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In this work we study a spatial model for the West Nile Virus (WNV) propagation across
the USA from the east to the west. WNV is an arthropod-borne flavivirus that appeared
at first time in New York city in the summer of 1999 and then spread prolifically within
birds. Mammals, as human and horse, do not develop sufficiently high bloodstream

titers to play a significant role in transmission, which is the reason to consider the
mosquito-bird cycle. The proposed model aims to study this propagation in a system of
partial differential reaction-diffusion equations considering the mosquito and the avian
populations. The diffusion is allowed to both populations, being greater in avian than
in the mosquito. When a threshold value R0, depending on the model´s parameters, is
greater than one, the disease remains endemic and could propagate to regions previously
free of disease. The travelling wave solutions of the model are studied to determine the
speed of the disease propagation. This wave speed is obtained as a function of the model´s
parameters, for instance, vertical transmission rate and avian diffusion coefficient.

Keywords: Aedes aegypty ; avian diffusion; travelling waves.

1. Introduction

West Nile Virus (WNV) is an arthropod-borne flavivirus. The primary vectors of
WNV are Culex spp mosquitoes, although the virus has been isolated from at least
29 more species of ten genera, see Campbell et al.1 When an infected mosquito
bites a bird, the virus is transmitted. A mosquito is infected when bites an infected
bird. Also, the virus can be passed via vertical transmission, from a mosquito to its
offspring.

One major feature of WNV spatial dissemination is the high velocity of geo-
graphic invasion and colonization. This is due to long distance flying of birds, and
ubiquitous presence of mosquitoes. For instance, WNV was introduced in New York
City in 1999, and then propagates across the USA. After five years, WNV was
detected among birds in California, west side of USA. Some studies about the non
spatial dynamic was developed by Kenkre et al.,2 wonham et al.,3 Cruz-Pacheco
et al.4 and Bowman et al.5
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The models proposed consider different aspects of the WNV disease and deter-
mine threshold conditions to asses control strategies. Kenkre et al.2 study the peri-
odicity of the infection considering vertical transmission, mortality increase due to
infection and time scale disparity. In the Wonham et al.3 model is considered all
the mosquito life cycle. Cruz-Pacheco et al.4 analyze the mathematical model and
use experimental data for several species of birds. In the Bowman et al.5 model is
considered the human population to asses preventive strategies.

A spatial model was study by Lewis et al.6 considering for the non spatial
dynamic the Wonham et al.3 model. They study the WNV propagation using trav-
elling wave solution for a simplified model which does not consider vertical trans-
mission, WNV death rate and the avian recover subpopulation. Aiming to deter-
mine the biological invasion of WNV from east to west cost of USA, we develop a
spatio-temporal model to study this propagation as a consequence of the zoonostic
characteristic of WNV.

In the modeling for the spatial dynamics of WNV the diffusion is considered
in avian and mosquito populations, taking into account the fact that the diffusion
coefficient in the avian population is greater than the diffusion in the mosquitoes
population. From the model we seek for the travelling waves connecting the two
steady states, from which we determine the wave speed of propagation of the WNV
disease. The depending of this wave speed on the vertical transmission and on
the avian diffusion is obtained. Okubo7 estimated the diffusion coefficient of birds
situating between 0 and 14 km2/day. Choosing a coefficient of avian diffusion equal
to 6 km2/day, and considering parameters regarded to two birds species, named
Blue jay and Common grackle, we obtain for the velocity of the disease propagation
approximately 3 km/day, which agrees with that observed from field data.

The paper is structured as follows. In section 2 the WNV spatial propagation
model is presented, which is preceded by a brief description of the corresponding
spatial homogeneous model. In section 3 the minimum speed of the travelling wave
is determined, and conclusion is given in Section 4.

2. Model for the West Nile Virus

Let us describe with some details the spatially homogeneous dynamics and the
descriptions of the parameters of the model proposed in Cruz-Pacheco et al..4 From
this model we derive the WNV geographic propagation model.

