaction–diffusion equations was studied to
determine the first front wave of propagation. More realistic
models were studied after that work in order to determine the
cyclic epidemic of the front wave of rabies considering the growth
of susceptible fox population and immunity (Murray et al., 1986;
Murray and Seward, 1992). For indirectly transmitted diseases
(by vectors) recent works were developed by Lewis et al. (2006) to
study the spatial propagation of WNV, and by Maidana and
Ferreira (2008) to study the propagation of the hip hop disease in
capybaras.

Our model concerning the spatial dynamics of WNV allows the
diffusion to both avian and mosquito populations, taking into
account the fact that the diffusion coefficient in the avian
population is greater than the diffusion in the mosquito popula-
tion. From the model we seek the traveling waves connecting two
steady states, which are the disease-free and the endemic
equilibria, from which we determine the wave speed of propaga-
tion of WNV disease. We also study the sensitivity of the wave
speed with respect to the variations in the essential parameters of
the model. In recent experiments, Komar et al. (2003) studied
25 species of birds exposed to WNV by Culex tritaniorhynchus bites
in order to evaluate the transmission dynamics. We apply their
estimations to our model considering the species that are more
competent for WNV transmission, determining the role of
different species of birds in disease propagation.

At first, we consider a biting rate of 0:5, that is, once every two
days (Cruz-Pacheco et al., 2005). Okubo (1998) estimated that the
diffusion coefficient of birds ranged between 0 and 14 km2=day.
Choosing a coefficient for avian diffusion equal to 6 km2=day,
without advection and considering parameters for two species of
birds—blue jay and common grackle—we obtain approximately
3 km/day for the velocity of disease propagation, which is
consistent with that observed in field data. If we consider a biting
rate of 0:3, as did Lewis et al. (2006), the wave speed decreases to
1:98 km/day. An advection velocity of 1:622:37 km=day is needed
to match with the speed range of 323:5 km=day observed in field
data. If we consider b ¼ 0:1 (Wonham et al., 2004), a higher value
for advection is needed to be comparable with the observed data.

The paper is structured as follows. In Section 2, a WNV spatial
propagation model is presented, together with the analysis of
the corresponding spatial homogeneous model. In Section 3, the
minimum speed of the traveling wave is determined. The
sensitivity analysis of the wave speed is assessed in Section 4,
and this is used to describe the geographic spread in Section 5. In
Section 6, we present numerical simulation to determine the wave
speed graphically and conclusion is given in Section 7.
2. Model for WNV disease

We present a spatial model for WNV propagation and the
analysis of the corresponding spatially homogeneous model for
WNV disease.

2.1. Model for the spatial WNV propagation dynamics

WNV disease first appeared in North America in the summer of
1999, with the simultaneous occurrence of an unusual number of
deaths of exotic birds and crows in New York City (DeBiasi and
Tyler, 2006). During the next five years WNV propagated across
the USA. We propose a model to study this propagation across the
USA.

The spatially homogeneous model proposed in Cruz-Pacheco
et al. (2005) includes cross-infection between the avian and the
vector populations, whose densities are denoted by NaðtÞ and
NvðtÞ, respectively. The avian population was divided into
susceptible, infective and recovered subpopulations, Sa, Ia and
Ra, respectively, while the vector population was divided into
susceptible and infected subpopulations, Sv and Iv. The total
populations are NaðtÞ ¼ SaðtÞ þ IaðtÞ þ RaðtÞ and NvðtÞ ¼ SvðtÞ þ IvðtÞ.

The mosquito population is regarded as constant, assuming
that the birth and death rates are equal to mv. For the avian
population, however, the total population density is allowed to
vary, where La is the constant recruitment birth rate, and the
death rate is ma. The differential equation for the avian population
irrespective of WNV infection is then

dNa

dt
¼ La � maNa.

The biting rate b of mosquitoes is defined as the average number
of bites per mosquito per day. ba and bv are the transmission
probabilities from vector to bird and from bird to vector,
respectively. Hence, the infection rates per susceptible birds and
susceptible vectors are given by

bba

Nv

Na

Iv

Nv

¼ b
ba

Na

Iv and bbv

Ia

Na

.

The birds are recovered at rate ga. The specific death rate
associated with WNV in the avian population is aa, with aapga,
according to Cruz-Pacheco et al. (2005). Another assumption is
that mosquitoes can transmit WNV vertically. The fraction of
progeny of mosquitoes that are infectious is denoted by p, with
0ppp1.

From now on, we consider the spatio-temporal dependence on
the populations, e.g. Naðx; tÞ and Nvðx; tÞ, and their respective
subpopulations. The diffusion among birds is denoted by Da, and
Dv is designed for the diffusion of the mosquito population. We
are not taking into account long migratory movements of birds,
which occur in the north–south direction (Rappole et al., 2000).
The mosquitoes are considered as a sessile population, then
Dv5Da. For instance, the mean dispersal distance for Aedes aegypti

was ranged from 28 to 199 m, according to Harrington et al.
(2005).

However, small advection movements are allowed for both
populations in order to assess the stopover of the migratory birds
during their long journey (Erni et al., 2002). The advection
coefficients are denoted by na and nv for avian and mosquito
populations, respectively, with nv5na. Our main goal in retaining
the small advection movements is to analyze its relative
importance in the overall WNV dissemination. The same diffusion
and advection coefficients are considered in the infected (avian
and mosquito) subpopulations considering that WNV disease does
not affect their movements. The notation of the parameters is
summarized in Table 1.

Based on the above assumptions and definitions of the
parameters, the spatial model is the following:

qSa

qt
¼ Da

q2Sa

qx2
� na

qSa

qx
þLa �

bba

Na

IvSa � maSa, (1)

qIa

qt
¼ Da

q2Ia

qx2
� na

qIa

qx
þ

bba

Na

IvSa � ðga þ ma þ aaÞIa, (2)
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Table 1
Summary of common notations.

Vector Reservoir

State variables

Susceptible Sv Sa

Infectious Iv Ia

Recovered – Ra

Total Nv Na

Parameters

Birth mv La

Death (natural) mv ma

Death (due to disease) – aa

Recovery (from disease) – ga

Virus transmission (to) bv ba

Vertical transmission p –

Diffusion Dv Da

Advection nv na
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qRa

qt
¼ Da

q2Ra

qx2
� na

qRa

qx
þ gaIa � maRa, (3)

qSv

qt
¼ Dv

q2Sv

qx2
� nv

qSv

qx
þ mvSv þ ð1� pÞmvIv �

bbv

Na

IaSv � mvSv, (4)

qIv

qt
¼ Dv

q2Iv

qx2
� nv

qIv

qx
þ pmvIv þ

bbv

Na

IaSv � mvIv. (5)

Let us introduce the non-dimensional parameters to system
(1)–(5). The time is scaled with respect to bm, where b is the
biting rate of mosquitoes, and m ¼ Nv=ðLa=maÞ, the ratio of the
vector population to the disease-free equilibrium bird population.
The spatial variable is scaled considering the bird diffusion
coefficient, according to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Da=bm

p
. The remaining non-dimen-

sional parameters are

Sa ¼
Sa

La=ma

; Ia ¼
Ia

La=ma

; Ra ¼
Ra

La=ma

,

Na ¼
Na

La=ma

; Sv ¼
Sv

Nv

; Iv ¼
Iv

Nv

,

D ¼
Dv

Da
; na ¼

na

bm

bm

Da

� �1=2

; nv ¼
nv

bm

bm

Da

� �1=2

,

ma ¼
ma

bm
; ga ¼

ga

bm
; aa ¼

aa

bm
,

mv ¼
mv

bm
; ba ¼ ba; bv ¼

bv

m
.

