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a b s t r a c t

Dengue is a human disease transmitted by the mosquito Aedes aegypti. For this reason geographical
regions infested by this mosquito species are under the risk of dengue outbreaks. In this work, we pro-
pose a mathematical model to study the spatial dissemination of dengue using a system of partial differ-
ential reaction–diffusion equations. With respect to the human and mosquito populations, we take into
account their respective subclasses of infected and uninfected individuals. The dynamics of the mosquito
population considers only two subpopulations: the winged form (mature female mosquitoes), and an
aquatic population (comprising eggs, larvae and pupae). We disregard the long-distance movement by
transportation facilities, for which reason the diffusion is considered restricted only to the winged form.
The human population is considered homogeneously distributed in space, in order to describe localized
dengue dissemination during a short period of epidemics. The cross-infection is modeled by the law of
mass action. A threshold value as a function of the model’s parameters is obtained, which determines
the rate of dengue dissemination and the risk of dengue outbreaks. Assuming that an area was previously
colonized by the mosquitoes, the rate of disease dissemination is determined as a function of the model’s
parameters. This rate of dissemination of dengue disease is determined by applying the traveling wave
solutions to the corresponding system of partial differential equations.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The dengue virus is transmitted by arthropods of the genus
Aedes. The cosmotropical mosquito, Aedes aegypti (Linn. Diptera:
Culicidae), serves as the most important domestic vector of dengue
and urban yellow fever. The dengue virus is prevalent in different
parts of the world and its epidemiological cycle comprises a human
host and a vector—the Aedes aegypti mosquito. Female A. aegypti
mosquitoes interact closely with humans as they need to feed on
human blood to fertilize their eggs, thus characterizing the urban
feature of this epidemic. As the dengue virus is pathogenic for hu-
mans and capable of transmission in heavily populated areas, it can
cause widespread and serious epidemics, appearing as a major
public health problem in many tropical and subtropical regions
of the world.

In Brazil, dengue disease is currently one of the main public
health challenges and has shown an increase in the number of
cases and in its geographical distribution over time. For instance,
in 1998, 537,507 cases of dengue were reported in 24 states, with
ll rights reserved.
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98 cases of hemorrhagic dengue in 9 states. In the same year, in the
state of São Paulo, 10,629 cases of dengue disease occurred in 102
municipalities, overcoming increased efforts expended by the pub-
lic health authorities on the control of A. aegypti. In 2000, there
were 230,910 cases of dengue, with 51 cases of hemorrhagic den-
gue in 8 states [1]. The re-emergence of dengue transmission in
Brazil could be due to deteriorating socioeconomic conditions,
climatic changes caused by global warming (e.g.: the ‘‘El Niño” phe-
nomenon), discontinuous sanitary activities, among other factors.

With respect to dengue disease, the dengue virus has four dif-
ferent serotypes with low cross-immunity among them, which
can result in secondary infections after an infection with one sero-
type has occurred. It is known that an individual infected with one
serotype can be infected with another serotype six months after
the first exposure, but there is no evidence of reinfection with
the same serotype. The dengue virus of all four serotypes cause
three distinct syndromes: classic dengue fever, dengue hemor-
rhagic fever (DHF) and dengue shock syndrome. Although caused
by the same virus, dengue and dengue hemorrhagic fever are
pathogenically, clinically and epidemiologically distinct.

There are many mathematical models dealing with the trans-
mission of dengue disease restricted only to one serotype. For
instance, Esteva and Vargas proposed a model where they deter-
mined the threshold conditions to assess vector control [2], analyz-
ing the effects of vertical transmission on the overall dengue
epidemics [3]. However, mathematical modeling regarding
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transmission of two different dengue serotypes is not an easy task.
Esteva and Vargas [4] obtained the basic reproduction numbers
regarding the first and secondary infections from a dengue trans-
mission model with two different serotypes. Derouich and Bou-
tayeb [5] proposed a model for studying the dynamics of two
serotypes of dengue epidemic. They considered that one of the
human subpopulations is comprised of individuals removed from
the first infection (e.g.: serotype 1) which were exposed to second-
ary infection (with a different serotype). Nevertheless, the dynam-
ics of this subpopulation follows a decreasing trajectory, in which
the initial input of primarily infected individuals is exhausted. A
spatially heterogeneous model was proposed by Cummings et al.
[6]. They analyzed the occurrence of spatially distributed dengue
hemorrhagic fever in Thailand via traveling waves by applying
the empirical mode decomposition (EMD) method. This method
was applied taking human movement into account, which is rele-
vant in the DHF patterns in Thailand. Tran and Raffy [7] considered
a spatial dengue model, but they did not consider human move-
ment because they were interested in local dengue dissemination
across small regions.

In this paper we propose a spatial dissemination of one sero-
type of the dengue virus, assuming that only adult mosquitoes
are allowed diffusive movement. In addition to this winged phase,
we attribute only one aquatic phase to the mosquito life cycle,
which encompasses eggs, larvae and pupae. The fast spread of
dengue disease can be explained by intense human movements
[6]. Our main task is to determine the speed of dengue dissemi-
nation following the invasion and colonization by A. aegypti mos-
quitoes in the state of São Paulo, Brazil. First, from a simple model
where only the mosquito population is allowed movements (dif-
fusion and advection), we obtain the equation for the speed of
dengue disease dissemination. This model should be a description
of dengue dissemination from vicinity to vicinity originated from
a single infectious individual introduced in a region; hence the
rate of dengue dissemination obtained this way can be under-
stood as a result of the movements by the mosquito population.
In addition, by taking the movements of humans into account,
we show numerically how the speed of dengue disease dissemi-
nation increases.

The state of São Paulo can be approximated roughly by a parallel-
ogram with a 690-km dimension in the Northwest-Southeast direc-
tion and 440 km in the Northeast-Southwest direction. The state of
São Paulo is located in a subtropical region, where summer is hot
and rainy and where A. aegypti was reintroduced in 1985 from the
North border, continuously advancing southwards [8]. The epidem-
ics of dengue serotype 1 was first observed in 1987, but its annual
occurrence systematically started in 1990; however, in 1996, den-
gue serotype 2 was introduced, and, in 2001, serotype 3 was detected
in the state of São Paulo [1]. The numbers of cases of dengue from
1995 until 2006 were, respectively, 6,048, 7,104, 2,040, 10,630,
15,082, 3,532, 51,668, 39,179, 20,390, 3,049, 5,433 and 50,022 [9].
In 2007, the number of cases was 64,661 up to September.

In this paper we deal with the invasion and colonization of A.
aegypti mosquitoes followed by the establishment of the dengue
epidemics. In Section 2, we develop a model for dengue transmis-
sion allowing movements only to mosquitoes, which is analyzed in
Section 3. In Section 4, we obtain the traveling wave solutions. In
Section 5, we also consider the movements of humans, and the
traveling wave solutions are obtained numerically. Finally, conclu-
sions are stated in Section 6.
2. Model for the transmission of dengue disease

Dengue disease is a vector-borne viral infection transmitted
among humans by mosquito bite during the blood meal. We pro-
pose a model by taking into account the human and the mosquito
populations.

Our aim is to describe the occurrence of dengue infection in a
region infested by mosquitoes, but free of disease. Another feature
of the model is the restriction of the movements only to the mos-
quito population in the spatial dengue dissemination, whereby we
disregard nonlocal effects, that is, the spread of the disease due to
intense movements of human individuals.

The human population is divided into susceptible, infected and
removed (or immune) individuals. The spatial densities at time t
are denoted by Hðx; tÞ, Iðx; tÞ and Rðx; tÞ, respectively. The human
population is under a constant per capita mortality rate lH . The
total population is designated by Nðx; tÞ ¼ Hðx; tÞ þ Iðx; tÞ þ Rðx; tÞ.

