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Abstract

Biological invasion is an important area of research in mathematical biology and more so if it
concerns species which are vectors for diseases threatening the public health of large populations.
That is certainly the case forAedes aegypti and the dengue epidemics in South America. Without
the prospect of an effective and cheap vaccine in the near future, any feasible public policy for
controlling the dengue epidemics in tropical climatesmust necessarily include appropriate strategies
for minimizing the mosquito population factor. The present paper discusses some mathematical
models designed to describeA. aegypti’s vital and dispersal dynamics, aiming to highlight practical
procedures for the minimization of its impact as a dengue vector. A continuous model including
diffusion and advection shows the existence of a stable travelling wave in many situations and a
numerical study relates the wavefront speed to a fewcrucial parameters. Strategies for invasion
containment and its prediction based on measurable parameters are analysed.
© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Dengue is a viral disease which is transmitted by arthropods of the speciesAedes
aegypti, a mosquito found throughout the world where a hot and humid climate is
predominant (Vasconcelos et al., 1999). The mosquitoA. aegypti inhabits mainly human
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houses and bites at any time during the day, which makes it a very efficient vector.
Infectious individuals, either humans or mosquitoes, can start a dengue epidemic in human
populations very quickly when placed in a previouslyA. aegypti infestedregion (Veronesi,
1991; Ferreira and Yang, 2003; Cummings et al., 2004).

The dengue disease shows only one epidemiological cycle linking the human host and
the A. aegypti vector. A susceptible femaleA. aegypti is infected by sucking infected
human blood, after which follows a short incubation period of approximately eight days.
Afterwards the virus begins a replication process inside the mosquito’s salivary glands and
is ready to infect susceptible humans through any future bite. When an infected mosquito
bites a susceptible human the virus is injected into his or her blood stream and begins an
incubation period which takes from three toten days, with an average of five days. After
that, a dengue may evolve to a non-symptomatic stage or to a classic set of symptoms
which includes fever and Myalgias. Symptoms persist from three to seven days which is
also the infectious period. After that the individual develops an specific immunity for a
long time (Veronesi, 1991; Gubler, 1998).

In some cases, however, a serious scenario of symptoms shows up, called ‘dengue
haemorrhagic fever’ (DHF),characterized mainly by coagulation problems which may
lead to the death of an infected individual.

Dengue is a particularly serious public health problem in Brazil due to favourable
climate and environmental conditions forA. aegypti population expansion.A. aegypti was
detected in Brazil for the first time in 1923 and was eradicated by 1955 and re-introduced
in 1967. In 1973 it was again considered eradicated but reappeared again in Bahia State
in 1976 and in Rio de Janeiro in 1977. Since then, the disease has spread throughout the
country, and massive bursts of infections are common during the humid and hot days of
every summer. Climate variation caused by the ‘El Niño’ meteorological phenomenon is
believed to be closely correlated with such epidemiological occurrences. In 1998, 537,507
cases of infection were detected in the Public Health System in 24 states, 9 of them being
of ‘dengue haemorrhagic fever’. Although dengue is not commonly a lethal disease it
constitutes a very serious public health problem due to many and varied complications
coming from its infection.

Since no vaccine for dengue is expected in the near future, any feasible strategy for
controlling its epidemiological dynamics must concentrate efforts on the containment of
the A. aegypti population, especially when infection is detected (Gubler, 1998). Efficient
and practical measures for controlling theA. aegypti population are of two different
kinds. A classical chemical attack against the mosquito or against its larval form can be
made by the use of strong organophosphorates, insecticides and pyrethroids (Fenitrothion,
Malathion, Cypermethrin). However, in order to obtain adequate results with such a
strategy it is necessary to apply and maintain a high average level of these toxic and
expensive chemicals over the entire infested region, mostly occupied by human dwellings
as well (Teixeira et al., 2003; Yang et al., 2003). Those conditions make chemical control
very difficult from a practical point of view and also dangerous from a public health
perspective.

The second kind of strategy emphasizes prevention. For oviposition, femaleA. aegypti
mosquitoes need clear and undisturbed water for their larvae to proliferate which is mainly
available in unattended containers, either natural ones such as orchids or artificial ones such
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as old tyres, flowerpots, empty bottles. So,human-made environmental conditions are the
main reasons forA. aegypti infestation and, in view of this, the (presumably) most efficient
strategy for controlling its proliferation should be acivic attitude of permanent alertness to
unattended breeders. Educational programmes run by governmental agencies stating such
simple facts are frequently transmitted by the media, especially during the rain season,
and are considered to be the safest, cheapest and(theoretically) most efficient strategies
for controlling A. aegypti infestation. Unfortunately, in practice, community awareness
develops slowly and fades away quickly (Ereno, 2003).