2.1. Model for the spatially homogeneous WNV propagation

dynamics

The model proposed in Cruz-Pacheco et al.4 includes cross-infection between the
avian and the vector populations, which sizes are denoted by Na(t) and Nv(t),
respectively. The avian population was divided into susceptible, infective and recov-
ered subpopulations, Sa, Ia and Ra, respectively, while for the vector population,
the susceptible and infected subpopulations, Sv and Iv.
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The mosquito population is taken constant, assuming that the birth and death
rates are equal to µv. For the avian population, however, the total population size is
allowed to vary, where Λa is a constant recruitment rate due to birth and migration,
and death rate is µa. The differential equation for birds population is, then,

dNa

dt
= Λa − µaNa.

The biting rate b of mosquitoes is defined as the average number of bites per
mosquito per day. βa and βv are the transmission probabilities from vector to birds
and from birds to vector, respectively. Hence the infection rates per susceptible
birds and susceptible vector are given by:

bβa
Nv

Na

Iv

Nv
= b

βa

Na
Iv

and

bβv
Ia

Na
.

The birds are recovered at rate γa. The specific death rate associated with WNV in
the avian population is αa, with αa ≤ γa. Another assumption is that mosquitoes
can transmit WNV vertically. The fraction of progeny of infectious mosquitoes that
is infectious is denoted by p, with 0 ≤ p ≤ 1.

Based on the above parameters, the model is the following:

dSa

dt
= Λa − bβa

Na
IvSa − µaSa (4)

dIa

dt
=

bβa

Na
IvSa − (γa + µa + αa)Ia (5)

dRa

dt
= γaIa − µaRa (6)

dSv

dt
= µvSv + (1 − p)µvIv − bβv

Na
IaSv − µvSv (7)

dIv

dt
= pµvIv +

bβv

Na
IaSv − µvIv (8)

dNa

dt
= Λa − µaNa − αaIa. (9)

The model has the disease free equilibrium and one endemic state, see Cruz-Pacheco
et al.,4 which exists if:

R0 =
mb2βaβv

(1 − p)µv(γa + µa + αa)
> 1.

In Table 1 we show the Basic Reproductive Number for three avian species,
Blue jay, Common grackle and Fish crow.
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Table 1. Basic Reproductive Number calculated from the epidemiological and demographic
parameters.

Common name βa βv γa (day−1) αa (day−1) µa (day−1) µv (day−1)
√

R0

Blue jay 1.0 0.68 0.26 0.15 0.0002 0.06 5.89

Common grackle 1.0 0.68 0.33 0.07 0.0001 0.06 5.97

Fish crow 1.0 0.26 0.36 0.06 0.0002 0.06 3.60

2.2. Model for the spatial dynamics of WNV

WNV disease first appeared in North America in summer of 1999, with the simul-
taneous occurrence of an unusual number of deaths of exotic birds and crows in the
New York City, see DeBiasi et al..8 We propose a model to study the propagation
of WNV across the USA.

The diffusion among avians is denoted by Da and Dv is regarded to the dif-
fusion of mosquito population. We are not taking into account the long migra-
tory movement of birds. The mosquitoes are considered as a sessible population,
then Dv << Da. For instance, the mean dispersal distance for Aedes aegypty was
ranged from 28 to 199 meters, Harrington et al..9 From now on we consider the
spatio-temporal dependence on the populations, e.g. Na(x, t) and Nv(x, t), and
their respective subpopulations. The model is the following:

∂Sa

∂t
= Da

∂2Sa

∂x2
+ Λa − bβa

Na
IvSa − µaSa (11)

∂Ia

∂t
= Da

∂2Ia

∂x2
+

bβa

Na
IvSa − (γa + µa + αa)Ia (12)

∂Ra

∂t
= Da

∂2Ra

∂x2
+ γaIa − µaRa (13)

∂Sv

∂t
= Dv

∂2Sv

∂x2
+ µvSv + (1 − p)µvIv − bβv

Na
IaSv − µvSv (14)

∂Iv

∂t
= Dv

∂2Iv

∂x2
+ pµvIv +

bβv

Na
IaSv − µvIv (15)

∂Na

∂t
= Da

∂2Na

∂x2
+ Λa − µaNa − αaIa. (16)

Let us introduce the non dimensional parameters to the system (11) - (16). The
time is scaled with respect to bm, where b is the biting rate of mosquitoes and m =

Nv

Λ/µa
, the ratio between the vector population and the disease free equilibrium bird

population. The spatial variable is scaled considering the bird’s diffusion coefficient,

according to
√

Da

bm . Then non dimensional parameters are:

S̃a =
Sa

Λ/µa
, Ĩa =

Ia

Λ/µa
, R̃a =

Ra

Λ/µa
, Ña =

Na

Λ/µa
, S̃v =

Sv

Nv
, Ĩv =

Iv

Nv
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D =
Dv

Da
, µ̃a =

µa

bm
, γ̃a =

γa

bm
, α̃a =

α

bm
µ̃v =

µv

bm

β̃a = βa, β̃v =
βv

m
.