With respect to the mosquito population, we consider the
winged and aquatic (comprising eggs, larvae and pupae) subpopu-
lations, whose spatial densities are denoted by Mðx; tÞ and Aðx; tÞ,
respectively [10]. The per capita oviposition rate is rð1� A

k2
Þ, where

the intrinsic oviposition rate is denoted by r and k2 is the carrying
capacity (available amount of breeding sites) regarding the aquatic
form. The carrying capacity regarding the winged form is denoted
by k1, taking into account the fact that mosquitoes are not able to
survive at high altitudes. The per capita rate of maturation from
the aquatic form to the winged one is denoted by �c. The immature
(aquatic form) population of mosquitoes is under the per capita
mortality rate l2, and the per capita mortality rate of the winged
form is l1. With respect to the winged form, the susceptible and
the infected classes are designated by MSðx; tÞ and MIðx; tÞ, respec-
tively, and the total population is Mðx; tÞ ¼ MSðx; tÞ þMIðx; tÞ.

We assume the law of mass action to describe the transmission
of dengue infection among humans and mosquitoes. The constant
transmission coefficient b1, which measures the rate of effective
contact between uninfected mosquitoes and infected humans, is
the rate at which susceptible mosquitoes are infected when they
bite infectious humans. The other is b2, which measures the rate
of effective contact between uninfected humans and infected
mosquitoes.

These transmission coefficients depend on the average biting
rate b, the average transmission probability bV from human to vec-
tor, and bH , from vector to human, as in [2,3]. These parameters are
normalized by the constant human population N0, because in this
model we consider the ‘pseudo’ law of mass action regarding the
mosquito population. Hence, we have b1 ¼ bbV=N0 and
b2 ¼ bbH=N0. We consider b ¼ 0:5 (one bite every two days),
bV ¼ 1 and bH ¼ 0:75 as in [2,3]. The human population is assumed
to be N0 ¼ 150 per km2, considering the population and the terri-
tory of the state of São Paulo.

Considering the natural history of infection, the infected
humans are transferred at a rate �r to the removed (or immune)
class, remaining in this class forever. Hence, we assume lifelong
immunity among humans, but we do not consider immunity
among mosquitoes. Finally, we recall our assumption about the
geographical dispersal of A. aegypti, while humans are assumed
to be homogeneously distributed in space. Hence, both infected
and uninfected classes of mosquitoes are under diffusion by wings
and by winds, described by the diffusion parameter D and advec-
tion �m, respectively.

The model, which governs the spatial and temporal evolution of
the disease, is the following:

oMS

ot
¼ D

o2MS

ox2 � �m
oMS

ox
þ cA 1�M

k1

 !
� l1MS � b1MSI ð1Þ

oMI

ot
¼ D

o2MI

ox2 � �m
oMI

ox
� l1MI þ b1MSI ð2Þ

oA
ot
¼ r 1� A

k2

 !
M � l2A� cA ð3Þ
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oH
ot
¼ lHN � lHH � b2HMI ð4Þ

oI
ot
¼ b2HMI � �rI � lHI ð5Þ

oR
ot
¼ �rI � lHR; ð6Þ

where the non-negative parameters and variables were previously
defined for the model. The transmission coefficients b1 and b2 are
per capita quantities, since we are not dealing with fractions of
individuals.

Let us initially analyze the system of Eqs. (1)–(6) disregarding
dengue transmission. Adding up the last three equations of the sys-
tem, we obtain the density of the human population N,
N ¼ H þ I þ R, which is given by:

oN
ot
¼ oH

ot
þ oI

ot
þ oR

ot
¼ 0;

which yields a constant population due to the fact that we have
assumed that the overall input (comprising natality and immigra-
tions) is balanced by overall mortality (encompassing mortality
and emigration) lHN, and we are not taking into account the dis-
ease-induced mortality. Therefore N ¼ N0 is constant.

Now, adding up the first two equations of the system, with
Mðx; tÞ ¼ MSðx; tÞ þMIðx; tÞ, we have the equations for the dispersal
of the mosquito population:

oM
ot
¼ D

o2M
ox2 � �m

oM
ox
þ cA 1�M

k1

 !
� l1M

oA
ot
¼ r 1� A

k2

 !
M � l2A� cA:

This is the system of equations analyzed in [10] for the A. aegypti
dispersal dynamics in the absence of dengue disease.

Let us introduce the non-dimensional parameters to the system
of equations Eqs. (1)–(6). The winged and aquatic phases of the
mosquito population are scaled by the respective carrying capaci-
ties and the human population is scaled by the total population
N0 ¼ N; the time is scaled with respect to the oviposition rate r,
the spatial scaling is given by the square root of the quotient be-
tween mosquito diffusion and the oviposition rate,

ffiffiffi
D
r

q
. Therefore,

the non-dimensional parameters are:

MS ¼
MS

k1
; MI ¼

MI

k1
; A ¼ A

k2
; H ¼ H

N
; I ¼ I

N
; R ¼ R

N
ð7Þ

k ¼ k1

k2
; m ¼

�m
r

r
D

� �1=2
; c ¼ c

r
; l1 ¼

l1

r
; l2 ¼

l2

r
ð8Þ

b1 ¼
b1 N

r
; b2 ¼

b2k1

r
; lH ¼

lH

r
; r ¼

�r
r
: ð9Þ

Since R ¼ 1� H � I, we can omit the equation for R. Therefore, the
corresponding non-dimensional system is:

oMS

ot
¼ o2MS

ox2 � m
oMS

ox
þ c

k
Að1�MÞ � l1MS � b1MSI ð10Þ

oMI

ot
¼ o2MI

ox2 � m
oMI

ox
� l1MI þ b1 MSI ð11Þ

oA
ot
¼ kð1� AÞM � l2A� cA ð12Þ

oH
ot
¼ lH � lHH � b2HMI ð13Þ

oI
ot
¼ b2HMI � rI � lHI: ð14Þ

Note that the human population is normalized and the recovered
individuals are decoupled from the system.
3. Analysis of the spatially homogeneous dynamics

Let us analyze the spatially homogeneous dynamics, assuming
that the mosquito population has reached spatial homogeneity:

dMS

dt
¼ c

k
Að1�MÞ � l1MS � b1MSI ð15Þ

dMI

dt
¼ �l1MI þ b1 MS I ð16Þ

dA
dt
¼ kð1� AÞM � l2A� cA ð17Þ

dH
dt
¼ lH � lHH � b2H MI ð18Þ

dI
dt
¼ b2 H MI � rI � lHI: ð19Þ

The system of Eqs. (15)–(19) has three steady states. The steady
state with only the human population is given by

E0 ¼ ðM0
S ;M

0
I ;A

0
;H0; I0Þ ¼ ð0;0;0;1;0Þ:

This equilibrium point represents an area free of mosquitoes, which
can be invaded and colonized by the mosquito population if appro-
priate traveling front waves are achieved [10].

