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A mathematical model is presented to simulate the interaction between Human Immunodeficiency Virus
(HIV) andMycobacterium tuberculosis (MTB) infections in a closed environment. The dynamics is formulated
through a compartmental system of non-linear ordinary differential equations. The stability of the trivial
equilibrium point or absence of infections and the endemic basins are analyzed based on the threshold
values for the HIV and MTB transmission coefficients. In order to deal with the estimation of the trans-
mission coefficients of HIV and MTB infections we consider the incarcerated individuals in the Female
Penitentiary of São Paulo State, Brazil.
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1. INTRODUCTION

Acquired Immunodeficiency Syndrome (AIDS) is a syndrome characterized by the
interaction of the Human Immunodeficiency Virus (HIV) with other infections. HIV
infection hinders immunity, favoring in this way a series of opportunist infections.
One of them is tuberculosis (TB), which is caused by a bacillus of the type
Mycobacterium tuberculosis (MTB).
The advent and further spreading of AIDS in a pandemic proportion had as a conse-

quence the onset of TB in regions without any case reported in many years. Since then
on TB is taken as an indicator of HIV infection. However, in developing countries, due
to the endemic feature of TB, there is not a well established correlation between TB and
AIDS. Particularly in Brazil, where TB still remains a serious public health problem,
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one cannot conclude that all individuals with TB are also HIV infected. Therefore, the
study of the interaction of AIDS and TB diseases is of great importance for the under-
standing of this new TB outbreak and perhaps for finding strategies to curb it.
Many efforts have been made to explain the interaction between these diseases,

particularly using mathematical models. Some are based on compartments and are
being applied with great success in the study of the interaction between AIDS
and TB [4,6,7,9–11]. In this study we present a mathematical model that describes
the interaction between HIV and MTB infections in a closed environment, like a
prison or mental institution. The dynamics of the model is formulated through a
compartmental system described by non-linear ordinary differential equations,
which represent the different subpopulations. Therefore, each compartment, in
turn, represents one of the stages of the interaction between AIDS and TB [9].
This paper is divided as follows. In Section 2, we develop a model based on some

biological features of the transmission between AIDS and TB diseases [6]. The trivial
and non-trivial equilibrium points of the model are determined by using a control tech-
nique proposed here. Section 3 presents the stability analysis of the trivial equilibrium
point and the endemic basins which are based on the threshold values for the HIV and
MTB transmission coefficients. For instance, the trivial equilibrium point of the dyna-
mical system provides thresholds under which both diseases, AIDS and TB, could be
eradicated in a closed and controlled environment. Along the same line, conditions
for eradication of a single disease and for both diseases to coalesce are obtained. In
a confined environment, the previous mathematical model did not estimate the level
of interaction between AIDS and TB among inmates. Clinical data, including follow
up, is available for female inmates. Thus, in Section 4, we fit the model to these
data, which were obtained from the incarcerated individuals in the Female
Penitentiary of the State of São Paulo, Brazil [3]. As Ferreira et al. we also find that
HIV can activate the MTB infection, and that TB worsens the clinical picture for
HIV. In Section 5, we discuss epidemiological implications.

2. THE MODEL

The model is composed by seven compartments, each of them representing one of the
stages of the interaction between AIDS and TB in a closed community. The working
assumptions under which we have developed our model are as follows: (a) we are
assuming ‘‘mass-action principle’’ [5]. The population is at every instant homogeneous;
that is, there are no pockets of individuals sharing a certain pathology isolated from the
rest and therefore, there is a homogeneous mixing; (b) the population is large enough in
size to be modeled deterministically; (c) all transition rates of the model are non-
negative and their values are initially estimated from the literature. The only ones
which cannot be estimated from the literature are the per capita rates at which the
individuals acquire infection, namely, the transmission coefficients for HIV and MTB
infections; (d) MTB infection is transmitted by individuals with TB disease (pulmonary
TB). Susceptible individuals become infected by contact with TB individuals. Once
infected, these individuals either will develop TB (by direct progression or endogenous
reactivation) or stay infected (non-infectious cases) for the rest of their life and we
defined them as MTB infected or latent TB individuals; (e) HIV infection is transmitted
by HIV-positive individuals. We assume that all forms of transmission of HIV (sexual
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contact, intravenous drug use or vertical transmission) are clustered under a unique
umbrella parameter given by the transmission coefficient for HIV infection. We will
take it to be a constant independent of the total population; (f ) susceptible individuals
to HIV (healthy individuals, MTB infected individuals and TB individuals) after being
infected with HIV infection will develop AIDS; (g) individuals with AIDS (with or
without TB) are isolated and transferred to a Center for Infectious Diseases and
AIDS to receive treatment. They are considered so ill that do not transmit the HIV
infection, but the AIDS individuals with TB transmit MTB infection to AIDS individ-
uals without TB; (h) the inflow of new susceptible individuals matches all of the outflow
due to natural and differential deaths. Thus, the inflow and the outflow occur at equal
rates; and (i) as mentioned before, our assumptions are based on general knowledge
about closed environment like a prison or mental hospital. In developing countries,
like Brazil, there is often overcrowding in these institutions. Owing to this, we
assume that the total population has a constant size N and we will work with normal-
ized unitary total population (N¼ 1). The size of subpopulations (or state variables) in
each compartment are fractions of this normalized population.
To clarify biological process we introduce for the state variables of the model the