Dengue can become endemic in a region infested with anA. aegypti population. So,
to develop public policies for prevention andstrategiesfor control of this disease it is
indispensable to establish a solidand tractable knowledge of theA. aegypti population
behaviour and dynamics in order to find parameters appropriate for treatment by practical
intervention. Mathematical models can provide such knowledge, since they are of necessity
simplified descriptions of reality and, if reasonably faithful, they automatically yield
the desired control parameters. In this paper we develop mathematical models for the
A. aegypti spatial population dynamics and show that a feasible strategy can be designed
for containing the dispersal by stoppingthe development of travelling waves (Murray et al.,
1986; Murray, 1993; Cummings et al., 2004). Numerical simulations are performed in one
dimension and the wave velocity is plotted against some of the biological parameters.

2. The one-dimensional model: travelling waves by wing and wind

Winged femaleA. aegypti in search of human blood or places for oviposition are the
main reason for local population dispersal and the slow advance of a mosquito infestation.
On the other hand, wind currents may also result in an advection movement of large masses
of mosquitoes and consequently cause a quick advance of infestation. Besides this, since
theA. aegypti is mostly found in urban regions, its movement is also largely influenced by
human related activities. Small numbers of mosquitoes are frequently carried by vehicles
and, although that might become important if they are infected, we will not take that factor
into account. However, large numbers of larvae are frequently carried by unattended water
containers, commonly found inside big transportation trucks. That is probably the main
cause for the long range advance of an infestation, which can mean thousands of kilometres
in just a couple of days. Although this last mechanism certainly occurs in urban areas, its
relevance is more significant to the study of inter-city dispersal in a large space scale of
continental size. The effect of human transportation networks on dengue propagation was
modelled byTakahashi (2004). This paper focuses its attention on an urban scale of space,
where a (local) diffusion process due to autonomous and random search movements of
wingedA. aegypti are coupled to a constant advection which may be interpreted as the
result of wind transportation. To keep the model tame to simple mathematical techniques
the analysis is restricted to the one-dimensional case.

2.1. Aedes aegypti population model

To simplify the biological vital dynamics of theA. aegypti this model will consider
only two sub-populations: the winged form (mature female mosquitoes); and an aquatic
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population, which includes eggs, larvae and pupae. The spatial density of the winged
A. aegypti at pointx and timet will be denoted byM̄(x, t) and that only counts the female
mosquitoes in fact. The aquatic form will be denoted likewise byĀ(x, t). Let the mortality
rate of the mosquitoes and the aquatic forms be respectivelyµ̄1, µ̄2.

The specific rate of maturation of the aquatic form into winged female mosquitoes will
beγ̄ , saturated by a term which describes a carrying capacity(k̄1) related to the amount of

‘findable’ nutrients (human blood, that is):γ̄ Ā(x, t) (1 − M̄(x,t)
k̄1

).

Likewise, the rate of oviposition, which is the only source of the aquatic form, by female
mosquitoes is proportional to their density but is also regulated by a carrying capacity effect

dependent on the occupation of the available breeders:r̄ M̄(x, t) × (1 − Ā(x,t)
k̄2

).
As already pointed out, we will consider theA. aegypti dispersal as the result of a

random (and local) flying movement, macroscopically represented by a diffusion process
with coefficient D̄, coupled to a wind advection caused by a constant velocity fluxν̄.
Constant advection can be justified as a ‘bias’ in the transport process caused by a long
term geographical direction of the wind, while its random and short term fluctuations are
to be included in the diffusion term.

Since we do not take into account human transportation in this model, the aquatic form
will be considered as being in a sessile state. In work to be published elsewhere, some
of the present authors (LTT and WCFJr) consider the effect of inter-city transportation
networks on the geographical dispersal ofA. aegypti which is the main cause for its spread
in the aquatic phase.

Considering the vital dynamics and dispersal process together, an eight-parameter
(D̄, ν̄, γ̄ , µ̄1, µ̄2, k̄1, k̄2, r̄) mathematical model can be formulated by using two coupled
conservation laws as follows:

∂

∂ t
M̄(x, t) = D̄

∂2

∂x2 M̄(x, t) − ∂

∂x
(ν̄M̄(x, t))

+ γ̄ Ā(x, t)

(
1 − M̄(x, t)

k̄1

)
− µ̄1M̄(x, t)

∂

∂ t
Ā(x, t) = r̄

(
1 − Ā(x, t)

k̄2

)
M̄(x, t) − (µ̄2 + γ̄ ) Ā(x, t).