The second equilibrium represents regions where mosquitoes
are well established, but free of dengue disease:

E1 ¼ ðM1
S ;M

1
I ;A

1
;H1; I1Þ ¼ ðm�;0; a�;1;0Þ;

where

a� ¼ kð1� Q�1
0 Þ

kþ l2 þ c
and m� ¼ cð1� Q�1

0 Þ
l1kþ c

:

The biological feasibility for the existence of the mosquito popula-
tion implies that:

Q0 > 1; ð20Þ

where the ecological parameter Q0 is

Q0 ¼
c

l1ðcþ l2Þ
:

This condition can be written in terms of dimensional parameters,
resulting in the basic offspring number Q0,

Q0 ¼
c

cþ l2
� r

l1
:

This number gives the average number of female mosquitoes pro-
duced by one fertile mosquito. Indeed, the first term ð c

cþl2
Þ is the

probability for a viable egg laid by the female mosquito to survive
the entire aquatic phase and emerge as a female mosquito, and
the second term ð r

l1
Þ is the average number of viable eggs laid by

the emerging female mosquito during its entire lifespan. Note that
if the average number of female mosquitoes produced by one mos-
quito is higher than one ðQ0 > 1Þ, then the mosquito population
persists in the colonized region.

The third steady state, which corresponds to the disease at an
endemic level, is given by:

E� ¼ ðM�
S;M

�
I ;A

�
;H�; I�Þ;

where the coordinates are

M�
S ¼ m� �M�

I ; M�
I ¼
ð1� H�Þ lH

b2H�
; A� ¼ a�;

H� ¼ 1� ðlH þ rÞI�

lH
; I� ¼ l1lHðR0 � 1Þ

ðb1lH þ b1b2m�Þ ;

where the basic reproduction number R0 is given by



Table 2
Parameters regarding dengue disease transmission, Esteva and Vargas [2,3], Veronesi
[13]

Parameter Symbol Value

Per-capita contact rate—infection
among mosquitoes

b1 0.0033 km2/day

Per-capita contact rate—infection
among humans

b2 0.0025 km2/day

Life expectancy in humans lH
�1 60 years

Infectious period �r�1 7 days
Constant number of humans N 150 individuals/km2
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R0 ¼
b1b2m�

l1ðlH þ rÞ :

The equilibrium E� is biologically feasible if two conditions are sat-
isfied: a� > 0 and I� > 0. The first condition is satisfied if Q0 > 1,
while the second condition is verified if R0 > 1.

The stability of the equilibrium points is determined by Q 0 and
R0. We have the following results:

Theorem 3.1. The equilibrium point E0 ¼ ð0;0;0;1;0Þ is locally
asymptotically stable if and only if Q 0 < 1.

Proof. See Appendix A. h

This result is due to the fact that Q 0 < 1 is the condition for the
nonexistence of the mosquito population. This represents the stea-
dy state where mosquitoes are led to extinction and the disease
fades out.

Theorem 3.2. The equilibrium point E1 ¼ ðm�;0; a�;1;0Þ is locally
asymptotically stable if and only if Q 0 > 1 and R0 < 1.

Proof. See Appendix A. h

This means that the mosquito and human populations coexist
without disease. If Q0 > 1 and R0 > 1, then E� ¼ ðM�

S;M
�
I ;A

�
;H�; I�Þ

is locally asymptotically stable. This means that the conditions
for the existence of mosquitoes and the disease at an endemic level
must be satisfied. The study of this fact is done numerically, be-
cause the characteristic polynomial of the Jacobian matrix is a
fifth-degree polynomial.

The basic reproduction number R0, in terms of dimensional
parameters, is:

R0 ¼
b1N
l1
� b2k1m�

lH þ �r
:

This epidemiological parameter measures the average number of
secondary infections among mosquitoes produced by one infectious
mosquito in completely susceptible populations of humans and
mosquitoes. Note that b1N is the total transmission coefficient
among mosquitoes, and b2k1m� is the total quantity of infection
among humans. Therefore, the outbreaks of epidemics occur if
R0 > 1, but this condition must be achieved by the existence of mos-
quitoes, which is Q0 > 1 in order to have m� > 0.

The basic reproduction number is a threshold value, and also
determines the endemic level of the disease. The estimation of this
parameter is important for control strategies. For the dimensional
parameters, corresponding to an average temperature of 30 �C (for
other temperatures, see Table 5 below) listed in Tables 1 and 2, the
basic reproduction number is R0 ¼ 7:29. By changing only the den-
sity of human population to N0 ¼ 100 per km2, the basic reproduc-
tion number decreases to R0 ¼ 4:86. In both cases, the outbreak of
an epidemics can occur and propagate in a region that was previ-
ously free of disease.
Table 1
Parameters regarding A. aegypti invasion

Parameter Symbol Value

Diffusion coefficient D 1;25� 10�2 km2/day
Advection coefficient �m 5� 10�2 km/day
Period of time in aquatic form �c�1 5 day
Oviposition rate �r 10 day�1

Carrying capacity—winged form k1 25 individuals/km2

Carrying capacity—aquatic form k2 100 individuals/km2

Survival time in winged phase �l�1
1 35 days

Survival time in aquatic phase �l�1
2 18 days

The entomological parameters are those corresponding to 30 �C, Takahashi et al.
[10], Yang et al. [11] and Harrington et al. [12].
In the next section, we study the possible existence of the trav-
eling wave solutions connecting the steady states E0 with E1 and E1

with E�. The first connection concerns the mosquitoes colonizing
some region and, then, the disease begins to propagate in this re-
gion if the second connection is allowed.

4. Traveling wave solutions

We study two situations. The first scenario corresponds to the
human population free of mosquitoes; then an invasion of mosqui-
toes occurs, which was studied in [10]. The second situation con-
siders that the mosquito population is well established among
humans but that dengue disease is absent. In this scenario, we ana-
lyze the dissemination of dengue disease when a small number of
infective individuals (humans and/or mosquitoes) is introduced
into this community. Hence, we seek the existence of traveling
wave solutions connecting E0 with E1 and E1 with E�, respectively,
to describe the first and the second scenarios.

In order to obtain the traveling wave solutions, we must deter-
mine the minimum speed of these waves [14,15], because it is sta-
ble and represents the observable trajectory of the dynamics
system [16,17]. The traveling wave solutions, when they exist,
must be represented by:

ð ~msðx; tÞ; ~miðx; tÞ; ~aðx; tÞ; ~hðx; tÞ;~ıðx; tÞÞ
¼ ðmsðzÞ;miðzÞ; aðzÞ; hðzÞ; iðzÞÞ;

where z ¼ xþ ct, and c is a constant speed [14]. By applying this
change of variable to the system of Eqs. (10)–(14), we obtain the
corresponding non-dimensional system of the first-order ordinary
differential equations:

dms

dz
¼ u; ð21Þ

du
dz
¼ ðc þ mÞu� c

k
ð1�mÞaþ l1ms þ b1ms i ð22Þ

dmi

dz
¼ v; ð23Þ

dv
dz
¼ ðc þ mÞvþ l1mi � b1 ms i ð24Þ

da
dz
¼ ð1=cÞðkð1� aÞm� l2a� caÞ ð25Þ

dh
dz
¼ ð1=cÞðlHn� lHh� b2h miÞ ð26Þ

di
dz
¼ ð1=cÞðb2 h mi � ri� lHiÞ: ð27Þ

Let us apply this system of equations to describe the mosquito inva-
sion and the spread of dengue.