Let us use Na ¼ Sa þ Ia þ Ra and Sv þ Iv ¼ 1 to simplify system
(1)–(5), then the corresponding non-dimensional model is

qSa

qt
¼
q2Sa

qx2
� na

qSa

qx
þ ma �

ba

Na
IvSa � maSa, (6)

qIa

qt
¼
q2Ia

qx2
� na

qIa

qx
þ
ba

Na
IvSa � ðga þ ma þ aaÞIa, (7)

qIv

qt
¼ D

q2Iv

qx2
� nv

qIv

qx
þ
bv

Na
Iað1� IvÞ � ð1� pÞmvIv, (8)

qNa

qt
¼
q2Na

qx2
� na

qNa

qx
þ ma � maNa � aaIa. (9)

2.2. Model for the spatially homogeneous WNV dynamics

The spatially homogeneous model corresponding to system
(6)–(9) is the following:

dSa

dt
¼ ma �

ba

Na
IvSa � maSa, (10)

dIa

dt
¼

ba

Na
IvSa � ðga þ ma þ aaÞIa, (11)
dIv

dt
¼

bv

Na
Iað1� IvÞ � ð1� pÞmvIv, (12)

dNa

dt
¼ ma � maNa � aaIa. (13)

The system of equations (10)–(13) has two steady states. The
first one is the disease-free equilibrium point given by

P0 ¼ ð1;0;0;1Þ.

For po1, the second one is the endemic state:

P1 ¼ ðS
�

a; I
�
a; I
�
v;N

�
aÞ,

where S�a, I�v and N�a are given by

S�a ¼
ma � ðga þ ma þ aaÞI

�
a

ma

; I�v ¼
mabvI�a

½bvma � aað1� pÞmv�I
�
a þ ð1� pÞmvma

,

N�a ¼
ma � aaI�a

ma

,

where I�a is the unique positive root in ð0;ma=ma þ aa þ gaÞ of the
second degree polynomial

rðIaÞ ¼ eI2
a þ fIa þ g

with the coefficients

e ¼ ½bvma � aað1� pÞmv�
aa

ma

,

f ¼ 2aað1� pÞmv � bvma � ð1� pÞmvðga þ ma þ aaÞR0,

g ¼ mað1� pÞmvðR0 � 1Þ.

A positive solution always exists for R041 and po1, where

R0 ¼
babv

ð1� pÞmvðga þ ma þ aaÞ
(14)

is the basic reproductive number. In Appendix A, we show that the
disease-free equilibrium point P0 is locally asymptotically stable
for R0o1, otherwise the endemic state P1 is stable. Hence, forward
bifurcation occurs at R0 ¼ 1.

In the original parameters, the threshold value R0 is

R0 ¼
mb2babv

ð1� pÞmvðga þ ma þ aaÞ
¼

mbbv

ðga þ ma þ aaÞ
�

bba

ð1� pÞmv

,

which is the same obtained by Cruz-Pacheco et al. (2005). The first
term of the product is the number of infections produced by a
single infectious bird during its effective infectious period when
bitten by susceptible mosquitoes. The second term (with p ¼ 0) is
the number of infections in the susceptible avian population
produced by a single infectious mosquito during its lifespan.
Vertical transmission increases the output rate in the susceptible
class Sa by pmv, which is the reason why R0 is increased with p.
This product must be greater than one in order to sustain the
WNV disease. In Table 2 we present the basic reproductive
number R0 for different avian species.

Fig. 1(a) shows the variation of the threshold value R0 as a
function of the mortality rates of birds and mosquitoes. The
epidemic outbreak can be avoided with a minor effort when the
mosquito mortality mv is increased. Conversely, the parameter ma

needs more increment to eradicate the disease. The curve of R0 for
the transmission probability rates presents a symmetric behavior,
see Fig. 1(b).

If p ¼ 1 all the mosquito population becomes infectious (this
case is not biologically probable because p51, see Turell et al.,
2001; Goddard et al., 2002; Dohm et al., 2002). Two assumptions
generated this uncommon behavior: infected mosquitoes repro-
duce equally as uninfected mosquitoes, and the birth rate is equal
to the mortality rate. Hence, the dead infected mosquitoes are
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Table 2

The calculated basic reproductive number using the epidemiological and demographic parameters given in Cruz-Pacheco et al. (2005), considering p ¼ 0:007, b ¼ 0:5 and

m ¼ 5.

Common name ba bv ga ðday�1
Þ aa ðday�1

Þ ma ðday�1
Þ mv ðday�1

Þ R0

Blue jay 1.0 0.68 0.26 0.15 0.0002 0.06 34.69

Common grackle 1.0 0.68 0.33 0.07 0.0001 0.06 35.64

House finch 1.0 0.32 0.18 0.14 0.0003 0.06 20.88

American crow 1.0 0.5 0.31 0.19 0.0002 0.06 20.97

House sparrow 1.0 0.53 0.33 0.1 0.0002 0.06 25.81

Ring-billed gull 1.0 0.28 0.22 0.1 0.0003 0.06 18.32

Black-billed magpie 1.0 0.36 0.33 0.16 0.0001 0.06 15.37

Fish crow 1.0 0.26 0.36 0.06 0.0002 0.06 12.96

0 0.2 0.4 0.6 0.8 1
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

μa

μ v

0 0.1 0.2 0.3 0.4 0.5
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

βa

β v

R0 < 1

R0 > 1R0 < 1

R0 > 1

Fig. 1. Graphs for the threshold value R0, considering (a) the mortality rates and (b) the transmission probability rates, using the blue jay parameters given in Table 2.
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completely replenished by the emergence of infected mosquitoes
originated from vertical transmission. Hence, the equilibrium
point P1, in the case p ¼ 1, is given by

S�a ¼
ma � ðga þ ma þ aaÞI

�
a

ma

; I�v ¼ 1; N�a ¼
ma � aaI�a

ma

,

where I�a is the unique positive root in ð0;ma=ma þ aa þ gaÞ of the
second degree polynomial

rðIaÞ ¼ aaðaa þ ga þ maÞI
2
a � ðba þ maÞðga þ ma þ aaÞIa þ bama.

The following theorem, which is equivalent to that obtained by
Cruz-Pacheco et al. (2005) regarding two equilibrium points, is
established:

Theorem 2.1. If 0ppo1, then the disease-free equilibrium P0 is

unique and locally asymptotically stable for R0o1. When R041, P0

becomes unstable, and there appears a new endemic equilibrium P1

which is locally asymptotically stable. If p ¼ 1, P0 is always unstable,
and P1 is locally asymptotically stable.

Proof. See Appendix A. &

3. Traveling wave solution

In this section, we study the geographic propagation of WNV
using the same methodology applied to describe the dissemina-
tion of rabies among foxes (Murray et al., 1986; Murray and
Seward, 1992), that is, we determine the minimum wave speed
connecting the disease-free equilibrium point to the endemic
state. The solution corresponding to the minimum wave speed of
the system of equations (6)–(9) describes the observed biological
waves (see Sandstede, 2002; Volpert and Volpert, 1994).

