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Abstract. Dengue is a human disease transmitted by the mosquito Aedes aegypti.
A dengue epidemic could start when infectious individuals (humans or mosquitoes)
appear and could propagate in areas previously colonized by the mosquitoes. In
this work, we propose a model to study the dengue propagation using a system of
partial differential reaction-diffusion equations. The human and mosquito popula-
tions are considered, with their respective subclasses of infected and non infected
populations. We assume that the diffusion occurs only in the winged form, and
the human population is considered constant. The cross-infection is modeled by
the mass action incidence law. A threshold value, as a function of the model’s
parameters, is obtained, which determines the endemic level of the disease. Assum-
ing that an area was previously colonized by the mosquitoes, the spread velocity
of the disease propagation is determined as a function of the model’s parameters.
The traveling waves solutions of the system of partial differential equations are
considered to determine the spread velocity of the front wave.

1. Introduction

The dengue virus is an arbovirus transmitted by arthropod of the genus Aedes.
The cosmo-tropical mosquito, Aedes aegypti (Linn. Diptera: Culicidae), serves as
the most important domestic vector of dengue and urban yellow fever. The dengue
virus is prevalent in different parts of the world presenting only one epidemiological
cycle (urban) that comprises the human (host) and the mosquito Aedes aegypti

(vector). As a result of being pathogenic for humans and capable of transmission in
heavily populated areas, dengue virus can cause widespread and serious epidemics,
appearing as a major public health problems in many tropical and subtropical
regions of the world.

With respect to the disease, briefly, there are 4 different serotypes of dengue
virus presenting low cross immunity among them, which can result in secondary in-
fections after an infection with one serotype had been occurred. It is known that an
individual infected with one serotype can be infected with other serotype six months
later after the first exposure, but there is not evidence of re-infection with the same
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serotype. Dengue viruses of all four serotypes cause three distinct syndromes: clas-
sic dengue fever, dengue hemorrhagic fever and dengue shock syndrome. Although
caused by the same viruses, dengue and dengue hemorrhagic fever are pathogenetic,
clinically and epidemiologically distinct.

In Brazil dengue disease is actually one of the main public health challenges
showing an increasing in number of cases and in geographic distribution through
time. For instance, in 1998, 537.507 cases of dengue were registered in 24 States,
among them 98 cases of hemorrhagic dengue occurred in 9 States. In the same year,
in the São Paulo State, 10.629 cases of dengue disease occurred in 102 municipalities,
overcoming increased efforts spent by the public health authorities in the control
of the vector A. aegypti. The resurgence of dengue transmission in Brazil is due to
the socio-economic conditions getting worse, the change in the climatic conditions
due to the global warming up, the “El Niño” phenomenon, discontinuous sanitary
activities and others.

In this paper we deal with the invasion and colonization of mosquitoes A. aegypti

followed by the establishment of dengue epidemics. In section 2 we develop a model
for dengue transmission, which is analyzed in section 3 to obtain traveling waves
solutions. Finally in section 4 we provided conclusion.

2. Model for the Disease Dynamic

The dengue disease is a vector-borne viral infection transmitted among humans by
mosquito´s bite during the blood meal. We propose a model taking into account
the human and the mosquito populations. In the human population we consider
the subpopulations of susceptible, infected and removed individuals. The spatial
density at time t is denoted by H(x, t), I(x, t) and R(x, t), respectively. To the
mosquito population we consider the winged and an aquatic subpopulations, which
includes eggs, larvae and pupae, denoted by M(x, t) and A(x, t), respectively [5].
The human population is under a constant per-capita mortality rate µH .

With respect to the winged form, the non infected and the infected classes are
considered, which are designed by MS(x, t) and M I(x, t), respectively. The total
population in the winged form is M(x, t) = MS(x, t) + M I(x, t). In the mosquito
population, the intrinsic oviposition rate is denoted by r, with the aquatic form
being constrained by the carrying capacity k2, and per-capita mortality rate µ2.
The per-capita rate of maturation of the aquatic form into the winged is denoted
by γ, with the adult mosquito being saturated by the carrying capacity k1. The
per-capita mortality rate of the winged is µ1.

With respect to the transmission of the dengue infection, we assume the mass
action law with two constant transmission coefficients. One is the transmission
coefficient β1, which measures the rate of effective contact between non infected
mosquitoes with infected human. The other is β2, which measures the rate of effec-
tive contact between non infected humans with infected mosquitoes. Considering
the natural history of infection, in the human population the removal rate is de-
noted by σ, which transfers infectious individuals to removed class. We are not
considering immunity among mosquitoes.
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Finally, the geographical dispersal of A. aegypti among spatially fixed humans is
assumed. Both infected and non infected classes of mosquitoes are under diffusion
by wings and advection by winds, described by the diffusion parameter D and
advection ν.