4.1. A. aegypti invasion

Let us first assess, in the three-dimensional submanifoldeM ¼ fðms;u;mi; v; a;h; iÞ : mi ¼ 0; v ¼ 0;h ¼ 1; i ¼ 0g;
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the existence of traveling wave solutions connecting E0 with E1,
which represents the mosquito invasion in regions previously free
of mosquitoes. The traveling wave solutions, if they exist, must sat-
isfy the boundary conditions:

ðmsð�1Þ;uð�1Þ;mið�1Þ; vð�1Þ; að�1Þ;hð�1Þ; ið�1ÞÞ ¼ bE0

¼ ð0;0;0;0;0;1;0Þ

and

ðmsð1Þ;uð1Þ;mið1Þ; vð1Þ; að1Þ; hð1Þ; ið1ÞÞ ¼ bE1

¼ ðm�;0;0;0; a�;1;0Þ:

The zeros in both equilibrium points bE0 and bE1 deserve some
comment. Considering the submanifold eM , the unique zero in the
second equilibrium point bE1 corresponds to the derivative of ms.
However, the first equilibrium point bE0 has two more zeros corre-
sponding to mosquitoes in the adult and aquatic phases, which
must not be negative densities. Due to this constraint, we impose
that the linear system solutions must not oscillate, i.e., the eigen-
values corresponding to bE0 must assume real values. The stability
of the equilibrium point bE0 with respect to the linear system of
Eqs. (21)–(27) is now assessed. The corresponding eigenvalues are:

k1 ¼ �
lH

c
; k2 ¼ �

lH þ r
c

; k3;4 ¼
1
2

c þ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc þ mÞ2 þ 4l1

q� �
;

which are real, plus the roots of the third-degree polynomial:

PðkÞ ¼ k3 þ �ðc þ mÞ þ ðl2 þ cÞ
c

� �
k2

� l1 þ ðc þ mÞ ðl2 þ cÞ
c

� �
kþ l1ðcþ l2ÞðQ 0 � 1Þ

c
: ð28Þ

We are dealing with the biological system, whose variables describe
the densities of individuals. Hence, all solutions must be positively
defined in order to avoid the dynamic trajectories oscillations
around the trivial equilibrium point. This constraint is obeyed if
all the eigenvalues assume real values. This condition determines
the equation for the speed of invasion, when c satisfies PðkþÞ ¼ 0,
where kþ is the minimum extremum of polynomial (28). See
Appendix B for more details. Polynomial (28), which depends on
the model’s parameters, was used in [10] to assess the control strat-
egies in order to avoid mosquito invasion.

Using the set of entomological parameters corresponding to
30 �C given in Table 1, and disregarding the advection movement,
the speed of invasion was determined to be �c ¼ 75:46 km/year,
which was obtained by solving equation PðkþÞ ¼ 0, where the poly-
nomial is given by (28). Taking into account the temperature-
dependent entomological parameters [11], the calculations of the
theoretical front wave speeds for different temperatures are given
in Table 3. If we consider the advection movement, �m ¼ 18:25 km/
year, [10], we obtain �c ¼ 89:67 km/year for 30 �C.

Let us now study the invasion of mosquito A. aegypti in the state
of São Paulo, Brazil, by taking into account the maps of A. aegypti
Table 3
Entomological parameters regarding A. aegypti for three different temperatures, Yang
et al. [11]

(�C) r (day�1) �c�1 (day) l1
�1 (day) l2

�1 (day) Invasion speed
(km/year)

15 1.52 52.63 26.3 50 22
20 3.97 13.51 27 34.5 45.6
25 6.95 8.26 29.4 17.2 60.14
30 10 5 35 18 75.46

By considering these values we calculated the theoretical front wave speed, disre-
garding the advection movement ð�m ¼ 0Þ.
colonization, temperature and rainfall found in [8]. Roughly, the
shape of the state of São Paulo can be approximated as a parallel-
ogram. On the southern border, we have the Atlantic Ocean, and on
the northern border, we have the state of Mato Grosso. On the east
side, we have two states: Rio de Janeiro, occupying a small part in
the extreme of the southern border, and the state of Minas Gerais,
occupying almost all of the eastern border. On the western border,
we have the state of Paraná.

We briefly describe the invasion of A. aegypti in the state of S ão
Paulo A. aegypti invasion initiated in the state of Mato Grosso and
moved southwards to the Atlantic Ocean. Table 4 shows the dis-
tance traveled by the front wave of invasion for different years,
with an average speed of 46.55 km/years during the time of obser-
vation 1985–1994. The northern region of the state of São Paulo is
characterized by an annual mean temperature above 18 �C and an
annual mean rainfall less than 1,400 mm [8]. The central and
southern regions of the state of São Paulo present annual mean
temperature and rainfall of, respectively, 17 �C and 1500 mm [8].

The invasion of A. aegypti began in the state of Mato Grosso, on
the northern border of the state of São Paulo. The northern borders
of the state of São Paulo are characterized by favorable conditions
(high temperature and humidity), for which we observed a quick
speed of invasion during the first six years, with the maximum
speed occurring in the year 1990–1991, that is, 78.85 km/year.
The central and southern regions of the state of São Paulo are char-
acterized by less favorable conditions, and the speed of invasion of
mosquitoes diminished by half during the last three years, with the
minimum speed of the front wave of A. aegypti in 1992–1993, that
is, 19.71 km/year. In 1994, the year of the last record provided in
[8], the mosquito invasion occurred around 200 km far from the
southern border, the Atlantic Ocean. The observed speeds of the
mosquito invasion seem to indicate that abundance of rain should
not be a favorable condition for the establishment of A. aegypti.
However, the temperature plays a major role in the spreading of
the mosquito.

We compare the observed average speed of A. aegypti invasion
throughout nine years, 46.55 km/years, with the theoretical speed
of front wave given in Table 3. The estimated speed of invasion can
be matched to the theoretical speed of 45.6 km/year corresponding
to a temperature of 20 �C. Notice that for the temperature between
15 and 30 �C, the theoretical wave speed varies from 22 to
75.46 km/year. Both lower and upper bounds of theoretical speeds
of the front waves are very close to the minimum and maximum
speeds of invasion observed in the state of São Paulo.

4.2. Dengue dissemination

Let us suppose that A. aegypti successfully colonized a region,
for instance, the state of São Paulo. Our task is to assess the dissem-
ination of dengue disease, determining the speed of the front wave
of the disease. As we have previously pointed out, we are allowing
movements only for the vector population. The reason is to deter-
mine the minimum speed of dengue dissemination, which can be
Table 4
Displacement of the front wave of A. aegypti mosquitoes in the state of São Paulo
according to the time of invasion

Year Mosquito dispersal (km)

1985–1986 49.28
1986–1987 64.06
1987–1988 34.5
1988–1989 64.06
1989–1990 54.2
1990–1991 78.85
1991–1992 29.67
1992–1993 19.71
1993–1994 24.64
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understood as the contribution of vector movements to the spread-
ing of dengue disease. This knowledge can help health authorities
to mark bounds of the region where interventions must be applied
against mosquitoes as soon as an infectious individual is detected.

Now we search traveling wave solutions connecting bE1 with bE�.
By doing this we focus on the scenario where dengue disease is
emerging (or re-emerging) in regions that were previously free of
this disease. This means that the traveling wave solutions must
link the boundary conditions:

ðmsð�1Þ;uð�1Þ;mið�1Þ; vð�1Þ; að�1Þ;hð�1Þ; ið�1ÞÞ ¼ bE1

¼ ðm�;0;0;0; a�;1;0Þ

and

ðmsð1Þ;uð1Þ;mið1Þ; vð1Þ; að1Þ; hð1Þ; ið1ÞÞ ¼ bE�
¼ ðM�

S;0;M
�
I ;0;A

�
;H�; I�Þ:

Again, the zeros in both equilibrium points need some explanations.
The two zeros in the equilibrium point bE� do not matter, because
they correspond to the derivatives of the subpopulation of mosqui-
toes ms and mi, and oscillations around this equilibrium point do
not result in negative density values. However, the equilibrium
point bE1 presents two more zeros than bE� in the seven-dimensional
manifold, which correspond to infectious subpopulations regarding
mosquitoes ðmiÞ and humans ðiÞ. In order to assign positive densi-
ties to both infectious subpopulations, the solutions with respect
to the linear system must not oscillate around zeros. In other words,
the eigenvalues corresponding to bE1 must assume real values. We
stress the fact that the remaining two zeros regard derivatives, sim-
ilar to bE�.