The traveling wave solution, when it exists, can be set in the
usual form Murray (2002):

ðsaðx; tÞ; iaðx; tÞ; ivðx; tÞ;naðx; tÞÞ ¼ ðsaðzÞ; iaðzÞ; ivðzÞ;naðzÞÞ,

where z ¼ xþ ct. In this new variable, Eqs. (6)–(9) turn into

c
dsa

dz
¼

d2sa

dz2
� na

dsa

dz
þ ma �

baiv
na

sa � masa, (15)

c
dia

dz
¼

d2ia

dz2
� na

dia

dz
þ
baiv
na

sa � ðga þ ma þ aaÞia, (16)

c
div

dz
¼ D

d2iv

dz2
� nv

div

dz
þ bvia

ð1� ivÞ

na
� ð1� pÞmviv, (17)

c
dna

dz
¼

d2na

dz2
� na

dna

dz
þ ma � maZa � aaia. (18)

Since diffusion and advection in the avian population
are greater than those of the mosquito population, at first we
assume that D ¼ 0 and nv ¼ 0. Defining the variables u1 ¼ dsa=dz,
u2 ¼ dia=dz and u3 ¼ dna=dz, the corresponding first-order ordin-
ary differential equations with respect to variable z of system
(15)–(18) are

dsa

dz
¼ u1, (19)

du1

dz
¼ ðc þ naÞu1 � ma þ

baiv
na

sa þ masa, (20)

dia

dz
¼ u2, (21)
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Fig. 2. Graph of the dimensional wave speed as a function of the diffusion

coefficient of the avian population Da , considering p ¼ 0:007 and b ¼ 0:5. For Da ¼

6 km2=day we observe that the wave speed is approximately 3 km/day for the blue

jay and the common grackle. The wave speed is 2:02 km=day for the fish crow. The

wave speed varies from 0 to 4.7 km/day for the blue jay and the common grackle,

while for the fish crow the wave speed varies from 0 to 3.1 km/day.
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du2

dz
¼ ðc þ naÞu2 �

baiv
na

sa þ ðga þ ma þ aaÞia, (22)

div

dz
¼

1

c
bvia
ð1� ivÞ

na
� ð1� pÞmviv

� �
, (23)

dna

dz
¼ u3, (24)

du3

dz
¼ ðc þ naÞu3 � ma þ maZa þ aaia, (25)

where the boundary conditions are

lim
z!�1

ðsaðzÞ;u1ðzÞ; iaðzÞ;u2ðzÞ; ivðzÞ;naðzÞ;u3ðzÞÞ

¼ ð1;0;0;0;0;1;0Þ (26)

and

lim
z!1
ðsaðzÞ;u1ðzÞ; iaðzÞ;u2ðzÞ; ivðzÞ;naðzÞ;u3ðzÞÞ

¼ ðS�a;0; I
�
a;0; I

�
v;N

�
a;0Þ. (27)

The zeros in both equilibrium points deserve some considerations.
The three zeros in the second equilibrium point correspond to
derivatives of the subpopulations sa, ia and na. However, the first
equilibrium point has two more zeros corresponding to infectious
populations regarding birds and mosquitoes, which must not
assume negative numbers. Due to this constraint, we impose on
the linear system solutions that must not oscillate, i.e., the
eigenvalues corresponding to this equilibrium point must assume
real values.

The roots of the characteristic polynomial regarding the linear
system at the equilibrium point ðsa;u1; ia;u2; iv;na;u3Þ ¼

ð1;0;0;0;0;1;0Þ are the roots of the polynomial Q ðlÞ and PðlÞ,
where

Q ðlÞ ¼ ½l2
� ðc þ naÞl� ma�

2 (28)

and

PðlÞ ¼ l3
þ Al2

þ Blþ C, (29)

where the coefficients are

A ¼ c þ na �
mvð1� pÞ

c
,

B ¼ �ðaa þ ga þ maÞ �
mvðc þ naÞð1� pÞ

c
,

C ¼
ð1� pÞmvðga þ ma þ aaÞ

c
ðR0 � 1Þ

with R0 being given by (14). The polynomial Q ðlÞ always has real
roots. Then the polynomial PðlÞ must carry the conditions for the
existence of minimum speed, that is, the eigenvalues are reals.
The minimum velocity (see Appendix B) is determined by the
condition that the polynomial evaluated at the unique local
Table 3
Values of the non-dimensional parameters used to calculate the minimum wave speed

Common name bv ga aa

Blue jay 0.136 0.104 0.06

Common grackle 0.136 0.132 0.028

House finch 0.064 0.072 0.056

American crow 0.1 0.124 0.076

House sparrow 0.106 0.132 0.04

Ring-billed gull 0.056 0.088 0.04

Black-billed magpie 0.072 0.132 0.064

Fish crow 0.052 0.144 0.024
minimum, lþ, must be zero, that is, PðlþÞ ¼ 0, where

lþ ¼ 1
3 �Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
� 3B

pn o
.

We calculate the non-dimensional cmin and the dimensional
wave speed, denoted by Vmin, for eight species of birds, which are
given in Table 3, considering Da ¼ 6 km2=day. We assume that, as
in Cruz-Pacheco et al., 2005, the typical value of the biting rate is
once every two days, or b ¼ 0:5, and the ratio m ¼ Nv=ðLa=maÞ ¼ 5.
The remaining non-dimensional parameter is ba ¼ ba ¼ 1. Note
that house finch and American crow have quite the same R0, see
Table 2, but the wave speeds assume slightly different values.

Fig. 2 shows the wave speed as a function of the diffusion
coefficient for three species of birds: blue jay, common grackle
and fish crow. The fish crow presents R0 lower than the other two
species, and the wave speed is considerably lower. Okubo (1998)
estimated an interval for this diffusion between 0 and
14 km2=day. Considering p ¼ 0:007, Da ¼ 6 km2=day, and na ¼ 0,
we obtain 3:03 km=day as the velocity of disease propagation for
blue jay, which falls within the range of 323:5 km=day observed
in field data (see maps in DeBiasi and Tyler, 2006). If we consider a
biting rate of 0:3 (once every three days) as in Lewis et al. (2006),
we obtain a wave speed of 1:98 km=day, which is clearly an
underestimation. In this case (b ¼ 0:3), the observed speed of
disease propagation in DeBiasi and Tyler (2006) (3–3.5 km/year)
can be obtained when we combine the diffusion and advection
movements (naa0).
s.

ma mv cmin Vmin (km/day)

0.00008 0.024 0.784 3.03

0.00004 0.024 0.789 3.05

0.00012 0.024 0.624 2.41

0.00008 0.024 0.658 2.54

0.00008 0.024 0.705 2.73

0.00012 0.024 0.592 2.29

0.00004 0.024 0.572 2.21

0.00008 0.024 0.522 2.02
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Lewis et al. (2006) obtained the wave velocity of 2.74 km/day
for b ¼ 0:3, assuming that there are neither disease-induced
mortality nor recovery rates. However, if we assign values
different from zero to both parameters (see Table 2), then the
wave velocity decreases to 1.98 km/day. These parameters
decrease the value of wave speed.

In Fig. 3 we show the numerical traveling wave solution for the
first-order system of equations (19)–(25). We observe the
occurrence of the first peak of infection in the four classes.
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4. Sensitivity analysis of the wave speed

The wave speed of WNV propagation depends on several
parameters, which can vary broadly. We perform the sensitivity
analysis of the wave speed with respect to the essential
parameters. The sensitivity analysis is performed taking into
account the values of the parameters given in Table 3. The
advection movement increases the wave speed in the left
direction (when vao0) and decreases it in the right direction
(when va40), therefore we set a null value for it (na ¼ 0) and,
hence, this parameter does not contribute to the sensitivity
analysis of the main parameters. Only at the end of this section we
study the effects of the advection movement.
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Fig. 4. Graph of the dimensional wave speed Vmin (km/day) as a function of the

diffusion coefficient (km2=day) for the common grackle considering different

dimensional recovery rates (ga ¼ 0;0:1;0:2 and 0:33). The common grackle has a

recovery rate greater than other species. We can observe that the wave speed

(curve for ga ¼ 0:33) is increased when recovery rate is not considered (curve for

ga ¼ 0).
4.1. Vertical transmission

Culex pipiens mosquitoes are one of the most important vectors
of WNV and present high values for vertical transmission
compared with other species of mosquitoes. A rate of 0:62 per
1000 F1, the first progeny, i.e., p ¼ 0:00062, was estimated
(Turell et al., 2001). Dohm et al. (2002) reported a rate of 1:4
per 1000 considering a temperature of 18 1C, and 2:1 for 26 1C.
Goddard et al. (2002), however, did not detect vertical transmis-
sion. According to our results, the variation observed in vertical
transmission in the laboratory experiments is not important
because the wave speed does not change considerably with
respect to vertical transmission.
By letting Da ¼ 6 km2=day and p ¼ 0, we have Vmin ¼

3:03 km=day, while for p ¼ 1, we have Vmin ¼ 3:09 km=day.
Considering the extreme value of diffusion Da ¼ 14 km2=day and
p ¼ 0, we have Vmin ¼ 4:64 km=day, and for p ¼ 1, we have
Vmin ¼ 4:72 km=day. The wave speed increases approximately
0.06–0.08 km/day (1.7–2.0%) when vertical transmission assumes
the lower and the upper bounds. The reason why vertical
transmission is not an important factor for spatial dynamics is
due to the fact that mosquito movements are negligible compared
with avian movements. Another reason arises from the fact that
the model disregards the aquatic phase of the mosquito’s life cycle
and the long distance transport of eggs (especially those infected)
due to transportation facilities.