following notation: X1, the healthy individuals susceptible to both HIV and MTB infec-
tions; X2, the individuals who have been infected with MTB, but have no clinical illness
and hence are non-infectious, that is, the MTB infected or latent TB individuals; Tb,
individuals with TB disease; Y1, the HIV-positive individuals without MTB infection;
Y2, the HIV-positive individuals with MTB infection; A, the individuals with AIDS
but without TB and Atb, the individuals with AIDS and TB.
We also take the following parameters (dimension: year�1) into account: � is the

input rate; � and � are the transmission coefficients for HIV and MTB infections,
respectively; ! is the incubation rates for AIDS without MTB infection; � is the incu-
bation rate for AIDS with MTB infection; � is the reactivation rate of TB disease;
� is recovery rate of TB; � is the natural mortality or remaining time in a closed
community; 	 is the AIDS mortality rate and 
 is the TB mortality rate.
These assumptions lead to following system of differential equations, which describes

the dynamics of the transmission of both diseases:

dX1

dt
¼ �� �X1ðY1 þ Y2Þ � �X1Tb� �X1

dX2

dt
¼ �Tbþ �X1Tb� �X2ðY1 þ Y2Þ � ð� þ �ÞX2

dTb

dt
¼ �X2 � �TbðY1 þ Y2Þ � ð�þ �þ 
ÞTb

dY1

dt
¼ �X1ðY1 þ Y2Þ � �Y1Tb� ð�þ !ÞY1

dY2

dt
¼ �X2ðY1 þ Y2Þ þ �Y1Tb� ð� þ �ÞY2

dA

dt
¼ !Y1 � �AAtb� ð�þ 	ÞA

dAtb

dt
¼ �Y2 þ �AAtbþ �TbðY1 þ Y2Þ � ð�þ 	þ 
ÞAtb,

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ
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with � ¼ �þ 
ðTbþ AtbÞ þ 	ðAþ AtbÞ, according to the constant population hypo-
thesis. Therefore, summing up these equations, one gets dN/dt¼ 0, that is, the total
population remains constant at all times. Because of the conservation law X1ðtÞþ
X2ðtÞ þ TbðtÞ þY1ðtÞþ Y2ðtÞ þAðtÞ þAtbðtÞ ¼ NðtÞ ¼ 1 for any t 2 R, the first equation
in (1) is decoupled from the last six, by using

X1 ¼ 1� ðX2 þ Tbþ Y1 þ Y2 þ Aþ AtbÞ ¼ 1�
X

: ð2Þ

Hence, the system (1) can be rewritten as

dX2

dt
¼ �Tbþ � 1�

X� �
Tb� �X2ðY1 þ Y2Þ � ð� þ �ÞX2

dTb

dt
¼ �X2 � �TbðY1 þ Y2Þ � ð�þ �þ 
ÞTb

dY1

dt
¼ � 1�

X� �
ðY1 þ Y2Þ � �Y1Tb� ð�þ !ÞY1

dY2

dt
¼ �X2ðY1 þ Y2Þ þ �Y1Tb� ð� þ �ÞY2

dA

dt
¼ !Y1 � �AAtb� ð�þ 	ÞA

dAtb

dt
¼ �Y2 þ �AAtbþ �TbðY1 þ Y2Þ � ð�þ 	þ 
ÞAtb,

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3Þ

and the Eqs. (3) together with Eq. (2) will be referred to as MATB model. Note that (2)
has been used to substitute for X1 in the first equation of the system (1). Consequently,
the analysis of system (3) and (1) leads to equivalent results when we consider the non-
negative solutions that are of interest in this model.
To begin analysis of the MATB model we proceed as follows. We examine the

disease-free steady state to determine the threshold parameters for which the diseases
die out. By biological simplifications, we calculate the endemic equilibrium
points and we here have several distinct threshold parameters for each of the
diseases can persist. That is, we show the possibilities that one disease can remain
endemic while the other is eradicated, the co-infection with AIDS and TB
diseases, and the effects of opportunistic infections such as MTB on the course
of HIV.

2.1. The Trivial Equilibrium Point

The important point we must analyze is whether there are threshold values for which
the extinction of both AIDS and TB is warranted. This clearly means to study the
stability of the trivial equilibrium point or disease-free steady state, namely P�,
where one has X1¼N¼ 1 and X2¼Tb¼Y1¼Y2¼A¼Atb¼ 0. This is under the
assumption that only healthy individuals are allowed to enter to the system.
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The linearization matrix of the system (3) at the trivial equilibrium point is given by
the following Jacobian matrix:

MP�
¼

�ð� þ �Þ �þ � 0 0 0 0

� �ð�þ �þ 
Þ 0 0 0 0

0 0 �� ð�þ !Þ � 0 0

0 0 0 �ð�þ �Þ 0 0

0 0 ! 0 �ð�þ 	Þ 0

0 0 0 � 0 �ð�þ 	þ 
Þ

2
666666664

3
777777775
:

(4)