Let us analyze the stability of the equilibrium point bE1 with re-
spect to the linear system of Eqs. (21)–(27). The eigenvalues are:

k1 ¼ �
lH

c
;

plus the roots of two third-degree polynomials:

P1ðkÞ ¼ k3 þ �ðc þ mÞ þ ðlH þ rÞ
c

� �
k2

� l1 þ ðc þ mÞ ðlH þ rÞ
c

� �
kþ l1ðlH þ rÞðR0 � 1Þ

c
ð29Þ
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Fig. 1. Graph of the polynomial P1ðkÞ for the parameters corresponding to those listed in
which have three real roots, cmin ¼ 0:167 with double root, and c ¼ 0:13 and c ¼ 0:1, wh
and

P2ðkÞ ¼ k3 þ �ðc þ mÞ þ cþ l2 þ km�

c

� �
k2

þ �ðc þ mÞ ðcþ km� þ l2Þ
c

� a�cþ kl1

k

� �� �
k

� l1ðcþ l2ÞðQ 0 � 1Þ
c

:

We use the same analysis performed in the previous subsection
with respect to polynomials P1ðkÞ and P2ðkÞ. We now avoid oscilla-
tions around the equilibrium point bE1, that is, mi and i must not as-
sume negative values. This is attained when all eigenvalues of P1ðkÞ
and P2ðkÞ assume real values.

First, when the condition Q 0 > 1 is satisfied, we have a� > 0 and
m� > 0, and we can show that all roots of polynomial P2ðkÞ are real
(see Appendix B). Hence, the eigenvalues of polynomial P1ðkÞ allow
obtaining minimum traveling wave speed of dengue dissemina-
tion, which is denoted by cmin.

The condition R0 > 1 implies that P1ð0Þ > 0; additionally, we
have:

lim
k!�1

P1ðkÞ ¼ �1;
dP1ðkÞ

dk

				
k¼0
¼ � l1 þ ðc þ mÞ ðlH þ rÞ

c

� �
< 0:

Therefore, P1ðkÞ has always one negative real root. Moreover, the
extreme of P1ðkÞ is

k� ¼
1
3

(
� �ðc þ mÞ þ ðlH þ rÞ

c

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðc þ mÞ þ ðlH þ rÞ

c

� �2

þ 3 l1 þ ðc þ mÞ ðlH þ rÞ
c

� �s 9=;;
where k� < 0 is the local maximum with P1ðk�Þ > 0, and kþ > 0 is
the local minimum. We now impose that P1ðkþÞ must assume at
most zero value, that is, P1ðkþÞ 6 0, in order to yield real-valued
roots. Then, the double positive real root, which comes from
P1ðkþÞ ¼ 0, determines cmin (see Fig. 1). For c < cmin there are com-
plex solutions for P1ðkÞ, and for c > cmin, two different positive real
roots. Therefore, the equation P1ðkþÞ ¼ 0 permits us to calculate cmin

as a function of the parameters.
0.1 0.2 0.3

Tables 1 and 2, setting m ¼ 0. The curves correspond to the values c ¼ 0:24, c ¼ 0:21,
ich have only one real root.
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The non-dimensional speed, for the non-dimensional parame-
ters corresponding to those listed in Tables 1 and 2, setting m ¼ 0,
is cmin ¼ 0:167. In the dimensional parameters this rate of dissem-
ination of dengue disease is 0.06 km=day, i.e., 21.5 km=year.

In Fig. 2, the traveling waves corresponding to the system (21)–
(27) are shown for the subpopulations of infected and uninfected
humans, and for infected and uninfected mosquitoes. The cyclic
front waves of the disease can be observed in Fig. 3(a) for infected
subpopulations and in Fig. 3(b) for uninfected subpopulations.

Now we study the variation of the wave speed as a function of
the model’s parameters to assess the effects of control strategies.

Fig. 4(a) shows the speed variation as a function of aquatic mor-
tality l2 for different values of adult mortality l1. We observe that
a great increase in aquatic mortality does not proportionally re-
duce the wave speed. One reason for this fact is that adult mosqui-
toes are the infected population, whereas mosquitoes in the
aquatic phase are not. Another reason is that the aquatic popula-
tion suffers neither diffusion nor advection, since we are neglecting
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oscillations of the disease for 200000 < z < 1000000: (a) in the infected classes of both
the transport regarding larvae and pupae. Then larvicide applica-
tion against the aquatic form is not effective in controlling the front
waves of the disease. Assuming that the curve at the top corre-
sponds to the situation without adult control, we observe that
the wave speed varies very slowly with aquatic mortality, from
21.53 km/year (l�1

2 ¼ 18 days) to 21.47 km/year (l�1
2 ¼ 2 days).

All other curves correspond to the cases where insecticides are ap-
plied, which increase the mortality of adult mosquitoes. However,
only when a high control is applied on the adult subpopulation
(the bottom curve for l�1

1 ¼ 6 days), the wave speed varies a little
with respect to the aquatic control, from 3.52 km/year (l�1

2 ¼ 18
days) to 1.71 km/year (l�1

2 ¼ 2 days). Similar results were obtained
for the control of the front waves of mosquito invasion by larvicide
[10], except that the wave speed of invasion decreasing as a func-
tion of aquatic mortality is more sensitive than the dengue wave
speed.

Fig. 4(b) shows the speed variation as a function of mortality
in the adult phase l1 for different values of mortality l2, in
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which case a considerable decrease in the wave speed is
observed. An increase in the mortality of the aquatic phase does
not affect significantly the wave speed for lower values of the
adult mortality. It can be seen for the range 0:0285714 < l1 <

0:04ð25 days < l1
�1 < 35 daysÞ, where the curves practically

coincide. For higher values of the adult mortality,
0:16 < l1 < 0:17ð5:88 days < l1

�1 < 6:25 daysÞ the increase in
l2 affects the wave speed differently (see that the curves do
not coincide).

From Fig. 4(a) and (b), the use of larvicide to control the aquatic
form is very limited on protecting a region from the onset of den-
gue, but, combined with the insecticide, the benefit of larvicide will
be enhanced. On the other hand, the use of the insecticide in order
to reduce the density of the winged form of mosquitoes strongly
controls the dissemination of dengue disease. However, the ques-
tion about the costs regarding the use of larvicide and insecticide
is not taken into account, and neither are the effects of residual ac-
tions of larvicide and insecticide.