4.2. Recovery rate

Our model encompasses the recovery of the infected avian
population, which is not taken into account in Wonham et al.
(2004) and Lewis et al. (2006). They considered a null recovery
rate (g ¼ 0) based on the literature (Work et al., 1955). Recent
experiments were carried out to evaluate the transmission
dynamics, and Komar et al. (2003) observed the existence of a
recovered subpopulation. From 25 species of birds exposed to
WNV by the bite of infectious mosquito C. tritaniorhynchus, they
found that the house finch presented the highest mean duration
of infection, 5.5 days (g�1

a ¼ 0:18); the blue jay presented a mean
duration of 3.75 days (g�1

a ¼ 0:26); and the common grackle, 3
days (g�1

a ¼ 0:33). According to Fig. 2, the blue jay and the
common grackle have quite the same wave speed, but if the
recovery rate is not considered (ga ¼ 0), then the wave speed
increases considerably (see Fig. 4). The recovery rate for the
common grackle is higher than that for the blue jay, hence the
effect on the increase in the wave speed is higher.

For a value of Da ¼ 6 km2=day and b ¼ 0:5: (1) for ga ¼ 0:33, we
have Vmin ¼ 3:05 km=day (1113:25 km=year) and (2) for ga ¼ 0, we
have Vmin ¼ 3:63 km=day (1325 km/year). Considering b ¼ 0:3: (1)
for ga ¼ 0:33, we have Vmin ¼ 2 km/day (730 km/year) and (2) for
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ga ¼ 0, we have Vmin ¼ 2:72 km=day (992 km/year). The wave
speed increases approximately 0.58–0.72 km/day (19.0–36.0%)
when the recovery rate is not considered.

4.3. Disease-induced mortality rate

Disease-induced mortality rate was accounted for by the
model, while Wonham et al. (2004) and Lewis et al. (2006) did
not consider it, letting d ¼ 0. In Komar et al. (2003), obvious signs
of illness were observed in 28 birds among 87 mosquito-exposed
birds: an unusual posture (blue jay), inability to hold head upright
and ataxia (ring-billed gull). In most cases, clinical signs were
followed by death in 24 h.

An increase in disease-induced mortality rate decreases the
wave speed because the infected subpopulation decreases.
For the blue jay bird parameters, and a value of Da ¼ 6 km2=day,
with b ¼ 0:5: (1) for aa ¼ 0:15, we have Vmin ¼ 3:03 km=day
(1;106 km=year) and (2) for aa ¼ 0, we have Vmin ¼ 3:29 km=day
(1;201 km=year). For b ¼ 0:3: (1) for aa ¼ 0:15, we have Vmin ¼

1:98 km=day and (2) for aa ¼ 0, we have Vmin ¼ 2:29 km=day. The
wave speed increases approximately 0.26–0.31 km/day
(8.6–15.7%) when disease mortality is not considered.

The variation in wave speed promoted by disease-induced
mortality rate ranges between the variations observed in vertical
transmission and in the recovery rate.

4.4. Mosquito biting rate

The estimation of biting rate is not an easy task, which is why a
very broad range of values is found in the literature. For instance,
Cruz-Pacheco et al. (2005) considered one bite every two days,
taking b ¼ 0:5. Lewis et al. (2006) considered, approximately, one
bite every three days, resulting in b ¼ 0:3. Wonham et al. (2004)
reported on the biting rate of Culex spp. mosquitoes among birds
and observed that 27% of the bites are on crows and also that
female mosquitoes bite once every three days, hence obtaining a
mean biting rate of 0:09. Considering these estimations, in Fig. 5
we show the variation of the wave speed (km/day) with respect to
the diffusion coefficient (km2=day) for three different biting rates
(b ¼ 0:5, 0.3 and 0.1).
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Fig. 5. Graph of the dimensional wave speed Vmin (km/day) as a function of the

diffusion coefficient (km2=day) for the blue jay considering different biting rates.

The wave speed presents a high sensitivity with respect to the biting rate. For the

biting rate b ¼ 0:1 the wave speed obtained is very low. The biting rate increases

the wave speed considerably for b ¼ 0:3 and 0.5.
The sensitivity of the wave speed with respect to the biting rate
is high. For a mean value of diffusion such as Da ¼ 6 km2=day and
taking into account the blue jay parameters, we have (1) for
b ¼ 0:5, Vmin ¼ 3:03 km=day (1,106 km/year), (2) for b ¼ 0:3,
Vmin ¼ 1:98 km=day (722.7 km/year) and (3) for b ¼ 0:1 the value
obtained is very low, Vmin ¼ 0:29 km=day (105.85 km/year). In the
work of Lewis et al., using b ¼ 0:3, they obtained approximately
2.75 km/day for the wave speed, which can be taken as the upper
bound since they did not consider the recovery and disease-
induced mortality rates. The sensitivity with respect to the biting
rate is very high and this parameter must be chosen carefully.

4.5. Diffusion movement

In Fig. 5 we show the effects of diffusion on the wave speed for
three different biting rates. We allowed 0 to 14 km2=day for the
range of variation of diffusion movements, according to Okubo
(1998). The curve for b ¼ 0:5 varies from 0 to 4:7 km=day; for
b ¼ 0:3 it varies from 0 to 3:03 km=day; and for b ¼ 0:1, from 0 to
0:45 km=day. The effect of diffusion on wave speed is impercep-
tible for lower biting rates. For higher values, an average of
Da ¼ 6 km2=day (considered in Lewis et al., 2006 and in this work)
seems a good approximation.

In Fig. 2 we show the variation of wave speed with respect to
diffusion for three species of birds. Blue jay and common grackle,
which have the fastest speed, and for fish crow, which has the
lowest speed. The variation in wave speed for other species ranges
between those curves. The wave speed varies from 0 to 4.7 km/day
for the blue jay and for the common grackle. For the fish crow, the
wave speed varies from 0 to 3.1 km/day.

4.6. Advection movement

We now take account of the advection movement. A prefer-
ential direction (migratory movements) for birds is observed,
which goes from New York City to Florida state (north–south).
Nevertheless, let us assume an advection movement in the
east–west direction to verify if this route of advection is important
for disease dissemination from New York to California. Some
isolated cases occurred in California in the year 2002, due to long
migratory movements of birds, before than the first cases
occurred on other states, such as AZ, UT, NV, CR (DeBiasi and
Tyler, 2006) (see Fig. 7). The advection movement increases the
wave speed in the east–west direction: if we take nao0, the speed
of wave front increases in the left direction and decreases in the
opposite direction. In order to describe the propagation from
New York to California, encompassing an east-west direction
because the efforts to control the disease must be increased, we
analyze the case nao0. Considering an average diffusion value
Da ¼ 6 km2=day, and when advection is not considered (na ¼ 0),
we obtained a wave speed of 1:98 km=day for b ¼ 0:3, and
0:29 km=day for b ¼ 0:1. Then, to achieve the observed value for
the wave speed of 3 km/day (DeBiasi and Tyler, 2006), for b ¼ 0:3,
an advection coefficient of n ¼ �1:65 km=day must be introduced,
and for b ¼ 0:1, a high advection coefficient is needed,
n ¼ �9:2 km=day.