(1)

Next, to introduce the appropriate scales, we adimensionalize the above system using
the following units: k̄1 for the mosquito population,̄k2 for the aquatic population,

r̄−1 for time and
√

D̄
r̄ for space, which gives us the following system of five

new non-dimensional parameters(µ1 = µ̄1
r̄ , µ2 = µ̄2

r̄ , γ = γ̄
r̄ , ν = ν̄√

r̄ D̄
,

k = k̄1
k̄2

):

∂

∂ t
M(x, t) = ∂2

∂x2
M(x, t) − ν

∂

∂x
M(x, t)

+ γ

k
A(x, t)(1 − M(x, t)) − µ1M(x, t)

∂

∂ t
A(x, t) = k(1 − A(x, t))M(x, t) − (µ2 + γ )A(x, t).

(2)
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Since we intend to analyse this model for invasion processes, the equations are
considered in the whole one-dimensional space. In such a case, boundary conditions at
infinity are required only forM(x, t) since the second equation is actually an ordinary
differential equation andno differentiation of A(x, t) with respect tox occurswithin
the system. Numerical simulations of the system (2) have used the boundary conditions
M(±∞, t) = ∂M(±∞,t)

∂x = 0 which describe a null population and null flux of mosquitoes
at distant points at all times. Accordingly,the initial conditions are given by the functions
A0(x) = A(x, 0), M0(x) = M(x, 0) with compact support, which describe a restricted
distribution of population.

Some reaction–diffusion systems such as the one above are notoriously apt to develop
attractant (stable) travelling wave solutions which represent the permanent regimes of the
dynamical system (Weinberger, 1982; Murray et al., 1986; Volpert and Volpert, 1994;
Sandstede, 2002; Lucia et al., 2004). That is, after a quick transient period any sufficiently
large initial perturbation will ultimately approximate the travelling wave solution which
afterwards becomes the ‘visible dynamics’ of an invasion. We will show that, in fact,
for model (2), travelling wave solutions should be expected for a continuous range of
velocities. Next, we determine their smallest possible velocity which, for some parabolic
equations (Murray, 1993; Volpert and Volpert, 1994; Lucia et al., 2004) as well as in the
present case, corresponds to a stable travelling wave.

Such aphenomenon is not rigorously proved in the present paper but will be confirmed
by many numerical simulations.

Travelling wave solutions will be searched for in the following form:

m(z) = M(x, t), a(z) = A(x, t), z = x − ct, (3)

wherec is the constant velocity andm(z), a(z) are the wave profiles, all to be determined as
usual (Segel, 1980; Murray, 1993). We will look only for profiles representing an invasion
process, that is, positive monotonically decreasing functions such that

lim
z→−∞ m(z) = m∗, lim

z→−∞ a(z) = a∗

lim
z→+∞ m(z) = 0, lim

z→+∞ a(z) = 0,
(4)

whereM0(x, t) = 0, A0(x, t) = 0 andM1(x, t) = m∗, A1(x, t) = a∗ are stationary and
spatially homogeneous solutions of (2).

The invasion speeds obtained for the two sub-populations are equal and we should
expect that from the following biological argument. Suppose that they are distinct, that
is, M(x, t) = m(x − c1t), A(x, t) = a(x − c2t), and, say,c1 > c2. Then, if we wait
long enough there will be some distant interval where the (‘faster’) mosquito population
will reach values close to the saturation level with practically no aquatic population for
as long as we want. That would contradict the vital dynamics, since in that interval a
large population of mosquitoes would lay eggs at an enormous rate because (almost) no
saturation effect exists without a sizable aquatic population. A similar argument works
if the reverse inequality is proposed. Consequently, from a practical point of view, we
should only expect a time delay between the wavefronts and a constant spatial gap, not an
expanding one.
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Substituting Eq. (3) into (2), the following system of ordinary differential equations is
obtained:

d2

dz
m(z) = (ν − c)

d

dz
m(z) − γ

k
(1 − m(z))a(z) + µ1m(z)

d

dz
a(z) = −k

c
(1 − a(z))m(z) +

(
µ2 + γ

c

)
a(z).

(5)

The above boundary value problem (4) and (5) can also be written in a dynamical system
form as follows:

m′(z) = h(z)

h′(z) = (ν − c)h(z) − γ

k
(1 − m(z))a(z) + µ1m(z)

a′(z) = −k

c
(1 − a(z))m(z) +

(
µ2 + γ

c

)
a(z),

(6)

with the equivalent boundary conditions:


m(−∞) = m∗
h(−∞) = 0
a(−∞) = a∗




m(+∞) = 0
h(+∞) = 0
a(+∞) = 0

(7)

wherem′(z) = dm
dz = h(z) and so on.