In Table 5 we present the theoretical front wave speed, using
polynomial (29) and solving P1ðkþÞ ¼ 0, for different temperatures.
The model’s parameters used are those given in Tables 1–3, with
m ¼ 0. In Table 3 we calculated the speed of biological invasion
by mosquitoes for different temperatures and we matched one of
them with the speed observed in the state of São Paulo. Taking into
account the same set of values used to calculate the invasion by
mosquitoes, now we calculate the front wave speed of dengue dis-
semination. The pair of values for �b1 and �b2 used in [2,3] was as-
signed for 30 �C, and for lower temperatures both values were
decreased proportionally. The dimensional wave speeds are situ-
ated in the range [18.24–21.5] km/year, for [25 �C-30 �C]. For
15 �C, considering b1 ¼ 0:0014 and b2 ¼ 0:0008, the disease does
not spread, even if we have the invasion of mosquitoes at a wave
speed of 22 km/year.
Table 5
Dengue dissemination with parameters depending on temperature given in Tables 1
and 2, with �m ¼ 0

Temp. b1 (km2/day) b2 (km2/day) R0 Disease speed
(km/year)

15�–20� 0.0014–0.0021 0.0008– 0.0015 0.49-1.95 0–13.43
20�–25� 0.0021–0.0028 0.0015–0.002 1.95–4.08 13.43–18.24
25�–30� 0.0028–0.0033 0.002–0.0025 4.08–7.29 18.24–21.53
30� 0.0033 0.0025 7.29 21.53
With respect to reproduction number R0, Chowell et al. [18]
estimated R0 using spatial data collected from Colima, Mexico, tak-
ing into account two types of model. The epidemic model with
more realistic incubation and infectious periods estimated an aver-
age value of R0 from 0.49 to 3.30, for average temperatures varying
from 22.10 to 25.88 �C. Our model considering the temperatures
from 20 to 25 �C predicts R0 varying from 1.95 to 4.08. It must be
considered that the whole population of the state of Colima is
488,028 and that the state of São Paulo has a population of approx-
imately 45,000,000 individuals. For a value of N0 ¼ 100 individuals
per km2, our model predicts R0 from 1.30 to 2.72. This is in agree-
ment with the fact that the basic reproduction numbers estimated
in Brazil are higher than in other regions of the world (Massad et al.
[19,20], Nishiura [21]).

4.3. The effect of advection on disease dissemination

In this section we study how advection increases the speed of
disease dissemination. Polynomial P2ðkÞ has real roots because
the discriminant is less than zero even for m 6¼ 0, then polynomial
P1ðkÞ determines the wave speed. The equation to determine cmin

is the same as for the case m ¼ 0, that is P1ðkþÞ ¼ 0. In this case,
the polynomial is not symmetric with respect to the y axis, as is ob-
served in the case m ¼ 0.

Calculating c from the equation P1ðkþÞ ¼ 0, letting m ¼
�0:141421, which describes the advection in the left direction,
we obtain cmin ¼ 0:282515 for the corresponding non-dimensional
parameters given in Tables 1 and 2. As a consequence of advection,
the front wave speed is increased in the left direction, but lowered
with respect to the right direction. In dimensional parameters, the
leftward speed of disease dissemination is 0.1 km=day, approxi-
mately 36.5 km=year, higher than the speed 21.5 km=year obtained
when advection is disregarded ðm ¼ 0Þ.

In Fig. 5(a) we show that the speed increases with the advection
in the left direction ðm < 0Þ. Independently of the transmission
coefficient b1, the wave speed increases approximately 15 km/year
when advection increases from 0 to 18.25 km/year. Observe that
the advection coefficient increases the wave speed linearly for
any values assumed by the other parameters.

In Fig. 5(b) we show the wave speed as a function of the trans-
mission coefficient from human to vector b1, for the case without
advection, m ¼ 0, and with advection in the left direction,
�m ¼ �18:25 km/year ðm ¼ �0:141421Þ. The wave speed increases
more quickly for lower values of parameter b1. For higher values
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of b1, for instance, on the interval 0:0025 < b1 < 0:004, the wave
speed varies slowly. Notice that, for m ¼ 0, the waves velocity in-
creases from 19:2 km/year to 23.2 km/year, much lower than the
range of variation for lower b1. This fact is important because b1

is difficult to be estimate exactly, which depends on the biting rate
and transmission probability. Considering the advection coefficient
�m ¼ �18:25 ðm ¼ �0:14Þ the wave speed increases approximately
15 km/year in comparison with the speed corresponding to �m ¼ 0.
5. Human movements and dengue dissemination

We are interested in numerically studying the front wave of
dengue disease by taking human movements into account. In the
previous section, we dealt with the question of how the epidemic
could propagate via mosquitoes in the neighborhood when one
case of infected human appears in a region. In this section, we pres-
ent the numerical results [22] when human movements are
allowed.

First, let us simulate the dissemination of dengue disease with-
out human movements. For this purpose, we solve numerically the
system of PDE (10)–(14) with the initial conditions:
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Fig. 6. Traveling wave solution of the PDE system (10)–(14) for the parameters listed in T
with I0 ¼ 1=150, one individual infected. The solutions are plotted for times: (a) t ¼ 255
Iðx;0Þ ¼
I0; jxj 6 1
0 jxj > 1



ð30Þ

and

MSðx;0Þ ¼ m�; Aðx;0Þ ¼ a�; Hðx;0Þ ¼ 1; MIðx;0Þ ¼ 0: ð31Þ

These conditions portray local introduction of I0 infectious individ-
uals in a region colonized by mosquitoes. For the boundaries, we
apply null Neumann conditions:

oMS

ox
ð�L; tÞ ¼ oMI

ox
ð�L; tÞ ¼ oA

ox
ð�L; tÞ ¼ oH

ox
ð�L; tÞ

¼ oI
ox
ð�L; tÞ ¼ 0; t > 0: ð32Þ

In Fig. 6 we show the disease dissemination when one infected
individual is introduced in a completely susceptible population.
Fig. 6(a) and (b) show the dissemination of the first wave of epi-
demics at two times. The parameter values are those given in Ta-
bles 1 and 2. The front wave epidemic travels with speed
c ¼ 800�400

4947:6�2552:4 ¼ 0:167, which agrees with the non-dimensional
wave speed cmin calculated with polynomial (29). The correspond-
ing dimensional wave speed is 21.5 km/year (0.06 km/day).
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2:4, and (b) t ¼ 4947:6. The wave propagates with speed cmin ¼ 0:167.
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Now, we incorporate the human movements in the previous
model, given by Eqs. (10), (12)–(14). The dimensional model is
then given by:

oMS

ot
¼ DM

o2MS

ox2 � �m
oMS

ox
þ cA 1�M

k1

 !
� l1MS � b1MSI ð33Þ

oMI

ot
¼ DM

o2MI

ox2 � �m
oMI

ox
� l1MI þ b1MSI ð34Þ

oA
ot
¼ r 1� A

k2

 !
M � l2A� cA ð35Þ

oH
ot
¼ DN

o2H
ox2 �xN

oH
ox
þ lHN � lHH � b2 H MI ð36Þ

oI
ot
¼ DN

o2I
ox2 �xN

oI
ox
þ b2HMI � �rI � lHI ð37Þ

oR
ot
¼ DN

o2R
ox2 �xN

oR
ox
þ �rI � lHR: ð38Þ

As we are dealing with spatial movements of humans, the new
parameters are the diffusion and advection of the human popula-
tion, denoted by DN and xN , respectively. The human movements
are really the source of long-distance transmission of dengue dis-
ease, and this system of equations is essential to study dengue
transmission on a large scale.

Numerical simulations were performed using the non-dimen-
sional system of equations corresponding to the dimensional sys-
tem (33)–(38), using the non-dimensional parameters given in
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(7)–(9) plus the new non-dimensional parameters D� ¼ DN

DM
and

x� ¼ xN
r ð r

DM
Þð1=2Þ, which are the non-dimensional human diffusion

and advection, respectively. The initial and boundary condition
are those given by Eqs. (30)–(32). The parameter values are those
given in Tables 1 and 2, and for the remaining parameters D� and
x�, the values are assigned according to the study.