In Fig. 6(a) and (b), we can observe that the effect of advection
is greater for b ¼ 0:3 than for b ¼ 0:1. For b ¼ 0:3 the wave speed
increases approximately 4.22 km/day (for all diffusion values),
when advection increases from 0 to 6 km/day, see Fig. 6(a). For
b ¼ 0:1, advection increases the wave speed approximately
1.7 km/day (for all diffusion values), according to Fig. 6(b).

Similarly, in Fig. 6(a) and (b), we can observe that the effect of
diffusion is greater for b ¼ 0:3 than for b ¼ 0:1. The curves are
more distant for b ¼ 0:3 (Fig. 6(a)) than for b ¼ 0:1 (Fig. 6(b)). The
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Fig. 7. (a) WNV begins to propagate from New York in 1999. (b) In the second year the wave front travels 187 km to the north and 1100 km to the south. (c) The wave front

travels 1100 km to the west in 2001. (d) The wave front travels 1300 km in 2002, disregarding the isolated cases appeared in California state.
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wave speed increases substantially for a biting rate of b ¼ 0:3 than
for b ¼ 0:1. This is in agreement with the diffusion sensitivity
analysis, shown in Fig. 5.

Hence, the sensitivity of the wave speed with respect to
diffusion and advection is more considerable for b ¼ 0:3 than for
b ¼ 0:1. In both cases, the propagation of WNV disease across the
USA can be explained as a combination of diffusion and advection
movements. However, for b ¼ 0:5, advection is unnecessary.
5. Geographic spreading of WNV

WNV was identified in New York City in 1999, and since then it
has propagated to the south and to the east regions of the USA.
The front of disease traveled 187 km to the north and 1100 km to
the NC state, in the south, in the second year (2000). In the third
year (2001), the wave front traveled 312 km to the north
(ME state), reaching the border, and traveled 1100 km to the west.
In the fourth year (2002), the wave front traveled 1300 km to the
west, to the CO and WY states. Some isolated cases appeared in
California, but they were not taken into account in the wave speed
assessment. In the fifth year (2003), the wave front reached the
California state, traveling 1200 km. Fig. 7 shows the propagation of
WNV from New York to California state (DeBiasi and Tyler, 2006).
In the south and the west directions, the range of the wave speed
is 3–3.5 km/day.

If we consider the mean diffusion coefficient for the avian
population Da ¼ 6 km=day, the wave speed obtained for b ¼ 0:3 is
1:98 km=day (722.7 km/year), i.e., the wave front is underesti-
mated. In this case, we must add an advection velocity in the
range of 1.65–2.37 km/day to the south and west, and the speed of
the wave front increases to 1100–1300 km/year (3–3.5 km/day).
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That range for advection velocity decreases the wave front,
in the opposite direction in the range of 319–422 km/year
(0.87–1.15 km/day). If we consider b ¼ 0:1 and an advection
velocity of 2 km/day in the south direction, the wave front is
stopped to the backward, that is, WNV disease cannot be
disseminated to the north.

Different stopover strategies for refuelling are used by the
birds during their migration journeys (Erni et al., 2002). The birds
spend some days at the stopover sites, and could disseminate the
disease. Small advection of the birds can be considered due to
stopover during migration.

Different wave speeds obtained by considering intermediate
biting rates and small advection movements can explain the
speed of disease dissemination obtained in field data in different
directions. The common grackle, one of the most competent birds
in disseminating WNV, the American crow, the ring-billed gull
and the fish crow, in high densities, follow the southeastern US
route. However, between stopover sites, each bird follows its own
migration path, so flock membership changes continuously
(Rappole et al., 2000). Those behaviors are favorable to the
dissemination of WNV disease in the southwest route followed by
these birds.

The blue jay, another competent bird in the dissemination of
WNV, follows this route of migration. The westward extension in
the winter range of the blue jay banded in New York indicates that
these birds migrate in a somewhat southwestwardly direction
(Stewart, 1982). Another fact that can spread the virus inland, to
the west, is the elliptical migration routes used by many songbirds
(blue jay, house finch and black-billed magpie). This relatively
common pattern concentrates songbirds along the Atlantic sea-
board during the fall migration, but more inland during the spring
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Fig. 8. Non-dimensional wave speed cmin as a function of the transmission

probabilities for the blue jay parameters with b ¼ 0:5. The wave speed is

symmetric with respect to the transmission probabilities, because polynomial

(29) gives the wave speed and is symmetric with respect to these parameters.

When R0o1, see Fig. 1 (b), the wave speed is zero.

Table 4
Transmission probabilities and vertical transmission parameters for mosquitoes.

Name ba bv p

Culex tarsalis 0.65 0.75 0.007

Cx. p. pipiens 0.28 1.0 0.002

Cx. p. quinquefasciatus 0.52 0.1 0.003
(Reed et al., 2002). The house sparrow is a resident songbird, and
then it is less competent in WNV dissemination.

In the wildlife, different species of mosquitoes and birds
coexist. For this reason, we study the effects of transmission
probabilities in the avian and mosquito populations on the wave
speed.

Fig. 8 shows the variation of the wave speed as a function of
transmission probabilities (ba;bv), considering the blue jay
parameters. When R0o1, see Fig. 1, the wave speed is null, and
the disease does not propagate. The wave speed is symmetric with
respect to transmission probabilities, then the effort to control the
disease is the same in the avian and mosquito populations. When
probabilities are near 1, the wave speed is near cmin ¼ 1:5. For
Da ¼ 6 km2=day and b ¼ 0:5, the wave speed is Vmin ¼ 5:8 km=day.
This is an upper bound for the wave speed. The upper bound of
the range of ba estimated for the fish crow, the common grackle
and the blue jay is less than 1, being 0:052pbap0:136, hence the
velocity is less than 3 km/day.

Culex spp. of mosquitoes are likely to play the major role in the
enzootic maintenance and transmission of WNV in California. The
competence study among 10 Californian species was done in
Goddard et al. (2002). For Culex spp., except for Cx. quinqufasciatus,
the infection was between 58% and 100%. However, for Cx.

quinqufasciatus, the infection rate was lower than 15%. Cx. tarsalis

was the most efficient vector transmitting the virus in laboratory
experiments, near 60%, followed by Cx. p. quinqufasciatus, which
was infected closely to 52%. Cx. p. pipiens showed a moderate
transmission rate ranging from 19% to 36%. We calculate the wave
speed considering the different transmission rate values (ba;bv)
presented in that work (Table 4).

When we consider b ¼ 0:3, Cx. tarsalis and Cx. p. pipiens are able
to propagate the disease. The wave speed for Cx. tarsalis is
1.61 km/day (587.65 km/year), and for Cx. p. pipiens, the value
obtained is 1.21 km/day (441.65 km/year). Cx. quinquefasciatus is
not able to propagate the disease. With respect to bird
parameters, we considered the values for the blue jay (Table 2).

Comprehensive mosquito surveillance and control plan are
done in New York City Department of Health and Mental Hygiene
(2004) to avoid WNV disease. It is important to understand the
role of the mosquito’s mortality rate mv in the disease dynamics
and, also in the wave speed. Moreover, understanding the role of
ma is important to predict the spread of the disease before the
onset of human illness (New York City Department of Health and
Mental Hygiene, 2004). Additionally, reliable assessment of the
different mortality rates among birds is important because
different species can transmit WNV differently.