This matrix has six eigenvalues. Four of them are very easily computed as:
r1 ¼ �ð�þ �Þ; r2 ¼ �ð�þ 	Þ; r3 ¼ �ð�þ 	þ 
Þ and r4 ¼ �� ð�þ !Þ, while the
other two (r5 and r6) are the eigenvalues of the submatrix:

B ¼
�ð� þ �Þ �þ �

� �ð�þ �þ 
Þ

� �
, ð5Þ

whose trace B ¼ �ð� þ �þ �þ �þ 
Þ is always negative and detB is positive when
� < ½�ð�þ �þ 
Þ þ �ð�þ 
Þ�=�.
Now, given that all parameters of the model are assumed to be non-negative, the

eigenvalues r5 and r6 have negative real part if � < ½�ð�þ �þ 
Þ þ �ð�þ 
Þ�=�, and
the eigenvalue r4 is negative if �<�þ!. Thus, for the eigenvalues of the matrix (4)
to have negative real part one needs:

� < �þ ! 	 �t and � <
�ð�þ �þ 
Þ þ �ð�þ 
Þ

�
	 �t: ð6Þ

That is, the trivial equilibrium point P� is locally asymptotically stable only if both
inequalities (6) are satisfied. From an epidemiological viewpoint this means that
there are threshold values, �t and �t, so that below these values both AIDS and TB
tend toward extinction. If any of these two parameters exceeds its threshold value,
then at least one disease will persist. We are now able to state this result in terms of
the threshold parameters defined as:

RHIV0 ¼
�

ð�þ !Þ
¼

�

�t
and RTB0 ¼

� �

�ð�þ �þ 
Þ þ �ð�þ 
Þ
¼

�

�t
: ð7Þ

The above result identifies the basic reproductive number for AIDS and TB,
respectively. It shows that the diseases die out below the threshold values, that is, if
RHIV0 <1 and RTB0 <1; whereas if RHIV0 >1 and RTB0 >1 both diseases could persist or
remain endemic in the population. So we have showed the following result:

BIOTHEOREM 1 The disease-free steady state P� is locally asymptotically stable if
RHIV0 < 1 and RTB0 < 1.

2.2. The Non-Trivial Equilibrium Points

If either parameters, � or �, is over its threshold value, (�> �t or �> �t, i.e., R
HIV
0 > 1

or RTB0 > 1), then the trivial equilibrium point is unstable. One should therefore
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strongly suspect that there exist other equilibrium points besides the trivial equilibrium
point. As a matter of fact, this is indeed the case. We will state, in terms of their
biological interpretation, the different non-trivial equilibrium points or endemic
states we are aware of. There might exist more of them.
Since we are dealing with the question of the ultimate prevalence of an endemic state

of the diseases, it is more convenient we consider the proportion of individuals in the
different classes rather than absolute number. For this, we assume that the prevalence
(proportion of the total number cases) of disease decreases and vanishes after an effective
disease control strategy is taken. Thus, we establish the following results:

BIOTHEOREM 2 Assume that the prevalence of AIDS is remaining endemic while the pre-
valence of TB is vanishing in the community after control interventions for TB were taken.
In mathematical terms this assumption means RHIV0 > 1 and Tb¼ 0. Then there are two
endemic steady states biologically feasible given by P1¼ (X1, 0, 0,Y1, 0,A, 0) and
P3¼ (X1, 0, 0,Y1, 0,A,Atb).

Proof In our system of coupled non-linear differential equations denoted by MATB,
let us take Tb¼ 0. The critical points of such a system are given by equations:

��X2ðY1 þ Y2Þ � ð� þ �ÞX2 ¼ 0

�X2 ¼ 0

�ðY1 þ Y2Þð1� X2 � Y1 � Y2 � A� AtbÞ � ð!þ �ÞY1 ¼ 0

�X2ðY1 þ Y2Þ � ð� þ �ÞY2 ¼ 0

!Y1 � ð	þ �ÞA� �AAtb ¼ 0

�Y2 þ �AAtb� ð�þ 	þ 
ÞAtb ¼ 0:

8>>>>>>>><
>>>>>>>>:

From the above, one gets by direct inspection: X2¼ 0, Y2¼ 0 and either

Atb ¼ 0 ðCase 1AÞ
or

�A� ð�þ 	þ 
Þ ¼ 0) A ¼
ð�þ 	þ 
Þ

�
ðCase 2AÞ

8><
>:

Let us study each case in detail.

Case 1A If Atb¼ 0, then Y1¼ ((�þ 	) A)/!. Now,

�Y1ð1� Y1 � AÞ � ð�þ !ÞY1 ¼ 0

() �Y1 � �Y21 � �Y1A� ð�þ !ÞY1 ¼ 0,

therefore, one either has A¼ 0 thus, Y1¼ 0 or

A ¼
!½�� ð�þ !Þ�

�ð�þ 	þ !Þ

thus,

Y1 ¼
ð�þ 	Þ½�� ð�þ !Þ�

�ð�þ 	þ !Þ

� �
:
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Then, one has one non-trivial equilibrium point given by P1¼ (X1, 0, 0,Y1, 0,A, 0),
where

X1 ¼
1

RHIV0

Y1 ¼ ð�þ 	Þ
�� ð�þ !Þ

�ð�þ 	þ !Þ

� �
¼

ð�þ 	Þ

ð�þ 	þ !Þ

RHIV0 � 1

RHIV0

� �

A ¼
!½�� ð�þ !Þ�

�ð�þ 	þ !Þ
¼

!