The model, which governs the spatial and temporal evolution of the disease, is
the following

∂MS

∂t
= D

∂2MS

∂x2
− ν

∂MS

∂x
+ γA(1 −

M

k1

) − µ1MS − β1 MS I (2.1)

∂MI

∂t
= D

∂2MI

∂x2
− ν

∂MI

∂x
− µ1MI + β1 MS I (2.2)

∂A

∂t
= r(1 −

A

k2

)M − µ2A − γA (2.3)

∂H

∂t
= µHN − µHH − β2 H MI (2.4)

∂I

∂t
= β2 H MI − σI − µHI (2.5)

∂R

∂t
= σI − µHR. (2.6)

The system of equations (2.1)-(2.6) is manipulated disregarding the dengue
transmission. Summing the last three equations of the system, we obtain the density
of the human population N , N = H + I + R, given by

∂N

∂t
=

∂H

∂t
+

∂I

∂t
+

∂R

∂t
= 0,

because we assumed that the human population is constant. Summing first two
equations of the system, with M(x, t) = MS(x, t)+M I(x, t), we have the equations
for the dispersal of mosquito population

∂M

∂t
= D

∂2M

∂x2
− ν

∂M

∂x
+ γA(1 −

M

k1

) − µ1M

∂A

∂t
= r(1 −

A

k2

)M − µ2A − γA.

This is the system of equations analyzed in [5] for the A. aegypti dispersal dynamics
in the absence of disease.

We now introduce the non dimensional parameters to the system of equations
(2.1)-(2.6). The mosquito population, in their winged and aquatic phases, are scaled
by its carrying capacity; the time is scaled with respect to the ovipotition rate r
and for the spatial scaling, the quotient between the mosquito diffusion and the
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ovipotition rate according to
√

D
r . The dimensionless parameters are
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r
(

r

D
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γ

r
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r
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µ2

r
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r
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r
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r
, σ =

σ

r
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Therefore, the dimensionless model is

∂MS

∂t
=

∂2MS

∂x2
− ν

∂MS

∂x
+

γ

k
A(1 − M) − µ1MS − β1 MS I (2.7)

∂MI

∂t
=

∂2MI

∂x2
− ν

∂MI

∂x
− µ1MI + β1 MS I (2.8)

∂A

∂t
= k(1 − A)M − µ2A − γA (2.9)

∂H

∂t
= µHN − µHH − β2H MI (2.10)

∂I

∂t
= β2 H MI − σI − µHI (2.11)

∂R

∂t
= σI − µHR. (2.12)

With respect to the dimensionless model, equations (2.7)-(2.12), there are three
steady states. The steady state with only the human population is given by

E0 = (M0

S ,M0

I , A0,H0, I0, R0) = (0, 0, 0, 1, 0, 0),

which is the areas free of mosquitoes where traveling wave front of mosquitoes can
colonized these areas [5].

The second equilibrium is the case when the mosquitoes are well established in
the region

E1 = (M1

S ,M1

I , A1,H1, I1, R1) = (m∗, 0, a∗, 1, 0, 0),

where

a∗ =
kγ − µ1k (µ2 + γ)

kγ + γ (µ2 + γ)
and m∗ =

γ − µ1(µ2 + γ)

µ1k + γ
.

The biological condition, for the existence of the mosquito population, implies that

γ − µ1(µ2 + γ) > 0. (2.13)

The third steady state, which corresponds to the disease at an endemic level, is
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given by

E∗ = (M∗

S ,M∗

I , A∗,H∗, I∗, R∗),

M∗

S = m∗
− M∗

I , M∗

I =
(1 − H∗) µH

β2H∗
,

A∗ = a∗,

H∗ =
β1 µH + µ1 (µH + σ)

β1 µH + β1 β2m∗
,

I∗ =
(1 − H∗) µH

µH + σ
,

R∗ = 1 − H∗
− I∗.

For the disease being prevalent is necessary that H∗ < 1. From this condition we
obtain the basic reproducibility number

R0 =
β1 β2 m∗

µ1(µH + σ)
, (2.14)

where if R0 > 1 the epidemic occurs, since satisfies H∗ < 1. The basic reproducibil-
ity number is the threshold value, which determines the endemic level of the disease.
This is important for control strategies.