Fig. 9 shows the wave speed as a function of mortality rates
(ma;mv), considering the blue jay parameters. Again, when R0o1,
see Fig. 1, the wave speed is zero. We observe that lower avian
mortality values imply higher efforts to control the wave speed.
The wave speed cmin is in the range of 0–0.798, i.e., for
Da ¼ 6 km2=day and b ¼ 0:5, we have 0–3.09 km/day, an upper
bound for the wave speed corresponding to the blue jay, which is
3.03 km/day. If control mechanisms are applied, in order to
increase the mosquito’s mortality from 0:024 to 0:24, the wave
speed decreases from cmin ¼ 0:789 (3.03 km/day) to cmin ¼ 0:65
b Vmin (km/day) b Vmin (km/day)

0.5 2.59 0.3 1.61

0.5 2.1 0.3 1.21

0.5 0.71 0.3 –
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Fig. 9. Non-dimensional wave speed cmin as a function of the mortality rates for

the blue jay parameters with b ¼ 0:5. When R0o1, see Fig. 1(a), the wave speed is

zero. We can observe that in this case the wave speed is not symmetric. Assuming

that the mosquito population is constant, mosquito control is efficient to reduce

the disease propagation.

N.A. Maidana, H.M. Yang / Journal of Theoretical Biology 258 (2009) 403–417412
(2.5 km/day). Higher avian mortality values ma provide a more
efficient mosquito control.

Note that higher values for mosquito mortality rate decrease
the wave speed more than do higher avian mortality values,
although the movement is considered only in the avian popula-
tion. This fact arises because the infected avian subpopulation is
not reduced only by avian mortality, but also by disease-induced
mortality and by the recovery rates. Vertical transmission is not a
considerable factor of WNV propagation for lower mosquito
mortality rate values. A higher vertical transmission value has
more effect on wave speed when high mosquito birth and
mortality (mv) rates are considered at the same time. This fact is
due to the expression of R0 having the term ð1� pÞmv in the
denominator. The biological meaning is that vertical transmission
supplies the infected mosquito subpopulation with more indivi-
duals than does the infection occurring among susceptible
individuals, and due to the fact that the entire population is
constant in this model, the increase in mortality rate mv increases
the birth rate equally.

Let us assess the effects of mosquito movements (diffusion
and/or advection) on the wave speed (Da0 or/and nva0). As was
done in Section 3, we study the existence of traveling wave
solution for the system of equations (15)–(18) by analyzing the
corresponding first-order system of equations given in Appendix
B.

The roots of the characteristic polynomial corresponding to the
linear system at the equilibrium point ðsa;u1; ia;u2; iv;u3;na;u4Þ ¼

ð1;0;0;0;0;0;1;0Þ are given by the roots of Q ðlÞ � TðlÞ, where

Q ðlÞ ¼ ½l2
� ðc þ naÞl� ma�

2 (30)

and

TðlÞ ¼ �El4
þ Fl3

þ Gl2
þ Hlþ J, (31)

where the coefficients are

E ¼
D

c
,

F ¼
c þ nv þ Dðc þ naÞ

c
,

G ¼
ðc þ naÞðc þ nvÞ � mvð1� pÞ

c
,

H ¼
�ðc þ nvÞðaa þ ga þ maÞ � mvðc þ naÞð1� pÞ

c
,

J ¼
ð1� pÞmvðga þ ma þ aaÞ

c
ðR0 � 1Þ

with R0 given by (14). The polynomial Q ðlÞ is the same as in the
case D ¼ 0 and always has real roots. Then the polynomial TðlÞ
must carry the conditions for the existence of the minimum
speed. Again, the equation to obtain the minimum velocity results
from the condition that the polynomial evaluated at the unique
local minimum, l1

þ, must be zero, that is, Tðl1
þÞ ¼ 0 (see Appendix

B).
Note that when the diffusion and advection movements of

mosquitoes are not considered (D ¼ 0 and nv ¼ 0), the polynomial
TðlÞ ¼ PðlÞ, that is, the wave speed is the same. When the
diffusion and advection movements are considered, an increase in
the wave speed is obtained.

When we consider the parameters for the blue jay with
b ¼ 0:5, without mosquito movements (Dv ¼ 0), we obtain a
non-dimensional wave speed cmin ¼ 0:784. For Da ¼ 6 km2=day,
the dimensional wave is Vmin ¼ 3:03 km=day. If we allow for
diffusion movement in the mosquito population, a value of
Dv ¼ 0:02 km2=day, Harrington et al. (2005), we have
D ¼ Dv=Da ¼ 0:02=6, and the non-dimensional wave speed ob-
tained is cmin ¼ 0:785. For dimensional parameters, the wave
speed is Vmin ¼ 3:04 km/day. When we decrease the biting rate to
b ¼ 0:3, for D ¼ 0, the non-dimensional wave speed is
cmin ¼ 0:662, i.e., Vmin ¼ 1:98 km=day. When the diffusion move-
ment of mosquitoes is considered, we have D ¼ 0:02=6, and the
wave speed is increased to cmin ¼ 0:663, i.e., Vmin ¼ 1:99 km=day.
The diffusion movement of mosquitoes is not a significant factor
in the spread of WNV.

When the advection movement of the mosquito population is
considered, an average value of nv ¼ 0:05 km=day, the wave speed
increases from 3.04 km/day (without advection) to 3.06 km/day
for a biting rate of b ¼ 0:5, and from 1.99 km/day to 2.01 km/day
for a biting rate of b ¼ 0:3. The transport and the diffusion
movements of mosquitoes are not important in WNV dissemina-
tion, in opposition to bird movements, which are the dominant
parameters in the variation of the wave speed of disease
dissemination.
6. Numerical estimation of the wave speed

Finally, numerical simulations were performed (FlexPDE,
2005), using the non-dimensional system corresponding to the
dimensional system of equations (1)–(5) and the dimensional
parameters given in Table 2, plus the dimensional parameters
Da ¼ 6 km=day for bird diffusion. The remaining parameter na,
bird advection, is allowed to vary. We do not consider diffusion
and advection movements, Dv ¼ nv ¼ 0, because they have little
effect on the wave speed. The initial and boundary conditions are
given by

Iaðx;0Þ ¼
1; jxjp1=2;

0; jxj41=2

(
(32)

and

Saðx;0Þ ¼ N0
a ; Raðx;0Þ ¼ 0; Naðx;0Þ ¼ N0

a ,

Svðx;0Þ ¼ N0
v; Iv ¼ 0. (33)

These conditions portray the local introduction of one infectious
bird in a disease-free region. For the boundaries, we apply the null
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Neumann conditions:

qSa

qx
ð�L; tÞ ¼

qIa

qx
ð�L; tÞ ¼

qRa

qx
ð�L; tÞ ¼

qNa

qx
ð�L; tÞ ¼ 0,

qSv

qx
ð�L; tÞ ¼

qIv

qx
ð�L; tÞ ¼ 0; t40. (34)

We consider an initial population of 100 mosquitoes and 20 birds
per km, i.e., m ¼ N0

v=N0
a ¼ 100=20 ¼ 5.

In Fig. 10 we show the disease dissemination when one
infected bird is introduced in a completely susceptible population
of mosquitoes and birds. The values of the parameters are those
given in Table 2 for the blue jay. Fig. 10(a) and (b) shows the
propagation of the first wave of epidemics (for the bird
population) at two times. On day 34:5 the wave front traveled
100 km. Ten days later, the wave front traveled 130.3 km. Hence,
the front wave epidemic traveled at speed V ¼ ð130:3 km�
100kmÞ=ð44:5 day� 34:5 dayÞ ¼ 3:03 km/day, which is in agree-
ment with the non-dimensional wave speed cmin ¼ 0:78 calcu-
lated with polynomial (29). This wave speed, obtained with a
biting rate equal to b ¼ 0:5, is near the front speed obtained from
field data (DeBiasi and Tyler, 2006). We remark that we did not
consider the advection movement of birds.
In Fig. 11 we show the disease propagation when one infected
bird is introduced in a completely susceptible population. In this
case, bird diffusion and advection are considered, assuming the
values Da ¼ 6 km2=day and na ¼ �1 km=day (preferential direc-
tion is to the left). Fig. 11(a) and (b) shows the propagation of the
first wave of epidemics two times. In this case, the wave front
traveled 100 km to the left on the 28th day, earlier than the case
without bird advection. Ten days later, the wave front traveled
137 km. Hence, the front wave of the epidemic traveled at speed
V ¼ ð137 km� 100 kmÞ=ð38 day� 28 dayÞ ¼ 3:7 km/day. In the
right direction, the front wave traveled at the speed of
2.4 km/day. These wave speed values are consistent with the
dimensional wave speeds calculated with polynomial (29),
considering an advection to the left direction.
7. Conclusion

In this paper, we developed and analyzed a spatial propagation
model to understand the dissemination of WNV. For the spatially
homogeneous dynamics we determined, in non-dimensional
parameters, the threshold value:

R0 ¼
babv

ð1� pÞmvðga þ ma þ aaÞ
,



ARTICLE IN PRESS

N.A. Maidana, H.M. Yang / Journal of Theoretical Biology 258 (2009) 403–417414
which is the same obtained in Cruz-Pacheco et al. (2005). When
R0 is greater than 1, the endemic state of the disease exists. We
study the wave speed for the traveling waves by connecting this
endemic point with the disease-free equilibrium point. An
equation for the minimum speed was determined as a function
of the parameters of the model and the threshold R0.