Therefore, omitting R̃a and S̃v (both are decoupled form the system), see Cruz-
Pacheco et al.,4 the dimensionless model obtained is:

∂S̃a

∂t
=

∂2S̃a

∂x2
+ µ̃a − β̃a

Ña

ĨvS̃a − µ̃aS̃a (17)

∂Ĩa

∂t
=

∂2Ĩa

∂x2
+

β̃a

Ña

ĨvS̃a − (γ̃a + µ̃a + α̃a)Ĩa (18)

∂Ĩv

∂t
= D

∂2Ĩv

∂x2
+

β̃v

Ña

Ĩa(1 − Ĩv) − (1 − p)µ̃v Ĩv (19)

∂Ña

∂t
=

∂2Ña

∂x2
+ µ̃a − µ̃aÑa − α̃aĨa. (20)

The system of equations (17-20) has two steady states. The first is the disease
free equilibrium point, given by:

P0 = (1, 0, 0, 1).

The second is the endemic state:

P1 = (S∗
a , I∗a , I∗v , N∗

a ),

where S∗
a , I∗v and N∗

a are given by:

S∗
a =

µa − (γa + µa + αa)I∗a
µa

,

I∗v =
µaβvI

∗
a

(βvµa − αa(1 − p)µv)I∗a + (1 − p)µvµa

and

N∗
a =

µa − αaI∗a
µa

,

where I∗a is the positive root of the second degree polynomial

r (Ia) = EI2
a + FIa + G,

with the coefficients

E = [β̃vµ̃a − α̃a(1 − p)µ̃v]
α̃a

µ̃a

F = 2α̃a(1 − p)µ̃v − β̃vµ̃a − (1 − p)µ̃v(γ̃a + µ̃a + α̃a)R̃0

G = µ̃a(1 − p)µ̃v(R̃0 − 1).

Notice that a positive solution always exists for R̃0 > 1, where

R̃0 =
β̃aβ̃v

(1 − p)µ̃v(γ̃a + µ̃a + α̃a)
. (23)
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Fig. 1. Graph of the variation of R̃0 as a function of the vertical transmission p, for the parameters
related to Blue jay given in Table 2. The Basic Reproductive Number increases to infinity with p.
This reflects that the vertical transmission is an important factor in the homogeneous situation.

The original system has the equilibrium values given in Cruz-Pacheco et al.,4 which
has positive solution when R0 > 1.

In Figure 1 we show the variation of the basic reproductive number R̃0 as
a function of the vertical transmission. When p increases to 1, R̃0 increases to
infinity. The vertical transmission is an important fact on the spatially homogeneous
situation.

The following Theorem, equivalent to that in Cruz-Pacheco et al.,4 regarded to
two equilibrium points, is established:

Theorem 2.1. If 0 ≤ p < 1, then the disease free equilibrium P0 is unique and
locally and asymptotically stable for R̃0 < 1. When R̃0 > 1, P0 becomes unstable,
and there appears a new endemic equilibrium P1 which is locally and asymptotically
stable. If p = 1, P0 is always unstable, and P1 is locally and asymptotically stable.