Table 1: Parameters for the A. aegypti.

Parameter Symbol Value

Diffusion coefficient D 1, 25x10−2 km2/days
Advection coefficient ν 5x10−2 km/days
Maturation rate γ−1 5 days

Oviposition rate r 30 days−1

Carrying capacity – winged form k1 25 individuals/km
2

Carrying capacity – aquatic form k2 100 individuals/km
2

Mortality rate in winged phase µ−1

1
25 days

Mortality rate in aquatic phase µ−1

2
100 days

The values of the model´s parameters are obtained from literature. The data in
table 1 are those encountred in [5]. With respect to data in Table 2, the mortality
correponds to developing countries, and the infectious period of dengue is the range
5-10 days [6]. The number of humans correspond to the population of São Paulo
state per km2 (considering the total population divided by the state area). Finally,
the contact rates are chosen arbitrarity.

For the dimensionless parameters, corresponding to those listed in Tables 1 and
2, the basic reproducibility number is R0 = 6.57. In this case the epidemic occurs,
and it could propagate in the region previously free of disease.

We study the existence of the traveling waves solutions connecting the steady
states E1 and E∗, i.e., when there are mosquitoes in the region, and the disease
begins to propagate.
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Table 2: Parameters for the disease transmission.

Parameter Symbol Value

Contact rate – infection among
mosquitoes

β1 0.015

Contact rate – infection among
humans

β2 0.0007

Life expectancy µH
−1 60 years

Infected period σ−1 7 days

Intial number of humans H0 150 individuals/km
2

3. Dengue Propagation: traveling waves solutions

Considering that the mosquito population is well established in a region, we analyze
the propagation of the dengue disease when small number of infective individuals
are introduced in this community. We seek for the existence of traveling waves
solutions which must connect E1 and E∗. We must determine the minimum speed
of the traveling waves, because it is stable and represents the observable trajectory
of the dynamics system [4] [7].

The traveling waves solutions, when there exists, must be represented by

(ms(x, t),mi(x, t), a(x, t), h(x, t), i(x, t), r(x, t)) = (ms(z),mi(z), a(z), h(z), i(z), r(z)),

where z = x+ct, and c is the constant velocity [1]. Applying this change of variable
to the system of equations (2.7)-(2.12), we obtain the corresponding dimensionless
system of the first order ordinary differential equations given by

dms

dz
= u, (3.1)

du

dz
= (c + ν)u −

γ

k
(1 − m)a + µ1ms + β1 ms i (3.2)

dmi

dz
= v, (3.3)

dv

dz
= (c + ν)v + µ1mi − β1 ms I (3.4)

da

dz
= (1/c)(k(1 − a)m − µ2a − γa) (3.5)

dh

dz
= (1/c)(µHn − µHh − β2h mi) (3.6)

di

dz
= (1/c)(β2 h mi − σi − µhi) (3.7)

dr

dz
= (1/c)(σi − µHr). (3.8)

Let us analyze the stability of the equilibrium point E1 with respect to the linear
system of equations (3.1)-(3.8). The eigenvalues are

λ1 = 0, λ2 = −
µH

c
,
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and the roots of the two polynomials of third degree

P1(λ) = λ3 +

(

−(c + ν) +
(µH + σ)

c

)

λ2
−

(

µ1 + (c + ν)
(µH + σ)

c

)

λ

+
β1β2m

∗ − µ1(µH + c)

c

P2(λ) = λ3 +

(

−(c + ν) +
γ + µ2 + km∗

c

)

λ2

+

(

−(c + ν)
(γ + km∗ + µ2)

c
−

(

a∗γ + kµ1

k

))

λ −
γ(1 − µ1) − µ2µ1

c
.

Since the variables are population, we constrain to the dynamical system the fact
that the solution must not oscillate around the origin, i.e., the eigenvalues must
assume real values. The polynomial P2 is structured in terms of the parameters
regarded to the mosquito population and does not comprise neither human popula-
tion´s parameters nor infection´s parameters. Let us apply the Cardan formula [3]
and write the discriminant of P2 as a new polynomial in c. The discriminant has
the form

dis(c) = pol(c)/c4,

where pol(c) =
(

a6c
6 + a4c

4 + a2c
2 + a0

)

and the coefficients ai, for i = 0, 2, 4, 6,
depend on the parameters γ, µ1, µ2 and k.