The speed of the epidemic waves was assessed with respect
to the model’s parameters. The dependence of the wave
speed on vertical transmission was studied. As the movement
of mosquitoes is smaller than that of birds, we obtained that
vertical transmission is not an important factor for spatial
propagation.

The wave speed was studied as a function of avian diffusion,
without advection. Choosing Da ¼ 6 km2=day, which corresponds
to the average value in the range estimated by Okubo (1998) for
avian diffusion, we obtained wave speeds of 3.03 km/day for a
biting rate of b ¼ 0:5 and of 1.98 km/day for b ¼ 0:3.

The speed obtained by Lewis et al. (2006) for b ¼ 0:3, and from
a simplified model that disregarded vertical transmission, the
WNV death rate and the avian recovered subpopulation, was
2.74 km/day. This is higher than 1.98 km/year, which was obtained
considering the recovery and the avian disease-induced mortality
rates. Hence, both parameters play an important role in the
transmission dynamics, decreasing the wave speed. Different
biting rates were considered in previous works (Cruz-Pacheco
et al., 2005; Wonham et al., 2004; Lewis et al., 2006). The
wave speed shows high sensitivity with respect to these
parameters, telling us that these parameters must be estimated
with accuracy.

For b ¼ 0:3 we estimated the wave speed as 1.98 km/day,
which is an underestimation of the observed wave speed ranging
between 3–3.5 km/day (see maps in DeBiasi and Tyler, 2006 and
Fig. 7). In order to be comparable with the field data, advection
must be considered, which must be fall within the range of
1.65–2.37. The propagation from New York City to California state
can be explained by a combination of bird diffusion (random) and
advection (preferential direction) movements. The mosquito
movements (advection and diffusion) do not play an important
role in the increase in the wave speed. We stress that no advection
is needed for b ¼ 0:5, and that the diffusion movement alone
explains the WNV disease dissemination.

For intermediate values of the biting rate b, relatively small
advective movements must be added to the high diffusion
coefficient to explain the wave speed observed in the field data.
The field data showed the same speed of WNV dissemination in
both south and west directions from New York City. In the model
we considered only small advective movements to describe
stopover during long migratory routes.

The common grackle, the American crow, the ring-billed gull,
the fish crow and the blue jay are competent birds in disseminat-
ing WNV (see Table 3). They follow a route of migration in a
somewhat southwestwardly direction (Stewart, 1982). Another
fact that can spread the virus inland, to the west, is the elliptical
migration routes used by many songbirds (blue jay, house finch
and black-billed magpie). This relatively common pattern con-
centrates songbirds along the Atlantic seaboard during the fall
migration, but more inland during the spring (Reed et al., 2002).
The house sparrow is a resident songbird, and then it is less
competent for the spatial WNV dissemination.

The wave speed of WNV propagation was obtained and
analyzed by taking into account only one species of bird. The
coexistence of many species of birds with different diffusion
movements and competence for WNV transmission, which were
not considered in the literature yet, can be another important
factor to increase the wave velocity, and must be considered in the
modeling. In a future paper, we will analyze the effects of several
species of birds on the transmission dynamics and on the wave
speed, in order to determine the efficacy of control strategies.
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Appendix A. Stability analysis of the equilibrium points

In this section we analyze the stability of the equilibrium
points.
A.1. Stability of P0 ¼ ð1;0;0;1Þ

By linearizing system (10)–(13) at the equilibrium point P0, for
po1, we obtain the Jacobian matrix:

JðP0Þ ¼

�ma 0 �ba 0

0 �ma þ ga þ aa ba 0

0 bv �ð1� pÞmv 0

0 �aa 0 �ma

0
BBBB@

1
CCCCA.

The eigenvalues are �ma with multiplicity two, and the roots of
the polynomial:

p1ðlÞ ¼ l2
þ ½aa þ ga þ ma þ ð1� pÞmv�l
þ ðaa þ ga þ maÞð1� pÞmvð1� R0Þ.

All the coefficients of the polynomial p1ðlÞ are positive if and only
if R0o1. Therefore, P0 is locally asymptotically stable if R0o1 and
is unstable if R041.

When p ¼ 1 the eigenvalues are�ma with multiplicity two, and
the roots of the polynomial:

p1ðlÞ ¼ l2
þ ðaa þ ga þ maÞl� babv.

Since the latter coefficient is less than zero, then for p ¼ 1 the
equilibrium point P0 is always unstable.
A.2. Stability of P1 ¼ ðS
�

a; I
�
a; I
�
v;N

�
aÞ

The non-trivial equilibrium point P1 exists if and only if R041.
This condition implies that S�aX0, I�aX0, I�vX0 and N�aX0. The local
stability is determined by the roots of DetðlId� JðP1ÞÞ given by

lþ
baI�v
N�a
þ ma 0

baS�a
N�a

�
baS�aI�v
ðN�aÞ

2

�
baI�v
N�a

lþ ma þ ga þ aa �
baS�a
N�a

baS�aI�v
ðN�aÞ

2

0 �
bvð1� I�vÞ

N�a
lþ

bvI�a
N�a
þ ð1� pÞmv

bvð1� I�vÞI
�
a

ðN�aÞ
2

0 aa 0 lþ ma

�����������������

�����������������

,

where Id is a 4� 4 identity matrix. Adding the second row of
ðlId� JðP1ÞÞ to the first one and using the equalities in the
equilibrium:

aa þ ga þ ma ¼
baS�aI�v
I�aN�a

,

bvI�a
N�a
þ ð1� pÞmv ¼

bvI�a
N�aI�v

(35)
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we obtain the equivalent matrix:

lþ ma lþ
baS�aI�v
I�aN�a

0 0

�
baI�v
N�a

lþ
baI�vS�a
I�aNa

a

�
baS�a
N�a

baS�aI�v
ðN�aÞ

2

0 �
bvð1� I�vÞ

N�a
lþ

bvI�a
I�vN�a

bvð1� I�vÞI
�
a

ðN�aÞ
2

0 aa 0 lþ ma

�����������������

�����������������

.

Then, the roots of DetðlId� JðP1ÞÞ are �ma, and the roots of

p2ðlÞ ¼ l3
þ a2l

2
þ a1lþ a0,

where

a2 ¼
ma

S�a
þ
baI�vS�a
I�aN�a

þ
bvI�a
I�vN�a

40,

a1 ¼
mabbI�a
S�aI�vN�a

þ
babvS�aI�v
ðN�aÞ

2
þ
baI�vðmaN�a � aaI�aS�aÞ

I�aðN
�
aÞ

2
,

a0 ¼
mabvbamaðN

�
a � S�aÞ

ðN�aÞ
3

þ
mababvS�aI�v
ðN�aÞ

3
�
aababvS�aI�a
ðN�aÞ

3
. (36)

From the Routh–Hurwitz criterion, it follows that all the
eigenvalues have a negative real part if and only if, a240, a040
and a2a14a0. Trivially, we have a240.