ð�þ 	þ !Þ

RHIV0 � 1

RHIV0

� �
:

ð8Þ

The biological feasibility of the critical point requires all state variable to be non-
negative. Therefore, the point P1¼ (X1, 0, 0,Y1, 0,A, 0) is biologically feasible, since
for RHIV0 > 1, (� is assumed from the onset to be over threshold), one has X1, Y1 and
A positives.

Case 1B If A ¼ ð�þ 	þ 
Þ=�, then one has

Atb ¼
!Y1

ð�þ 	þ !Þ
�
ð�þ 	Þ

�
:

Now, from �Y1ð1� Y1 � A� AtbÞ � ð�þ !ÞY1 ¼ 0, one gets either Y1¼ 0, thus

Atb ¼ �
ð�þ 	Þ

�

or

Y1 ¼
f�½�� ð�þ !Þ� � �
gð�þ 	þ 
Þ

��ð!þ �þ 	þ 
Þ

� �
,

thus

Atb ¼
�!½�� ð�þ !Þ� � �!


��ð!þ �þ 	þ 
Þ
�
ð�þ 	Þ

�
:

Then, one has two non-trivial equilibrium points for this case, which are:

1. P2¼ (X1, 0, 0, 0, 0,A,Atb), where

X1 ¼
1

RHIV0
; A ¼

ð�þ 	þ 
Þ

�
and Atb ¼ �

ð�þ 	Þ

�
, ð9Þ

which is not biologically feasible, since Atb is negative.
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2. P3¼ (X1, 0, 0,Y1, 0,A,Atb), where

X1 ¼
1

RHIV0

Y1 ¼
�½�� ð�þ !Þ� � �


��

� �
ð�þ 	þ 
Þ

ð!þ �þ 	þ 
Þ

¼
RHIV0 � 1

RHIV0
�




�

� �
ð�þ 	þ 
Þ

ð�þ 	þ !þ 
Þ

A ¼
ð�þ 	þ 
Þ

�

Atb ¼
�!½�� ð�þ !Þ� � �!


��ð!þ �þ 	þ 
Þ
�
ð�þ 	Þ

�

¼
!ðRHIV0 � 1Þ

ð�þ 	þ !þ 
ÞRHIV0
�


!
�ð�þ 	þ !þ 
Þ

þ
ð�þ 	Þ

�

� �
,

ð10Þ

and its biological feasibility depends upon the both values of � and �. If

� >

 �

�� ð�þ !Þ
¼


RHIV0
RHIV0 � 1

¼ ��1 and

� > ��1 þ
RHIV0 ð!þ �þ 	þ 
Þ ð�þ 	Þ

ðRHIV0 � 1Þ!
¼ ��2

then one has Y1>0 and Atb>0, respectively, since R
HIV
0 > 1 and � is sufficiently large

for each �. The value of A is assured to be positive because all transition rates of the
model are non-negative. Hence P3 is biologically feasible for � > ��2 and RHIV0 > 1. It
is easy to very that ��2 ¼ �1ð�Þ, where �1(�) is defined by (13). g

BIOTHEOREM 3 Assume that the prevalence of TB is remaining endemic while the preva-
lence of AIDS is vanishing in the community, after control interventions for AIDS were
taken. In mathematical terms these assumptions mean RTB0 > 1 and A¼ 0. Then there
is a single non-trivial and biologically feasible equilibrium point given by P4¼
(X1,X2,Tb, 0, 0, 0, 0).

Proof The proof is analogous to the proof of Biotheorem 1. In our system of coupled
non-linear differential equations denoted by MATB, let us take A¼ 0. The equilibrium
point of such a system are given by equations:

�Tbð1�X2�Tb�Y1�Y2�AtbÞ � �X2ðY1þY2Þ

þ�Tb� ð�þ�ÞX2 ¼ 0

�X2� �Tb ðY1þY2Þ � ð�þ�þ 
ÞTb¼ 0

� ðY1þY2Þ ð1�X2�Tb�Y1�Y2�AtbÞ � �Y1Tb� ð�þ!ÞY1 ¼ 0

�X2ðY1þY2Þ þ �Y1Tb� ð�þ�ÞY2 ¼ 0

!Y1 ¼ 0

�Y2þ �Tb ðY1þY2Þ � ð�þ 	þ 
ÞAtb¼ 0:

8>>>>>>>>>>><
>>>>>>>>>>>:
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From the above, one gets as one possibility that all state variables, but X2 and Tb,
vanish. Thus, we have the non-trivial equilibrium point given by P4¼
(X1,X2,Tb, 0, 0, 0, 0) and its coordinates are given by

X1 ¼
1

RTB0

X2 ¼
ð�þ �þ 
Þ

�
Tb ¼

ð�þ �þ 
ÞðRTB0 � 1Þ

ð� þ �þ �þ 
ÞRTB0

Tb ¼
�� � �ð�þ 
Þ � �ð�þ �þ 
Þ

�ð� þ �þ �þ 
Þ
¼

�ðRTB0 � 1Þ

ð� þ �þ �þ 
ÞRTB0
:

ð11Þ

Finally, both X2 and Tb are positive, since RTB0 > 1 (� is assumed from the onset to be
over threshold). Hence this point P4¼ (X1,X2,Tb, 0, 0, 0, 0) is biologically feasible. g

2.3. Comments

We supposed that the prevalence of AIDS or TB decreases and vanishes after control
interventions are taken. With that biological simplification, Biotheorems 2 and 3 enable
us to determine the non-trivial equilibrium points. Similar analysis show that for any
other subpopulation (or state variable) that is submitted to this biological simplifica-
tion, one obtains the critical points of the Biotheorems above, plus three points
which will be discussed below. We will denote this technique as the control technique.
According to our control technique when the number of new cases of the HIVþ

individuals without MTB infection (Y1) or the number of new cases of the HIV
þ

individuals with MTB infection (Y2) declines and vanishes, one gets the points
P5¼ (X1,X2,Tb, 0, 0,A,Atb) or P6¼ (X1,X2,Tb, Y1, 0,A,Atb), respectively, in addition
to the critical points obtained. However, these equilibrium points are not biologically
feasible.
We can also observe that Tb¼ 0 gives P3¼ (X1, 0, 0,Y1, 0,A,Atb) because of our

assumption: the individuals with AIDS (A and Atb) are considered so ill that they
are transferred to the Center for Infectious Diseases to receive treatment. Thus, they
do not transmit HIV infection, but the AIDS individuals with TB (Atb) transmit
MTB infection to AIDS individuals without TB (A), showing that TB is an opportunist
infection of AIDS. The only equilibrium point found numerically with all positive
state variables is P7¼ (X1,X2,Tb,Y1,Y2,A,Atb). This point is feasible only when
HIV and MTB transmission coefficients are over thresholds; as it should be expected.
It is important to stress that all the other cases (e.g., X2¼ 0, Atb¼ 0, X2¼Tb¼ 0, etc.)
lead up to the non-trivial equilibrium points obtained from Biotheorems above.

3. STABILITY ANALYSIS OF THE EQUILIBRIUM

POINTS OF THE MODEL

We are now interested in studying this model in situations where the diseases can be
established in the population and for these we have to determine the values of the
threshold for the both transmission coefficients. Therefore, our purpose is to address
the following question: if the diseases remain endemic in the community, that is, if
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RHIV0 > 1 and RTB0 > 1, is there any relation between � and � so that we will have stable
or unstable non-trivial equilibrium points? We will answer this question by providing a
summary of the stability conditions for each of the equilibrium points found.
Regardless of their biological feasibility, we have the following:

BIOTHEOREM 4 Under the same assumptions given by Biotheorem 1, 2 and 3, the
c given below are the necessary and sufficient to warrant stability of the point under
consideration:

1. P� ¼ ðX1, 0, 0, 0, 0, 0, 0Þ is locally asymptotically stable if

RHIV0 < 1 and RTB0 < 1: ð12Þ

2. P1¼ (X1, 0, 0,Y1, 0,A, 0) is locally asymptotically stable if for RHIV0 > 1,

� <
ð�þ 	þ 
Þ�ð�þ 	þ!Þ

!½�� ð�þ!Þ�
¼
ð�þ 	þ 
Þð�þ 	þ!ÞRHIV0

!½RHIV0 � 1�
	 �1ð�Þ

and

� < �
�Y1ð�þ 2�þ �þ 
Þ þ �2Y21 þ �ð�þ 
Þ þ�ð�þ�þ 
Þ

�ð�þ!Þ

� �
	 �2ð�Þ:

ð13Þ

3. P2¼ (X1, 0, 0, 0, 0,A,Atb) is always unstable.
4. P3¼ (X1, 0, 0,Y1, 0,A,Atb) is locally asymptotically stable if for RHIV0 > 1,

�2ð�Þ > � > �1ð�Þ: ð14Þ

5. P4¼ (X1,X2,Tb, 0, 0, 0, 0) is locally asymptotically stable if for RTB0 > 1,

� <
�½�Tbþ ð�þ !Þ� ð� þ �Þ

ð� þ �Þ ðTb� 1Þ þ X2ð� � !Þ þ �Tb ðTb� 1Þ
	 �2ð�Þ: ð15Þ

6. P5¼ (X1,X2,Tb, 0, 0,A,Atb) is always unstable.
7. P6¼ (X1,X2,Tb,Y1, 0,A,Atb) is always unstable.
8. P7¼ (X1,X2,Tb,Y1,Y2,A,Atb) is locally asymptotically stable when the values of

� and � are such that they do not satisfy the inequalities (12), (13), (14) and (15)
simultaneously.