3. Travelling Waves Solution

In this section we study the WNV geographic propagation, Murray et al.,10 deter-
mining the minimum wave speed connecting the disease free equilibrium point to
the endemic state. The solution corresponding to minimum wave speed describes
the observed dynamics of the system, see Sandstede,11 Volpert and Volpert.12

The travelling waves solution, when exists, can be set in the usual form, see
Murray13:

(sa(x, t), ia(x, t), iv(x, t), na(x, t)) = (sa(z), ia(z), iv(z), na(z)),
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where z = x + ct. Considering that the diffusion of the avian population is greater
than the mosquito population, we assume that D = 0. The corresponding first order
ordinary differential equations with respect to variable z is:

dsa

dz
= u1,

du1

dz
= cu1 − µ̃a +

β̃aiv
na

sa + µ̃asa,

dia
dz

= u2,

du2

dz
= cu2 − β̃aiv

na
sa + (γ̃a + µ̃a + α̃a)ia,

div
dz

= (1/c)(β̃via
(1 − iv)

na
− (1 − p)µ̃viv),

dna

dz
= u3,

du3

dz
= cu3 − µ̃a + µ̃aηa + α̃aia,

where the boundary conditions are:

lim
z→−∞(sa(z), u1(z), ia(z), u2(z), iv(z), na(z), u3(z)) = (1, 0, 0, 0, 0, 1, 0)

and

lim
z→∞(sa(z), u1(z), ia(z), u2(z), iv(z), na(z), u3(z)) = (S∗

a , 0, I∗a , 0, I∗v , N∗
a , 0).

The zeros in both equilibrium points deserve some words. The three zeros in the
second equilibrium point correspond to derivatives of the subpopulations sa, ia
and na. However, the first equilibrium point has two more zeros corresponding
to infectious populations regarded to avians and mosquitoes, which must not be
negative numbers. Due to this constraint, we impose to the linear system solutions
that must not oscillate, i.e., the eigenvalues corresponding to this equilibrium point
must assume real values.

The characteristic polynomial regarded to the linear system at the equilibrium
point (1, 0, 0, 0, 0, 1, 0) is Q(λ) × P (λ), where:

Q(λ) = (λ2 − cλ − µ̃a)2

and

P (λ) = λ3 + Aλ2 + Bλ + C,
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where the coefficients are

A = c − µ̃v(1 − p)
c

B = −c(α̃a + γ̃a + µ̃a) − µ̃vc(1 − p)

C = (1 − p)µ̃v(γ̃a + µ̃a + α̃a)
(
R̃0 − 1

)
,

with R̃0 being given by (23). The polynomial Q(λ) has always reals roots. Then the
polynomial P (λ) must carry on the conditions for the existence of the minimum
speed. First, the existence of the endemic state implies that R̃0 > 1, then we have
that:

P (0) = (1 − p)µ̃v(γ̃a + µ̃a + α̃a)[R̃0 − 1] > 0,

moreover, it is easy to verify that

lim
λ→±∞

P (λ) = ±∞,
dP (λ)

dλ

∣∣∣∣
λ=0

= −c(α̃a + γ̃a + µ̃a) − µ̃vc(1 − p) < 0,

which imply that P (λ) always has one negative real root. Second, the remaining
two roots can be either real positives or complex numbers. In order to obtain the
minimum wave speed, we determine the condition that the imaginary part of the
complex root must be zero (or, the roots must be real numbers). This condition
is satisfied when the positive real roots are equal, from which we determine the
wave speed, see Figure 2. The condition to obtain the double roots follows easy
calculations: The polynomial evaluated at the unique local minimum, λ+, is zero,
that is, P (λ+) = 0, where:

λ+ =
1
3
{−A +

√
A2 − 3B}.

We calculate the non dimensional wave speed and the corresponding
√

R̃0 for
three species of birds, which are given in Table 2. We assume, as in Cruz-Pacheco et
al.,4 the typical value of the biting rate, once every two days, b = 0.5 and the ratio
m = Nv

Λa/µa
= 5. For Common grackle and Blue jay,

√
R̃0 are different but the wave

speeds are close. These species have the same importance in the spatial propagation,
but they behave epidemiologically different. Figure 3 shows the wave speed as a
function of the vertical transmission. For instance, letting Da = 6 km2/day: (1)
for p = 0, we have Vmin = 3.03 km/day, and (2) for p = 1, we have Vmin = 3.09
km/day.

The vertical transmission is not an important factor for the spatial dynamics,
see Figure 3, due to the fact that mosquitoes movement is negligible compared with
the avian movement, but it is important for the endemics level, as a local factor of
the disease dissemination, see Figure 1. For Blue jay the wave speed increases from
0.784 to 0.798, when p increases form 0 to 1.