Using N�a � S�a ¼ ððga þ maÞI
�
aÞ=ma, a0 becomes

a0 ¼
babvI�a½ðga þ maÞ � aaS�a�

ðN�aÞ
3

þ
aababvS�aI�a
ðN�aÞ

3
. (37)

Using the equilibrium point s�a ¼ ð1� ðga þ ma þ aaÞI
�
aÞ=ma, we have

a0 ¼

babvI�a ðga þ ma � aaÞ þ aa
ðga þ ma þ aaÞI

�
a

ma

� �
ðN�aÞ

3

þ
babvS�aI�v
ðN�aÞ

3
40

because we assumed that aaoga þ ma as in Cruz-Pacheco et al.
(2005). Finally, we have

a2a14
bvI�a
I�vN�a

baI�vðmaN�a � aaI�aS�aÞ

I�aðN
�
aÞ

2
þ
baI�vS�a
I�aN�a

mabvI�a
S�aI�vN�a

4
bvbamaN�a
ðN�aÞ

3
þ

babvmaS�aI�v
N�aðN

�
aÞ

2
� 1
�
aababvS�aI�a
ðN�aÞ

3

4
bvbamaðN

�
a � S�aÞ

ðN�aÞ
3

þ
babvmaS�aI�v
ðN�aÞ

3
�
aababvS�aI�a
ðN�aÞ

3
¼ a0.

Then in the case po1, the equilibrium point P1 is locally
asymptotically stable if and only if R041.

For p ¼ 1 the eigenvalues are �ma, bvI�a=N�a and the roots of the
polynomial

p3ðlÞ ¼ l2
þ

ba

N�a
þ 2ma þ ga þ aa

� �
l

þ ðaa þ ga þ maÞ
ba

N�a
þ ma þ aa

baS�a
ðN�aÞ

2

" #
.

All the coefficients of p3 are positive, then P1 is always stable.

−0.5 0 0.5 1

λ

Fig. 12. Graph of the polynomial PðlÞ for different values of the parameter c. For

c ¼ 0:72, we have only one real root; for cmin ¼ 0:78, a double real root; and for

c ¼ 0:84 and 0.9, three real roots, taking into account the non-dimensional

parameters corresponding to those given in table non-dimensional parameters for

the blue jay, with p ¼ 0:007 and na ¼ 0.
Appendix B. Traveling waves

In this section, we present the analysis of the speed of the
traveling wave solutions.
B.1. Wave speed for the case without mosquito movements

By linearizing the system of first-order system corresponding
to Eqs. (19)–(25) at the equilibrium point ð1;0;0;0;0;1;0Þ, we
obtain the Jacobian matrix:

J ¼

0 1 0 0 0 0 0

ma c þ na 0 0 ba 0 0

0 0 0 1 0 0 0

0 0 ma þ ga þ aa c þ na �ba 0 0

0 0
bv

c
0 �

mvð1� pÞ

c
0 0

0 0 0 0 0 0 1

0 0 aa 0 0 ma c þ na

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

The roots of the characteristic polynomial are the roots of
Q ðlÞ � PðlÞ, where Q ðlÞ and PðlÞ are given by (28) and (29). The
polynomial Q ðlÞ always has two double real roots:

l1;2 ¼
1
2fc þ na þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc þ naÞ

2
þ 4ma

q
g

and

l3;4 ¼
1
2fc þ na �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc þ naÞ

2
þ 4ma

q
g.

For the polynomial PðlÞ, in the case when we assume the existence
of the endemic state, i.e., R041, we have

Pð0Þ ¼
ð1� pÞmvðga þ ma þ aaÞ

c
ðR0 � 1Þ40.

Moreover, it is easy to verify that

lim
l!�1

PðlÞ ¼ �1;
dPðlÞ

dl

����
l¼0

¼ �ðaa þ ga þ maÞ �
mvðc þ naÞð1� pÞ

c
o0,

which implies that PðlÞ always has one negative real root.
The remaining two roots can be either positive real or complex

numbers. In order to obtain the minimum wave speed, we
determine the condition such that the imaginary part of the
complex root must be zero (or, the roots must be real numbers).
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This condition is satisfied when the positive real roots are equal,
from which we determine the wave speed (see Fig. 12). The
condition to obtain the double roots follows an easy calculation:
the polynomial evaluated at the unique local minimum, lþ, is
zero, that is, PðlþÞ ¼ 0, where

lþ ¼ 1
3f�Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2
� 3B

p
g.
B.2. Wave speed for the case considering diffusion and advection in

the mosquito population

To establish the traveling wave solution we analyze the
following first-order system of equations:

dsa

dz
¼ u1, (38)

du1

dz
¼ ðc þ naÞu1 � ma þ

baiv
na

sa þ masa, (39)

dia

dz
¼ u2, (40)

du2

dz
¼ ðc þ naÞu2 �

baiv
na

sa þ ðga þ ma þ aaÞia, (41)

div

dz
¼ u3, (42)

du3

dz
¼

1

D
ðc þ nvÞu3 � bvia

ð1� ivÞ

na
þ ð1� pÞmviv

� �
, (43)

dna

dz
¼ u4, (44)

du4

dz
¼ ðc þ naÞu4 � ma þ maZa þ aaia, (45)

where the boundary conditions are

lim
z!�1

ðsaðzÞ;u1ðzÞ; iaðzÞ;u2ðzÞ; ivðzÞ;u3ðzÞ;naðzÞ;u4ðzÞÞ

¼ ð1;0;0;0;0;0;1;0Þ (46)

and

lim
z!1
ðsaðzÞ;u1ðzÞ; iaðzÞ;u2ðzÞ; ivðzÞ;u3ðzÞ;naðzÞ;u4ðzÞÞ

¼ ðS�a;0; I
�
a;0; I

�
v;0;N

�
a;0Þ. (47)

When Da0 and nv ¼ 0, the characteristic polynomial has the
roots given by Q ðlÞ � TðlÞ, where Q ðlÞ and TðlÞ are given by (30)
and (31). The polynomial Q ðlÞ is the same as for D ¼ 0 and nv ¼ 0,
and has then always two double real roots.
For the fourth-degree polynomial TðlÞ, in the case where we
assume the existence of the endemic state, i.e., R041, we have (as
in the case D ¼ 0 and nv ¼ 0)

Tð0Þ ¼ ð1� pÞmvðga þ ma þ aaÞðR0 � 1Þ40

and

lim
l!�1

TðlÞ ¼ �1;
dTðlÞ

dl

����
l¼0

¼ � cðaa þ ga þ maÞ � mvðc þ naÞð1� pÞo0,

which implies that TðlÞ always has one negative real root.
The new fact for this fourth-degree polynomial is

lim
l!þ1

TðlÞ ¼ �1,

which implies that TðlÞ always has one positive real root.
The remaining two roots can be either positive or conjugate

complex roots. As in the case D ¼ 0 and nv ¼ 0, the condition that
determines the wave speed is Tðl1

þÞ ¼ 0, the polynomial evaluated
at the unique local minimum (see Fig. 13).

In Fig. 13(a) we show the polynomial TðlÞ for different values of
c. The curves of the polynomial have four roots, two of which are
always real numbers, one negative and the other positive. As in
the case D ¼ 0 and nv ¼ 0, the wave speed is determined when we
have the double real roots evaluated at the local minimum. For
D ¼ 1=6 and nv ¼ 0, this value is c ¼ 0:82. In Fig. 13(b) we fix the
value c ¼ 0:78. When we consider D ¼ 0, we have a double root,
because this is the wave speed when the mosquito movements are
not considered. When diffusion is considered, with a value of
D ¼ 1=6, we have two conjugate complex roots, and the value of c

must be increased (c ¼ 0:82) to obtain the double root. That is,
mosquito diffusion increases the wave speed.
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