The boundary value problem (6) and (7) is defined in the interval (−∞,+∞) and so
its solutions can be interpreted geometrically as heteroclinic trajectories of the dynamical
system (6) in the three-dimensional phase space(m, h, a) linking two different singular
points, one of them being necessarily the origin. In fact,P0 = (0, 0, 0) is a singular point
and a secondP1 = (m∗, 0, a∗) is readily found, where

a∗ = kγ − µ1k(µ2 + γ )

kγ + γ (µ2 + γ )
m∗ = γ a∗

µ1k + γ a∗ . (8)

Since we areonly interested in solutions of biological significance,P1 must be
adequately ‘positive’, which meansm∗ ≥ 0 anda∗ ≥ 0. These requirements are equivalent
to the following mathematical condition:

µ1 = µ̄1

r̄
< 1 and γ >

µ1µ2

1 − µ1
(9)

which will be interpreted next as two biological necessary conditions for the existence of
the kinds of travelling waves that we are searching for.

The first inequality in (9) is quite obvious and means that the mortality rateµ̄1 should
be lessthan the maturation ratēr in dimensional units. The second one can be rewritten in
dimensional variables as

R0 = γ̄

γ̄ + µ̄2

r̄

µ̄1
> 1 (10)

and interpreted from a biological point of view as follows.
Since 1

γ+µ2
is the average time of survival of the aquaticA. aegypti and 1

γ
is the average

time of its existence as such, we can interpretγ
γ+µ2

as the probability that an egg will
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Fig. 1. A trajectory solution in the phase space(m, h, a) from P1 to P0 in the P-octantm ≥ 0, h < 0, a ≥ 0.

succeed in becoming a (female) mosquito. On the other hand,1
µ1

is the average lifetime of
a female mosquito and consequentlyr

µ1
is the average number of eggs oviposited by each

one. So, following epidemiological notation,R0 will be called the ‘basic reproductive ratio’
and travelling waves will happen only if female mosquitoes produce on average one female
mosquito during their whole lives. Of course, that is only a necessary condition because,
mathematically, R0 > 1guarantees just the existence of a non-trivial and ‘positive’ singular
point but not yet the existence of a wholly ‘positive’ trajectory linking it to the origin. It
must be noted that a biologically acceptable (i.e., a ‘positive’) trajectory should satisfy the
following inequalities:m(z) ≥ 0, a(z) ≥ 0 ∀z ∈ (−∞,+∞) (Fig. 1). From now on we
will call the three-dimensional regionm ≥ 0, h < 0, a ≥ 0 theP-octant.

So, we will conclude now thatR0 < 1 is a sufficient condition for a non-invasive
scenario. However, it is reasonable to assume thatR0 > 1 might be far from being a
sufficient condition for the existence of travelling waves since it has no spatial parameter
dependence.

Considering thatR0 < 1 is probably toostrong a condition for controlling the dispersal
of A. aegypti, we would like to extend the options for its spatial containment by analysing
more closely the caseR0 > 1 and, in particular, learning about the wave speed dependence
on non-dimensional parameters.

2.2. Travelling waves: their existence and speed dependence on the parameter space

The reaction–diffusion system (2) will be analysed next for the existence of travelling
waves of constant speed, as described by (3) and under condition (9).

Let us suppose that the condition (9) for the existence of a singular ‘positive’ point is
satisfied. We will use the phase space method to determine the existence of a ‘positive’
solution to the boundary value problem (6) and (7), which means a trajectory from the
singular pointP1 = (m∗, 0, a∗) to the originP0 = (0, 0, 0) wholly contained in theP-
octant. Of course, a necessary condition for the existence of the trajectory solution is that
the P1 must have an unstable (departing) manifold andP0 a stable (incoming) manifold.

In order to do the required stability analysis, as usual, we linearize the dynamical system
(6) and determine the eigenvalues of the Jacobian matrix for each singular point.
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Fig. 2. Graphs of thec-family of polynomials p0(λ, c). In particular we show the graph of the threshold
polynomial p0(λ, cm ).