Proof The results are obtained by linearizing the MATB model around each of the
seven (P�, P1, P2, P3, P4, P5 and P6) equilibrium points. Note that the point P7 is
the only equilibrium point for which we are not able to obtain the analytical stability
condition because we found its coordinates numerically. So its stability was only
numerically determined.
We have just showed the proof for P� by Biotheorem 1. Now, we intend to show the

proof for the point P1; the calculations for the remaining points are similar.
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Calculating the Jacobian matrix of the system (3) at the non-trivial equilibrium point
P1 we obtain the following characteristic polynomial P(ri), where ri (i¼ 1, . . . , 6) is the
notation for the eigenvalues:

PðriÞ ¼ ff½��Y1 � ð� þ �Þ� � r1g f½��Y1 � ð�þ �þ 
Þ� � r2g

� ½�ð� þ �Þ � r4�½�A� ð�þ 	þ 
Þ � r6� detMg

� f�½�� �ðY1 þ AÞ þ ��½�ð� þ �Þ � r4�

� ½�A� ð�þ 	þ 
Þ � r6� detMg ¼ 0

ð16Þ

and the matrix M is defined as follows:

M ¼
�� �ð2Y1 þ AÞ � ð�þ !Þ � r3 ��Y1

! �ð�þ 	Þ � r5

� �
:

After some simplifications the Eq. (16) becomes

PðriÞ ¼ ½�ð� þ �Þ � r4�f½�A� ð�þ 	þ 
Þ� � r6gdetM

� ff½��Y1 � ð�þ �þ 
Þ� � r2g f½��Y1 � ð� þ �Þ� � r1g

� f�½�� �ðY1 þ AÞ þ ��gg ¼ 0:

ð17Þ

For the stability of the steady state P1, we now find the roots of the characteristic
polynomial by solving (17), that is,

(a) �ð� þ �Þ � r4 ¼ 0¼) r4 ¼ �ð� þ �Þ < 0.
(b) ½�A� ð�þ 	þ 
Þ� � r6 ¼ 0¼) r6 ¼ �A� ð�þ 	þ 
Þ and

r6 < 0() � <
�ð�þ 	þ 
Þ ð�þ 	þ !Þ

!½�� ð�þ !Þ�
¼ �1ð�Þ: ð18Þ

(c) det M¼ 0.
We simplify this analysis by setting

M ¼
�� �ð2Y1 þ AÞ � ð�þ !Þ ��Y1

! �ð�þ 	Þ

� �
,

where traceM<0 if �>� 	 and this inequality is always satisfied, and detM>0
if RHIV0 > 1.
Thus, when RHIV0 > 1, the eigenvalues (r3 and r5) of the characteristic equation

associated to matrix M are both negative (if real) or have negative real part
(if complex).

(d) Now, by solving

� f½�Y1 þ �þ �þ 
� þ r2g f½�Y1 þ � þ �� þ r1g

� f�½�� �ðY1 þ AÞ þ ��g ¼ 0

INTERACTION BETWEEN AIDS AND TB DISEASES 433

D
ow

nl
oa

de
d 

by
 [

U
N

IC
A

M
P]

 a
t 0

8:
52

 2
6 

Ja
nu

ar
y 

20
14

 



we obtain the following characteristic polynomial:

r2 þ ð2�Y1 þ � þ 2�þ �þ 
Þrþ �Y1ð� þ 2�þ �þ 
Þ

þ ð�Y1Þ
2
þ �ð�þ 
Þ þ �ð�þ �þ 
Þ � ��ð1� Y1 � AÞ ¼ 0:

The eigenvalues (r1 and r2) of this characteristic polynomial are both negative (if real)
or have negative real part (if complex) when

� <
� �Y1ð� þ 2�þ �þ 
Þ þ �2Y21 þ �ð�þ 
Þ þ�ð�þ�þ 
Þ
� �

�ð�þ !Þ
¼ �2ð�Þ: ð19Þ

Thus, for RHIV0 > 1, we conclude that P1 is locally asymptotically stable if (18) and
(19) are simultaneously satisfied. That is, P1 is locally asymptotically stable if
� < �1ð�Þ and � < �2ð�Þ for R

HIV
0 > 1, with �1ð�Þ and �2ð�Þ defined by (13).

3.1. Comments

From results obtained through linearizing the MATB model around each of the seven
(P�, P1, P2, P3, P4, P5 and P6) equilibrium points, we are now able to establish the
following: the only stable non-trivial equilibrium points are those that are biologically
feasible.
Besides that, we can also observed that the stability conditions for each of the equi-

librium points given by the Biotheorem 4 depend on the both transmission coefficients
for HIV and for MTB (� and �) which must be estimated. The other parameters were
evaluated from the literature and we considered these values as follows: �¼ 0.5,
�¼ 0.05, �¼ 0.10, !¼ 0.10, �¼ 0.20, 
¼ 0.05, 	¼ 0.33 (in year�1).
In this way, different basins of attractions of these critical points can be found in the

space of parameters � and �, which are defined as follows:

1. The basin R� ¼ fð�, �Þ:� < �t and � < �tg, where P� is stable. Biologically, R� is the
basin where both diseases die out in the community.

2. The basin R1 ¼ fð�, �Þ:� > �t, � < �1ð�Þ and � < �2ð�Þg, where P1 is stable.
Biologically, R1 is the basin where the HIV infection progress to AIDS disease.

3. The basin R3 ¼ fð�, �Þ:� > �t, � > �1ð�Þ and � < �2ð�Þg, where P3 is stable.
Biologically, R3 is the basin where the HIV infection progress to AIDS with TB
disease.

4. The basin R4 ¼ fð�, �Þ: � > �t and � < �2ð�Þg where P4 is stable. Biologically, R4
is the basin where the MTB infection progress to TB disease.