In Fig. 7 we show the disease dissemination (the first wave of
epidemic) when one infected individual is introduced in a com-
pletely susceptible population. The figure shows the simulation
performed up to the time corresponding to Fig. 6(a), and the
advection movement of humans was not considered ðx� ¼ 0Þ.
In Fig. 7(a) the diffusive movement of the humans was left equal
to that corresponding to the mosquito population, D� ¼ 1, that is,
DN ¼ DM . In this case, the wave speed is 25.8 km/year, which is
20% higher than that found in Fig. 6. When we let D� ¼ 10, that
is, DN ¼ 10DM , as shown in Fig. 7(b), the wave speed is 58.1 km/
year, which is 170% higher than the speed without human
movement. Notice that the increase in the diffusive movement
in 10 times increased the rate of epidemic dissemination by less
than 3 times.

Another interesting aspect of diffusion of humans is the
enlargement of the front wave (compare, especially, Figs. 6(a)
and 7(b)). The diffusive movement of humans does not have pref-
erential direction, but occurs at random, for this reason, it does not
only increase the rate of dengue dissemination, but it also sustains
the disease for a longer period of time (expanding the region where
the disease presents high incidence).
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In Fig. 8 we show the disease dissemination (the first wave of
the epidemic) when one infected individual is introduced in a com-
pletely susceptible population. The figure shows the simulation
performed up to the time corresponding to Fig. 6(a), and the diffu-
sive movement of humans was set at D� ¼ 1, that is, DN ¼ DM . In
Fig. 8(a) the advection movement of humans was set at
x� ¼ 0:05. In this case, the wave speed is 28.4 km/year, which is
10% higher than that found in Fig. 7(a). When we let x� ¼ 0:2, as
shown in Fig. 8(b), the wave speed is 37.4 km/year, which is 45%
higher than the speed found in Fig. 7(a). Notice that a fourfold in-
crease in the advection movement speeded up the rate of the epi-
demic dissemination by less than 1.5 times. Note that the
advection movement ðx� ¼ 0:2) is 5 times smaller than the diffu-
sive movement of humans; but even so, it significantly increased
the wave speed.

If the advection movement is not considered, the epidemic
wave propagates with the same speed in both directions on the
x-axis (Figs. 6 and 7 present only positive values of x). The advec-
tion movement, in the positive direction of x-axis, changed the epi-
demic wave propagation, increasing the wave speed with respect
to the positive x-axis, and decreasing it in the opposite direction
(Fig. 8 presents both directions of the x-axis). In the long-term
propagation of dengue, the major contribution to the quick spread
of dengue disease is due to human movements. In a further work,
we analyze dengue propagation in more detail, including human
movements.

Another interesting aspect regarding the movement of humans
is the shrinking of the front wave in the advective direction (com-
pare, especially, Figs. 7(a) and 8(b)). The advective movement of
humans draws infectious humans in a preferential direction, for
this reason, it does not only increase the speed of dengue propaga-
tion, but it also shortens disease duration (by shortening the region
where the disease is endemic and decreasing its incidence). How-
ever, no difference was observed in the opposite direction of
advection.

6. Conclusion

In this work, we developed a simple model to assess the geo-
graphical spread of dengue disease. We assumed that only adult
mosquitoes disseminate through dispersion and advection. From
the model, a threshold value is determined as a function of the
model’s parameters:
R0 ¼
b1 b2 m�

l1ðlH þ rÞ :
This is the basic reproductive number, which determines the exis-
tence of the endemic status. If R0 is less than one the disease fades
out. Otherwise, if R0 is greater than one, the mosquito and human
populations will approach the endemic status.

The existence of the mosquito population, m�, in the numerator,
is a necessary condition for the existence of the disease, as we ex-
pected. The condition for the existence of the mosquito population
is the same as in [10], that is,

Q 0 ¼
c

l1ðcþ l2Þ
:

If Q0 is greater than one the mosquito population exists. Otherwise,
if Q0 is less than one, the mosquito population does not exist and,
hence, the disease does not exist.

The analysis of the model to determine the front wave speed of
colonization by mosquitoes was performed, and also the dissemi-
nation rate of dengue disease was determined. An important result
is the implicit equation to obtain the minimum traveling wave
speed, given by polynomial (29):

P1ðkþÞ ¼ 0:

The basic offspring number Q0 and the basic reproduction number
R0 determine this speed.

In the study of biological invasion by mosquitoes, we fitted
our model to the invasion and colonization by A. aegypti in the
state of São Paulo. The minimum traveling wave speed obtained
from the model was compared to the estimated invasion and
colonization by mosquitoes in the state of S ão Paulo. We can
obtain a good estimation if we take into account entomological
parameters at 20 �C. Similarly, we determined the wave speed
of dengue dissemination in an area previously colonized by A.
aegypti, allowing movements only to the mosquito population.
In addition, we numerically calculated the wave speed by allow-
ing movements to humans, too.

The wave speed is a function of the model’s parameters. This
fact permitted the assessment of control strategies. The results al-
lowed us to evaluate strategies in order to attain the eradication of
dengue transmission by decreasing the dissemination rate to zero.
The variation of the wave speed as a function of mortality rates,
aquatic and adult phases, was shown in Fig. 4(a) and (b). The de-
crease in the wave speed as a function of aquatic mortality is neg-
ligible. Then, larvicide application against the aquatic form is not
effective to break the front waves of the disease. On the other hand,
with respect to adult mortality, we can see a considerable decrease
in the wave speed.

Our aim in this paper was to determine the dissemination of
dengue by only the diffusive movement of adult mosquitoes. In
fact, the long-distance movement of the human population is the
major contributor to the quick dissemination of dengue disease
across geographical regions. For instance, the state of São Paulo
registered the first dengue outbreak in Araçatuba and neighboring
regions in 1987. However, the dengue strongly re-emerged in Ri-
beirão Preto and neighboring towns 3 years later, and then in
1991, dengue disease was recorded in regions farther than
150 km from Ribeirão Preto [9]. This feature of dengue dissemina-
tion leads us to include human movements, which considerably in-
crease the dissemination rate [14], as a consequence of the
movements of the infected population. This fact is in agreement
with other results [6], where the estimated dissemination rate
was 114–209 km/month.

Finally, this model sheds some light upon the role of mos-
quito movements in local dengue distribution [7] and human
movements in long-distance dissemination [6]. The diffusive
and advective movements of mosquitoes increase the rate of
dengue dissemination, but not so intensively. Nevertheless, hu-
man movements contribute much more to dengue dissemina-
tion, since advection influences disease dissemination much
more than does diffusion. Additionally, the advective movement
in a preferential direction generated a very sharp front wave (in
the advective direction) than did the diffusive movement. How-
ever, if the diffusive movement is high and also more important
than the advective one, we expect to observe a quick rate of
dengue dissemination associated with a spatially broad distribu-
tion of dengue incidence.
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Appendix A. Stability analysis of the equilibrium points

We present the stability of the equilibrium points E0 and E1.

A.1. Proof of Theorem 3.1

The characteristic polynomial of the Jacobian matrix corre-
sponding to the system (15)–(19) evaluated at point E0 is:

p1ðkÞ ¼ �ðl1 þ kÞðlH þ kÞðlH þ r

þ kÞ l1ðcþ l2ÞðQ 0 � 1Þ þ ðcþ l1 þ l2Þkþ k2� �
:

The eigenvalues are: k1 ¼ �l1, k2 ¼ �lH , k3 ¼ �ðlH þ rÞ and the
roots of the polynomial:

p2ðkÞ ¼ l1ðcþ l2ÞðQ0 � 1Þ þ ðcþ l1 þ l2Þkþ k2:

Hence E0 is stable if the coefficients of the polynomial p2ðkÞ are po-
sitive, which are satisfied when Q0 < 1. Conversely, if Q0 > 1, then
p2ð0Þ < 0. So p2ðkÞ has a positive real root.