At the origin P0 the Jacobian matrix is


0 1 0

µ1 (ν − c) −γ

k

−k

c
0

µ2 + γ

c


 ,

and the corresponding eigenvalues are the roots of the followingc-family of λ polynomials:

p0(λ, c) = −λ3 +
[
µ2 + γ

c
+ (ν − c)

]
λ2 +

[
µ1 − (ν − c)

µ2 + γ

c

]
λ

− µ2 + γ

c
µ1 + γ

c
,

wherec is the undetermined wave speed.
From (9) we know that p0(0, c) = 1

c [−(µ2 + γ )µ1 + γ ] > 0 and, since
limλ→±∞ p0(λ, c) = ∓∞, we conclude immediately that eachλ-polynomial of thisc-
family has at least one positive root. This polynomial, in principle, may have either two
other real roots or two conjugate complex roots. Complex roots with negative real part
might guarantee a solution of the boundary value problem (6) and (7) but the resulting
trajectory would arrive at the origin spinning through outside points of theP-octant, which
will not produce a biologically acceptable travelling wave. A travelling wave solution
would exist only if for ac ≥ 0 the respective polynomialp0(λ, c) has a negative (real)
root.

However, its easy to see that for anyλ < 0 we have limc→∞ p0(λ, c) = −∞ which
means that a real negativeλ root of p0(λ, c) will exist if c is chosen sufficiently large. Now,
since for anyc > 0, p0(0, c) > 0, if a polynomialp0(λ, c) has a negative root, it will also
have two negative roots. Generic graphs of polynomials of this kind are plotted inFig. 2.

Let us define the setC = {c > 0; p0(λ, c) has negative roots}. In orderto find the
stable travelling wave we will have to determine the least value ofc > 0 for which there is
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such a solution, i.e., min C. If there is such a minimumcm > 0, the threshold polynomial
p0(λ, cm) will necessarily have a double root at its local minimum value (Fig. 2).

An interesting remark whichmight be helpful for visualizing the graphics of thec-
family of λ-polynomialsp0(λ, c) derivesfrom thefollowing inequality:

∂

∂c
p0(λ, c) = −

(
µ2 + γ

c2 + 1

)
λ2 +

[
ν
(µ2 + γ )

c2

]
λ

− 1

c2
[γ − µ1(µ2 + γ )] < 0,

obtained by taking into account condition (9) and fixing any negative value ofλ.
The threshold valuecm is the minimum speedc for which there may be a travelling

wave or, in other words,c ≥ cm is anecessary condition for the existence of a travelling
wavesolution. Of course we still have to considerconditions on the otherstationary point,
P1, in order to find whether further restriction must be imposed on parameterc.

So, the smaller rootλ−(c) of the second-order polynomial∂ P0
∂λ

(λ, c) is the one that
will eventually characterize the threshold valuecm when it becomes also a root of the
third-order polynomialp0(λ, c), which means that we can reduce the above system to one
algebraic equation:

p0(λ−(c), c) = 0, (11)

whose solution gives uscm(γ, ν, µ1, µ2).
We will not strive for complete algebraic conditions for the existence of a negative root

of p0(λ, c), or for explicit formulas forcm .
Now, turning our attention to thelinear stability at the singular pointP1 we analyse the

appropriate Jacobian matrix.
It is easily verified by algebraic manipulations that forc ≥ cm the above Jacobian

matrix has two positive eigenvalues and consequently the desired unstable manifold is
always found;Fig. 3 (Hartman, 1973; Carr, 1981).

Under the above conditions (9), the equilibrium pointsP0, P1 become hyperbolic. Then,
well known results from classical dynamical system theory (Hartman, 1973; Carr, 1981)
ensure the existence of two invariant analytical manifolds for each point. What concerns
us is the existence of an unstable (‘departing’) manifold atP1 and a stable (‘entering’)
manifold at P0. Using initial value pointsPθ

1 taken on a tangent line to theunstable
manifold from (and close to)P1 we compute the resulting trajectories until one of them
reaches a close enough neighbourhoodof the stable manifold atP0; those are taken as
approximate solutions to the heteroclinic trajectories;Fig. 3.

The existence of a continuum range of a travelling wave speed poses the immediate
question of which, if any, of those solutions might be biologically relevant. The selection
for relevance will be dictated by a stability criterion with respect to dynamical system
(2) described by partial differential equations. A rigorous mathematical approach to this
problem is rather involved (Sandstede, 2002) and falls outside the scope of the present
work. However, there is a reasonable intimation from the well known Fisher equation
(Murray, 1993) that the minimum speed travelling wave is the attractor solution for
localized perturbations. Numerical simulations will later support this hunch for the present
case also.
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Fig. 3. An illustration of the numerical construction of a heteroclinic trajectory.Wi
s , Wi

u are the stable/unstable

invariant manifolds at pointsP0 andP1, T is the heteroclinic trajectory andP1Pθ is the successful eigendirection.