5. The basin R7 ¼ fð�, �Þ:� > �t, � > �t,� > �2ð�Þ and � > �2ð�Þg, where there is a
co-existence of the diseases, i.e., HIV and MTB infections progress to AIDS and
TB diseases, respectively.

6. The basin R1R4 ¼ fð�, �Þ:� > �t, � > �t,� < �2ð�Þ and � < �2ð�Þg, where P1 and P4
are simultaneously stable.

These basins of attraction can be visualized, as shown in Fig. 1.
It is important to stress that the stable basins depend on the parameter values that

were maintained constant during the analysis, because they are obtained from the litera-
ture. For different values of the parameters one obtains the same basins; however, their
magnitude may be different from what is shown in Fig. 1.
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We observed that in the basins R�, ðR1 � R1R4Þ, R3, ðR4 � R1R4Þ and R7, the stability
of each equilibrium point does not depend on the initial conditions of the MATB
model. In the R1R4 basin, where the P1 and P4 points are stable, the MATB depends
on the initial conditions (these observations were tested numerically).
In the basins where the MATB does not depend on the initial conditions, for any

values of the pair (�, �) belonging to a determined basin of stability, only the corres-
ponding point of this basin is stable. That is, if � and � satisfy the conditions of
ðR1 � R1R4Þ, we obtain P1 stable and the other points, P�, P3, P4 and P7 unstable.
In the basin R1R4 this does not occur. There are basins of attraction from the points

P1 and P4 and, depending on the initial conditions, we can have in R1R4, P1 or P4 stable
for the same values of � and �. We also point out that only the points P1 and P4 can be
stable in the basin R1R4 (Biotheorem 4) and that the existence of this basin is strongly
dependent on the value of the parameter �.
The curves which limit the basins of stability are generally conditions of bifurcation

to the feasible equilibrium point. There is a change in the qualitative structure of the
MATB when the parameters � and � vary beyond their threshold values, keeping
constant all other values. That is, the conditions stability of the trivial equilibrium
point and the endemic basins are based on threshold values for � and �. When these
conditions are invalidated another steady state accepts stability. Therefore, they are
transcritical bifurcation:

1. When � < �t and � < �t, P� is asymptotically stable.
2. If � > �t and � < �t, we have point P1 asymptotically stable and P� unstable. The
curve C1 ¼ fð�, �Þ:� ¼ �t, 0 � � < �tg determines the bifurcation condition from
point P� to point P1.

FIGURE 1 Basins of attractions of the equilibrium points of the MATB model, when � and � are varied.
Pt¼ (�t, �t)¼ (0.2, 1.45); Pc¼ (�c, �c)¼ (0.280168, 3.60756); P*¼ (�*,�*)¼ (0.342581, 6.1125).
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3. Similarly, if � < �t and � > �t, we have point P4 asymptotically stable and P�

unstable. The curve C2 ¼ fð�, �Þ: � ¼ �t, 0 � � < �tg determines the bifurcation
condition from point P� to point P4.

4. If � > �t and � > �t we can have P1, P3, P4 or P7 asymptotically stable.

The curves:

C3 ¼ fð�, �Þ: �ðtÞ ¼ �1ð�Þg determines the bifurcation condition from
point P1 to point P3.

C4 ¼ fð�, �Þ: �ðtÞ ¼ �2ð�Þg determines the bifurcation condition from
point P3 to point P7; from point P1 to point P7 and from point
P1 to point P4.

C5 ¼ fð�, �Þ:�ðtÞ ¼ �2ð�Þg determines the bifurcation condition from
point P4 to points P7 or P4 and P1.

The simulations show that over the curves C1 and C2 (the boundaries of the R�), in
the neighborhood of the C1 and C2 and at the point Pt ¼ ð�t, �tÞ the MATB model
depends on the initial conditions. For �¼ �t, the stability conditions for the point P1
given by (13) are not defined. Similarly, for � ¼ �t, the stability conditions for the
point P4 given by (15) are not defined. Besides that, for �¼ �t and �¼ �t, the coordi-
nates of the both P1 and P4 are null; thus P1 ¼ P4 ¼ P�. From stability analysis
(Biotheorem 4) we also observed that for �¼ �t and/or �¼ �t, there are two/one null
eigenvalues. Therefore, we have no information about the stability of P� at the bound-
ary of the R�. However, we know that the point P� is a bifurcation point and depending
on the initial conditions of the MATB model at the neighborhood VðP�Þ, we can have
P�, P1 or P4 stable.
A two-parameter bifurcation diagram is shown in Fig. 1. If either parameters, � or �,

involved are varied, they each lead to a similar transcritical bifurcation scheme from
one to another equilibrium point.