Figure 4 shows the wave speed as a function of the diffusion coefficient, for
three birds species: Blue jay, Common grackle and Fish crow. The wave speeds for
Blue jay and Common grackle are the same, although R̃0 are different. The Fish
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Fig. 2. Polynomial graphics for c = 0.72, cmin = 0.78, c = 0.84 and c = 0.9, taking into account
the non dimensional parameters corresponding to those given in Table 2 for the Blue jay, with
p = 0.007.

Table 2. Values of the non dimensional parameters used to calculate the non dimen-
sional minimum wave speeds.

Common name β̃a β̃v γ̃a α̃a µ̃a µ̃v

p
R̃0 cmin

Blue jay 1.0 0.136 0.104 0.06 0.00008 0.024 5.89 0.784

Common grackle 1.0 0.136 0.132 0.028 0.00004 0.024 5.97 0.789

Fish crow 1.0 0.052 0.144 0.024 0.00008 0.024 3.60 0.522

crow has R̃0 less than the other two species, and the wave speed is considerably
lower. Okubo7 estimates an interval for this diffusion between 0 and 14 km2/day.
Considering p = 0.007 and Da = 6 km2/day, we obtain 3.04 km/day as the velocity
of the disease propagation, near to the 3 km/day observed from the field data, see
maps in DeBiasi et al.8 and the bounded above velocity estimated by Lewis et al.6

assuming arbitrary values for some parameters.
From Figure 5 we can see the first peak of infection in the classes of infected

mosquitoes and infected birds, for two values of the vertical transmission, p = 0
and p = 0.8. The wave speeds are close between them, but we arise an increasing
in the proportion of the infected mosquitoes. This fact is due to the importance of
p to the corresponding spatially homogeneous modeling.

In Figure 6 we show the numerical travelling waves solution for the first order
system. We can observe the first peak of infection in the four classes.
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Fig. 3. Graphic of the non dimensional speed wave as a function of p, the vertical transmission,
for the Blue jays parameters listed in Table 2.
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Fig. 4. Graphic of the dimensional speed wave as a function of the diffusion coefficient of the
avian population Da, considering p = 0.007.
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Fig. 5. Graphics for the infected mosquitoes (left) and infected avian (right) population densities,
for the parameters for the Blue jay listed in Table 2, considering p = 0.8 and absence of the
vertical transmission (p = 0). The effect of vertical transmission is perceptible in the mosquitoes
population, although the wave speed do not increase so much: cmin = 0.785 for p = 0 and
cmin = 0.796 for p = 0.8.
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Fig. 6. Travelling wave solution for WNV model, using the parameters related to the Blue jay
bird listed in Table 2.

4. Conclusion

In this paper we develop and analyze a spatial propagation model in order to
describe the spreading out of the WNV. For the spatially homogeneous dynamics
we considered the non spatial model studied by Cruz-Pacheco et al. We determine,
in non dimensional parameters, as the same way as in Cruz-Pacheco et al.,4 the
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threshold value:

R̃0 =
β̃aβ̃v

(1 − p)µ̃v(γ̃a + µ̃a + α̃a)
.

When R̃0 is greater than one, the endemic state of the disease exists. We study the
conditions for the travelling waves solution connecting this endemic point with the
disease free equilibrium point. An equation with respect to the minimum speed was
determined as a function of the parameters of the model and the threshold R̃0.

The depending of the wave speed on the vertical transmission was studied. As
the mosquito movement is less than birds movement, we obtain that the vertical
transmission is not an important factor in the spatial propagation, but it plays an
important role as a local risk with respect to the incidence of disease.

Finally the wave speed was studied as a function of the avian diffusion. Choosing
a value on the range estimated by Okubo,7 for the avian diffusion, we obtain the
wave speed (3.03 km per day) which is very close to that observed from the field
data. For instance, see maps in DeBiasi et al.,8 which is quite the same obtained
by Lewis et al.6 who studied a simplified model, which does not consider vertical
transmission, WNV death rate and the avian recover subpopulation.

In future paper we will analyze the effects of other parameters than the vertical
transmission and avian diffusion coefficient in order to determine the efficacy of
control strategies, as well as the advection movements in birds and mosquitoes in
the modeling.
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