Table 1
Values for thedimensional parameters in the following unit system:Space = [x] = km, Time = [t] = one day

D v γ r k1 k2 µ1 µ2

1.25× 10−2 5.0 × 10−2 0.2 30 25 100 4.0 × 10−2 1.0 × 10−2

Table 2
Values for non-dimensional parametersν, γ , k, µ1, µ2 corresponding toTable 1

v γ k µ1 µ2

8.164× 10−2 2.5 × 10−1 6.66× 10−3 1.33× 10−3 3.33× 10−4

So, if we are to design any strategy for controlling theA. aegypti dispersal based on the
above model, the crucial parameter to consider iscm = (γ, ν, µ1, µ2). That is what is done
next.

2.3. Numerical simulations

The numerical simulations were run with XPPAUT (Ermentrout, 2002). A numerical
example, which is represented by a set of values for the fixed parameters (some of them
will vary later), is given byTable 1(dimensional) andTable 2(non-dimensional). The
values are of the same order as one case given in the literature (Ferreira and Yang, 2003).

The value ofR0 = 714 corresponding to the given parameters is very high and so, from
a spatially homogeneous model point of view, the propagation would succeed quickly.
However, as can be seen from expression (10), R0 depends only on vital parameters.
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So, from now on, all the chances for controlling theA. aegypti invasion must rely mainly on
the spatial dispersal mechanism, represented by the non-dimensional parameterν = ν̄√

r̄ D̄
.

The corresponding equilibrium pointfor this numerical example isP1 =
(0.951, 0, 0.971). Theminimum speed for the existence of travelling waves iscm 
 0.514,
whose value can be approximately obtained either by solving the corresponding algebraic
Eq. (11) or by solving the boundary value problem (4) and (5) or (6) and (7), as shown
below.

Numerical simulations of the boundary value problems (4) and (5) or (6) and (7) were
performed by using a kind of ‘shooting method’, i.e., by solving Cauchy problems for the
system (5) with ‘smart’ initial valuesPθ chosen in a neighbourhood ofP1 and in such a
way thatP1Pθ is an ‘unstable’ eigenvector (Hagstrom and Keller, 1986).

Fig. 4 shows that for c = 0.38 there is a heteroclinic trajectory spinning around the
origin which indicates that the corresponding polynomial must have two complex roots.
Increasing the values ofc, wecan observe (not shown in the figure) that the spin decreases
until c 
 0.52 when we obtain an almost perfect heteroclinic trajectory wholly inside the
P-octant linking P1 to the origin. It is important tonote that for larger values ofc we
still obtain heteroclinic orbits in theP-octant which are not interesting since they do not
yield stable travelling wave solutions, as we already know and will be shown next in the
numerical simulations of the reaction–diffusion system (2). Besides, for very large values
of c the heteroclinic orbit yields a travelling wave solution of (2) which exhibits densities
(of both mosquitoes and the aquatic phase) well beyond the carrying capacity.

As can be seen inFig. 4, the wavefront for M is detected first, which is biologically
expected since only the mosquitoes are capable of moving. However, due to a high
oviposition rate and a relatively small maturation rate, the wavefront forA takes over very
quickly and reaches the saturation level long beforeM.

2.4. Indication of the stability of the cm travelling wave by numerical simulations of the
reaction–diffusion model

In order to have abiological use for travelling wave solutions we need to show not only
their stability but also that they exhibit a strong attractive behaviour. In that case a travelling
wave will represent a permanent regime of the dynamical system in a robust scenario.
However, rigorous mathematical treatment of even linear stability of travelling waves is
a notoriously difficult problem and estimation of the attractability region, which would
be the practical side of this kind of result, is a hopeless task. So, this is where numerical
simulation can give us strong support for or evidence against stability arguments. In what
follows we show that numerical solutions of the full partial differential reaction–diffusion
equations (2) with quite general initial conditions quickly develop into travelling waves
with the same velocitycm as prescribed by the arguments presented in the last section.

The numerical solutions were obtained by using a fourth-order Runge–Kutta method
in the second equation for the aquatic phase (actually an ordinary differential equation in
time) and a finite-difference approach for thefirst equation adequately modified in order to
take into account advection effects in the spatial variable. A Crank–Nicholson method was
used for the semi-discretization of the time variable.
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Fig. 4. Front waves forc = 0.52.

For the mosquito population, an initial condition of a box type

M(x, t) =
{

0, |x | > 1
M0, |x | ≤ 1

and Neumann null boundary conditions

∂M

∂x
(±L, t) = 0, t > 0

were used, while for the aquatic phase, both the initial and Dirichlet boundary conditions
were taken as null:

A(x, t) = 0, A(±L, t) = 0.