For values of the parameters of A. aegypti given in Table 1, setting ν = 0, the
discriminant is less than zero, and the polynomial has only real roots (see Figure
1). In this case, the value of γ is 0.0066. When this value decreases below to the
critical value γc = 0.00000044481, in which case the mosquito population does not
exist, we have a∗ = 0 and m∗ = 0, and the maximum of the polynomial pol(c) is
increased, but never assumes valued less than zero. At this critical situation the
maximum of pol(c) is zero in the origin (see Figure 1). This is a consequence of the
condition (2.13) being equal to zero and the independent coefficient,

a0 =
(γ − µ1(µ2 + γ))4γ3(γ + k + µ)3

27(γ + kµ1)3
,

is also zero.
Finally, the minimum traveling waves velocity is obtained from the polynomial

P1(λ), denoted cmin. The condition R0 > 1 implies that P1(0) > 0. Besides, we
must have

lim
λ→±∞

P1(λ) = ±∞,
dP1(λ)

dλ

∣

∣

∣

∣

λ=0

< 0,

in order to P1(λ) has always negative real root. Then, the double positive real
roots determine cmin (see Figure 2). For all c < cmin there are complex solutions
for P1(λ), and for c ≥ cmin, all the roots are real. Imposing that cmin must be double
real roots, we obtain equation to determine cmin as a function of the parameters.
The equation is the following

λ3+

(

−(c+ν)+
(µH +σ)

c

)

λ2
−

(

µ1+(c+ν)
(µH +σ)

c

)

λ+
β1β2m

∗−µ1(µH +c)

c
=0
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Figure 1: Left: Graph of the polynomial pol(c) for the parameters listed in Table 1.
Right: Graph of the polynomial pol(c) for the parameters listed in Table 1, setting
γc = 0.00000044481, driving to a∗ = 0 and m∗ = 0. The maximum is reached in
the origin at this critical value.
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The dimensionless speed, for the parameters listed in Tables 1 and 2, setting
ν = 0, is cmin = 0.1009. In the original parameters this speed of propagation of the
dengue disease is: 0.06 km/days, which did not consider the advection movement.
In Figure 3, the traveling waves are showed for the sub-populations of infected and
non infected humans, and for infected and non infected mosquitoes. A cyclic front
wave of the disease can be observed.
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Figure 2: Graph of the polynomial P1(λ) for the parameters listed in Table 1, setting
ν = 0, and Table2. The curves correspond to the values c = 0.12, c = 0.11, with
three real roots, cmin = 0.1009 with a double root, and c = 0.09 and c = 0.08 with
only one real root.
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Figure 3: Traveling waves for the parameters listed in Tables 1 and 2, setting ν = 0,
for infected and non infected humans, and infected and non infected mosquitoes. A
front wave of the disease can be observed, followed by a second front.

4. Conclusion

In this work we first determined the basic reproducibility number, which determines
the endemic level of the disease. Then the minimum speed of the traveling waves
was determinated, which describes the propagation of dengue in an area previously
colonized by the mosquito A. aegypti. The equation with respect to the minimum
traveling waves velocity was determined, as function of the model´s parameters.
This permits to evaluate control strategies in order to attain the eradication of
dengue transmission by decreasing the speed of propagation up to zero, which is
left to a future work.

In this work, the advection were not considered (ν = 0). The advection, in
a preferential direction, increases the wave velocity and this phenomenon will be
considered in a future work.

Resumo. Dengue é uma doença entre humanos transmitida por mosquito Aedes

aegypti. Uma epidemia de dengue pode ser deflagrada quando indiv́ıduos infecciosos
(humanos ou mosquitos) surgem e a doença propaga-se em áreas previamente col-
onizadas por mosquitos. Nesse trabalho, propomos um modelo matemático para
analisar a propagação de dengue usando um sistema de equações diferenciais par-
ciais de reação-advecção. As populações humana e de mosquitos são consideradas,
com suas respectivas sub-populações de infectados e não infectados. Assumimos que
a difusão só ocorre na forma alada dos mosquitos, e a população humana é con-
stante. As infecções cruzadas entre as duas populações são modeladas assumindo
a lei da ação das massas para incidências. Do modelo obtém-se um valor limiar,
em função dos parâmetros do modelo, que determina o ńıvel de endemicidade da
infecção. Assumindo que uma área fora previamente colonizada por mosquitos, a
velocidade de espalhamento da doença é determinada em função dos parâmetros do
modelo. A solução de ondas viajantes para o sistema de equações parciais fornece
a velocidade de frente de onda.
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