A.2. Proof of Theorem 3.2

The characteristic polynomial of the Jacobian matrix corre-
sponding to the system (15)–(19) evaluated at point E1 is:

p3ðkÞ ¼ �ðl1 þ kÞp4ðkÞp5ðkÞ:

The eigenvalues are: k1 ¼ �l1, and the roots of the polynomials:

p4ðkÞ ¼ l1ðcþ l2ÞðQ 0 � 1Þ þ cþ kl1

cþ kþ l2
þ cþ kþ l2

cþ kl1

� �
kþ k2

� �
;

and

p5ðkÞ ¼ l1ðlH þ rÞð1� R0Þ þ ðl1 þ lH þ lrÞkþ k2� �
:

Hence E1 is stable if the coefficients of the polynomials p4ðkÞ and
p5ðkÞ are positive, which are satisfied when Q0 > 1 and R0 < 1. Con-
versely, if Q0 < 1, then p4ð0Þ < 0. So p4ðkÞ has a positive real root. If
R0 > 1, the same argument provides that p5ðkÞ has a positive real
root.

Appendix B. Traveling wave solutions

We present details regarding the traveling wave speed.

B.1. Traveling wave connecting bE0 with bE1

We seek traveling wave solutions in the three-dimensional
submanifoldeM ¼ fðms;u;mi; v; a; h; iÞ : mi ¼ 0; v ¼ 0; h ¼ 1; i ¼ 0g;

because we are considering the situation where the disease cannot
be sustained ðR0 < 1Þ.

We are dealing with a biological system, then the trajectories
must not oscillate around the zero components, which are popula-
tion densities. Then the eigenvalues must be real.

The corresponding equilibrium point to E1 iscE1 ¼ ðm�;0;0;0; a�;1;0Þ, which does not have zeros for the densi-
ties in this submanifold. Then we must only analyze the eigen-
values at the equilibrium point corresponding to E0, i.e,cE0 ¼ ð0;0; 0;0;0;1;0Þ, where the densities of mosquitoes in adult
and aquatic phases are zero.

The first four eigenvalues for the equilibrium point cE0 are real:

k1 ¼ �
lH

c
; k2 ¼ �

lH þ r
c

;

and
k3;4 ¼
1
2

c þ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc þ mÞ2 þ 4l1

q� �
:

Then we must determine when the polynomial PðkÞ, given by:

PðkÞ ¼ k3 þ �ðc þ mÞ þ ðl2 þ cÞ
c

� �
k2 � l1 þ ðc þ mÞ ðl2 þ cÞ

c

� �
k

þ l1ðcþ l2ÞðQ0 � 1Þ
c

;

has all roots with real values. The polynomial PðkÞ has the same
shape as the polynomial P1ðkÞ. We know that Qð0Þ > 0, since we
are taking into account the case Q0 > 1; additionally, we have:

lim
k!�1

PðkÞ ¼ �1

and

dPðkÞ
dk

				
k¼0
¼ � l1 þ ðc þ mÞ ðl2 þ cÞ

c

� �
< 0;

then the polynomial has always a negative real root. With re-
spect to the two remaining roots, we first determine the extre-
ma k� of this polynomial (they must satisfy d

dk PðkÞ ¼ 0), which
are given by

k� ¼
1
3

(
� �ðc þ mÞ þ ðl2 þ cÞ

c

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðc þ mÞ þ ðl2 þ cÞ

c

� �2

þ 3 l1 þ ðc þ mÞ ðl2 þ cÞ
c

� �s 9=;:
If we impose, to the local minimum kþ > 0, that PðkþÞ 6 0, i.e., PðkþÞ
is at most zero, then the roots are real values. From this equation we
obtain the speed of invasion of mosquitoes by calculating the value
of c that satisfies PðkþÞ ¼ 0.

Considering c P cmin, we have three real roots for the polyno-
mial PðkÞ, say ziðcÞ, i ¼ 1;2;3. Linearizing the system about the
steady state (0,0,0,0,0,1,0), we obtain the eigensolutions corre-
sponding to the submanifold eM:

ms

u

mi

v

a

h

i

0BBBBBBBBBBB@

1CCCCCCCCCCCA
¼ bi exp½ziðcÞz�;

where

bT
i ¼ ðð1=kÞðcþ l2 þ cziðcÞÞ; ð1=kÞziðcÞ;0;0;1;0;0Þ;

i.e., the trajectories remain in the three-dimensional manifold eM ,
and the analysis is the same as in [10]. This trajectory means that
the mosquitoes are able to invade and colonize regions that are free
of them, assuming that human population is present.

B.2. Traveling wave connecting bE1 with bE�
In this case, we search for wave solutions in the manifold

ðms;u;mi; v; a;h; iÞ. The corresponding equilibrium point to E� iscE� ¼ ðM�
S;0;M

�
I ;0;A

�
;H�; I�Þ, which does not have zero components

corresponding to the densities. Then we must study the oscilla-
tions around the equilibrium point cE1 ¼ ðm�; 0;0;0; a�;1;0Þ, con-
sidering that this point has zero components with respect to the
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infective classes. To avoid oscillations around this point, we must
not have complex eigenvalues. The eigenvalues are:

k1 ¼ �
lH

c
;

plus the roots of the two third-degree polynomials:

P1ðkÞ ¼ k3 þ �ðc þ mÞ þ ðlH þ rÞ
c

� �
k2 � l1 þ ðc þ mÞ ðlH þ rÞ

c

� �
k

þ l1ðlH þ rÞðR0 � 1Þ
c

and

P2ðkÞ ¼ k3 þ �ðc þ mÞ þ cþ l2 þ km�

c

� �
k2

þ �ðc þ mÞ ðcþ km� þ l2Þ
c

� a�cþ kl1

k

� �� �
k

� l1ðcþ l2ÞðQ 0 � 1Þ
c

:

The polynomial P2ðkÞ is structured in terms of the parameters
regarding the mosquito population only and comprises neither
the human population parameters nor the infection parameters.
The polynomial P1ðkÞ determines the wave speed, because the
polynomial P2ðkÞ has all roots with real values. An idea of the proof
is the following: We apply Cardan’s formula [23] and write the dis-
criminant of P2ðkÞ as a new polynomial in c. The discriminant has
the form:
disðcÞ ¼ polðcÞ=c4;

with polðcÞ ¼ a6c6 þ a4c4 þ a2c2 þ a0, where the coefficients ai,
for i ¼ 0, 2, 4 and 6, depend on the parameters c, l1, l2 and k. For
the corresponding values of the parameters of A. aegypti given in Ta-
ble 1, setting m ¼ 0, all the coefficients ai are negative, which implies
that the discriminant is less than zero, and the polynomial has only
real roots (see Fig. 9). In this case, the non-dimensional value of c is
0.02.

When the value of the transition parameter c decreases to a
critical value, given by cc ¼ 0:0000159186, in which case the mos-
quito population does not exist (a� ¼ 0 and m� ¼ 0), the maximum
of the polynomial polðcÞ increases, but always assumes values less
than zero. Only in this critical situation the maximum of polðcÞ is
zero in the origin (see Fig. 9). This is a consequence of condition
(20) being equal to zero ðQ0 ¼ 1Þ and the independent coefficient
a0,

a0 ¼
ð1� Q 0Þ½ �4c3ðcþ kþ lÞ3

27ðcþ kl1Þ
3 ;

is also zero.
If we allow the mortality rate of aquatic phase to have small val-

ues ðl2 � 1Þ, together with small transition coefficient ðc� 1Þ, we
have positive coefficient a2, a2 > 0, but the discriminant is less than
zero, and then polynomial P2ðkÞ has all roots with real values, see
Fig. 10. This case does not have biological significance.
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