In Fig. 5 the spatial graphs of a typical solution for many values of time clearly
show a very quick approach to a travelling wave solution. This limit behaviour was
always found for different valuesM0 and L of the initial and boundary conditions,
which supports the conclusion that the travelling wave solution is in fact a very attractive
solution. Biologically, that means that invasive processes are typical phenomena for the
A. aegypti population dynamics. The speed of the limit travelling wave is 0.32 km day−1
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Fig. 5. Graphs ofM(x, t) and A(x, t) with respect to the spatial variablex for fixed values of time:
t = 0, 2, 4, 6, 8, 10, 12, 14, 16 days. The right downstream wavefront is faster moving than the left upstream
wavefront.

which closely agrees with the non-dimensionalcm = 0.514 obtained from the arguments
presented in the last section.

Oncecm(γ, ν, µ1, µ2) is confirmed as the vital parameter for the invasion phenomenon,
the next step must be to analyse the strategies for stopping the wave process or, in other
words, to determine the range of values for the non-dimensional parametersγ, ν, µ1, µ2
which may bring the value ofcm(γ, ν, µ1, µ2) as close as possible to zero.
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Fig. 6. Variation ofcm(γ, ν, µ1, µ2) with respect to the parameterγ , whenν, µ1, µ2 are fixed as inTable 2.

In the first place we will analyse its dependence on vital parametersγ,µ1, µ2 and later
that on the movement behaviour parameterν.

The non-dimensional parameterγ = γ̄
r̄ is the ratio of two time units, the average

time for one oviposition1
r̄ and the average time taken for the aquatic form to mature,

1
γ̄

. Fig. 6 shows an expected monotonically increasing dependence ofcm with respect to
the parameterγ , whenν, µ1, µ2 are fixed as inTable 2, and alsoshows a saturation effect
for large values ofγ . A complete stop strategy with this parameter is unreasonable from a
practical point of view since substantial decrease incm is only attainedby bringingγ very
close to zero; for relatively small values ofγ (≈0.05) the wave speed still remains too high
(≈0.8).

Fig. 7 shows that an application of insecticide against the winged (mosquito) phase is
much more effective as an infestation containment strategy than insecticide application
against its aquatic phase. This should not be surprising, since the winged form is the
one responsible for theA. aegypti movement. However, as can be seen from the same
figure, a saturation effect is very apparent and massive insecticide application to increase
the mosquito mortality rate beyond 0.25 willshow very little improvement in wave speed
reduction.

Insecticide application against the aquatic form is not very effective for wave control, as
can be seen fromFig. 8. However, if achemical attack against the winged form(µ1  1)

is coupled with the elimination of infested water-holding containers(k  1), the results
are surprisingly effective, as shown inFig. 9.

Public education campaigns and debris removal should result in reduction ofA. aegypti
breeders and consequently in a decrease of the (dimensional) carrying capacity(k2) for the
aquatic form. Since the (dimensional) carrying capacity for mosquitoes(k1) depends only
on human population density, which is hardly controllable, the non-chemical strategy can
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Fig. 7. The dependence ofcm onµ1; all the remaining parameters have fixed values as given byTable 2.

Fig. 8. The dependence ofcm onµ2; all the remaining parameters have fixed values as given byTable 2.

be represented by an increase in the value of the (non-dimensional) parameterk = k1
k2

.
Fig. 8 shows that this is a very effective strategy for reduction of the invasive wave
speed. However, the practical enforcement of this strategy requires a long period of
time and a large workforce, which makes it very difficult to reduce the value ofk2
for an extensive region. So, it is an interesting problem to analyse the travelling wave
behaviour in a medium withk2 varying periodically [see, for example,Pauwelussen (1981),
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Fig. 9. The dependence ofcm on µ = µ1 = µ2; all the remaining parameters have fixed values as given by
Table 2.

Shigesada and Kawasaki (1997)andHeinze et al. (2001)], in an effort to find an efficient
strategy for breeder elimination in just a fraction of the total area based on choosing an
appropriate spatial pattern of action. The time dependence of parameterk2 in specific spots
might also provide an efficient strategy for wavefront containment or, rather, represent the
influence of an intangible environment (Potapov and Lewis, 2004). The same can be said
as regards the insecticide strategy which is notoriously inefficient and noxious to public
health when applied to densely populated areas. We will not pursue this matter here.

Control of spatial movement ofA. aegypti is very difficult from a practical point of
view. However, the study of the wavefront speed dependence on advection, i.e., wind
transportation, is interesting from a prediction point of view.Fig. 10 shows that the
wavefront speed varies linearly with the advection velocity but not in the same way as
in the classical Fisher model. Since the advection only carries the winged form, and the
mosquitoes need some time to oviposit, the dependence of the wavefront speed in the
present model on the advection velocity is not as strong as in Fisher’s model.

Up to now we have considered only downstream (positive) wavefront speed. Of course
there mightbe also a wavefront in the upstream direction, as in the case shown by the left
sideof Fig. 5. In order to find thevalue of theupstream wavefront speed it is sufficient
to keepν > 0 and look for solutions of the boundary value problem (4) and (5) for
c < 0. If non-dimensional parameters take values such as those given byTable 2, we
obtaincm 
 −0.40 (dimensionally
 0.25 km day−1) for the invasive wave speed in
the upstream direction. Note that forν = 0, we havecm 
 0.45. On the other hand,
with ν = 8.16 × 10−2 the upstream wave speed iscm = 0.40 while the downstream
wave speed iscm 
 0.52. So, we conclude that the advection effect on wave speed is
stronger in the downstream direction than upstream. Of course, we can expect a sufficiently
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Fig. 10. The dependence ofcm onν; all the remaining parameters have fixed values as given byTable 2.

strong advection to invert the upstream wave to the downstream direction.Fig. 11 shows
the upstream wave speed dependence on the advection velocity, fixing non-dimensional
parameters to values such as those given byTable 2. In that case,ν = νb 
 1.95
is a threshold (‘braking’) value, after which the upstream wave inverts its direction of
propagation.Fig. 12 shows that for an advection velocity close to the braking value and
for an initial ‘box’ distribution of mosquitoes, the solution of the model develops into a
travelling wave with only a downstream wavefront; in the upstream direction, and beyond
the origin, both the mosquitoes and the aquatic phase populations are swept to extinction.

Although advection by natural causes cannot be controlled, the above discussion may
be useful for the prediction of patterns ofA. aegypti invasion in urban areas exposed to
strong and constant winds. Besides this, intervention in the diffusion process, i.e. in the
flying movementof the mosquitoes, may also be possible via a spatial strategy such as the
one described above (Shigesada and Kawasaki, 1997; Heinze et al., 2001). The treatment
of this matter is left to further work.

3. Final comments

Biological invasion is an especially important area of research when it concerns
biological vectors of diseases that threaten the public health of large populations. That
is certainly the case forA. aegypti and the dengue epidemics in South America and South-
East Asia (Gubler, 1998; Vasconcelos et al., 1999). Without a vaccine on the horizon,
any feasible public policy for controlling the dengue epidemics must take into account
appropriate strategies for minimizing the mosquito population factor. Besides this, even
when a political will to act on public healthproblems is shown (which is not as common
as it should be), the economic resources available are always very meagre in the infested
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Fig. 11. The upstream wave speed dependence on the advection velocity, fixing all non-dimensional parameters
to values such as those given byTable 2. Forνb 
 1.95 the function ‘slowly’ changes its sign.

countries. So, to guarantee a reasonable impact on public health, prophylactic strategies
should rely on the best possible educated guesses and some of them might be significantly
helped by the analysis of epidemiological mathematical models.

The present paper focuses its attention on a mathematical model for the population
dispersal of A. aegypti by considering two coupled sub-populations: the winged female
mosquitoes (the effective vector) and an aquatic sub-population which includes the other
phases: egg, pupa, larva. The mathematical model consists of two coupled conservation
laws, where movement is assumed only for the mosquito sub-population and is described
by diffusion–advection processes. Conditions for the existence of travelling waves
were analysed and the minimum speed was found, following an assumption that the
corresponding wave is the stable one and, consequently, that which might really represent a
biological invasion. Numerical simulations with realistic data confirmed that the minimum
speed travelling wave does in fact represent a robust scenario for the biological invasion
phenomenon, since small and quite general initial perturbations quickly evolve to produce
it. Also, the order of magnitude of the invasion speed obtained by the analysis, and
corroborated by the simulations, relates well to field observations. All of this gives
support to the mathematical model, which can then be analysed for possible strategies for
containment and prediction of theA. aegypti dispersal process. Some specific situations
are analysed, related to the maturation step and the effect of a chemical attack against
the winged population, as well as the effect of advection (wind) on the upstream and
downstream wavefronts. A chemical attack against the winged form coupled to a reduction
of breeders is shown to be a very effective strategy. Some suggestions for the analysis of
the mathematical model with respect to reduced and surgical interference in the medium
(which are interesting for economical and environmental reasons) are discussed, but
their details are left to further work. We hope that this paper will help lead to a better
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Fig. 12. The development of a travelling wave (top: mosquitoes; bottom: aquatic phase) when the advection
velocity is at braking valueν = νb 
 1.95, obtained by fixing all non-dimensional parameters to values such as
those given byTable 2.

understanding of theA. aegypti dispersal process and provide new conceptual tools for the
advancement of our knowledge of this important subject.
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