4. AN APPLICATION OF THE MODEL

On the previous sections our analytical study of the model (1) was performed to deter-
mine the basins of stability of HIV and MTB infections on a large range of the variation
of the transmission coefficients for both diseases. Now, based on the observations
done by Ferreira et al. [3] in followed up female inmates, we assess these transmission
coefficients.
The field experiment carried out by Ferreira et al. presents the following features: the

study participants, included women who were already incarcerated at the beginning of
the study period and women admitted during the period of study, were interviewed and
examined; during the period of study the symptomatic AIDS inmates were transferred
to the Hospital for Infectious Diseases and AIDS; the TB disease inmates could
transmit MTB infection during the time-lag of several days before their diagnoses
and transfer to the Hospital for Infectious Diseases and AIDS and there were
recruitment rates in the X1, X2, Y1 and Y2 compartments. However, there were not
recruitment rates in the Tb, A and Atb compartments, since during the follow-up
period the admitted prisoners with clinical signs and symptoms of diseases were
transferred to the Hospital for Infectious Diseases and AIDS; and the mortality rate
� associated to the population model is now considered as the release rate, because
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of female inmates who did not die during the study period, but were released after some
period of time. Therefore, the modified model is given by the following elements of the
space function _ZZ ¼ FðZÞ, where Z is the space of dynamics variable given by a vector of
7-elements Z ¼ ½X1X2 TbY1 Y2 AAtb�T ,

F1ðZÞ ¼ �1 � �1ðY1 þ Y2ÞX1 � �2TbX1 � �X1

F2ðZÞ ¼ �2 � �1ðY1 þ Y2ÞX2 þ �2TbX1 þ �Tb� ð� þ �ÞX2

F3ðZÞ ¼ �X2 � �1ðY1 þ Y2ÞTb� ð�þ 
 þ �ÞTb

F4ðZÞ ¼ �3 þ �1ðY1 þ Y2ÞX1 � �2TbY1 � ð!þ �ÞY1

F5ðZÞ ¼ �4 þ �1ðY1 þ Y2ÞX2 þ �2TbY1 � ð� þ �ÞY2

F6ðZÞ ¼ !Y1 � �2 AtbA� ð	þ �ÞA

F7ðZÞ ¼ �Y2 þ �2 AtbA� ð	þ 
 þ �ÞAtbþ �1ðY1 þ Y2ÞTb:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð20Þ

On the preceding section we dealt with the fractions of individuals in each compart-
ment. We are now considering restricted female inmates and we take into account the
number of individuals, N(t), which is very low. Even so we are retaining the very strong
assumption of the both infections occurring in a homogeneously mixed population.
Besides that, the total population is no longer a constant.
The above modified system (20) has at least a positive equilibrium point

P�
�i
¼ ðX�

1 ,X
�
2 ,Tb

�,Y�
1 ,Y

�
2 ,A

�,Atb�Þ. Letting F(Z)¼ 0, we get

1. F1ðZÞ ¼ 0, ½�1ðY1 þ Y2Þ þ �2Tbþ ��X1 ¼ �1. If X1¼ 0 then �1 ¼ 0; a contradic-
tion. Hence, X1>0.

2. F3ðZÞ ¼ 0, Tb ¼ �X2=½�1ðY1 þ Y2Þ þ ð�þ 
 þ �Þ� and
3. F2ðZÞ ¼ 0, ½�1ðY1þY2Þ þ ð�þ�Þ � ðð�2X1þ �Þ�=½�1ðY1þY2Þ þ ð�þ 
þ�ÞÞ�X2 ¼

�2: If X2¼ 0 then �2 ¼ 0; a contradiction. Hence, X2>0 and Tb>0.
4. F4ðZÞ ¼ 0, ½��1X1 þ �2Tbþ ð!þ �Þ�Y1 ¼ �3 þ �1X1Y2 > 0) Y1 6¼ 0. If

�2Tbþ ð!þ �Þ < �1X1 ) Y1 < 0, that is not biologically feasible. Thus,
�2Tbþ ð!þ �Þ > �1X1 and Y1>0.

5. F5ðZÞ ¼ 0, ½��1X2 þ ð� þ �Þ�Y2 ¼ �4 þ ½�2Tbþ �1X2�Y1 > 0) Y2 6¼ 0: If
ð� þ �Þ < �1X2 ) Y2 < 0, that is not biologically feasible. Hence, ð� þ �Þ > �1X2
and Y2 > 0:

6. F6ðZÞ ¼ 0, ½�2Atbþ ð	þ �Þ�A ¼ !Y1 > 0) A > 0.
7. F7ðZÞ ¼ 0, ½��2Aþ ð	þ 
 þ �Þ�Atb ¼ �Y2 þ �1ðY1 þ Y2ÞTb > 0 ) Atb 6¼ 0. If

ð	þ 
 þ �Þ < �2A ) Atb < 0, which is not biologically feasible. Thus,
ð	þ 
 þ �Þ > �2A ) Atb > 0.

Therefore, the presence of the four recruitment rates �1, �2, �3 and �4 leads to the
positive equilibrium point, which must be always stable on all ranges of the variations
of �1 and �2. Next, we will deal with the assessment of both transmission coefficients.

4.1. Estimation of the Transmission Coefficients

We can now observe that the system (20) allows the co-existence of AIDS and TB when
�1 ¼ �2 ¼ 0. That is, the steady state P

�
�i
¼ ðX�

1 ,X
�
2 ,Tb

�,Y�
1 ,Y

�
2 ,A

�,Atb�Þ is given by
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X�
1 ¼ �1=�, X

�
2 ¼ ðð�þ �þ 
Þ=�Þð�2=�tÞ, Tb

� ¼ �2=�t, Y
�
1 ¼ �3=�t, Y

�
2 ¼ �4=ð� þ �Þ,

A� ¼ !�3=ðð	þ �Þ�tÞ, and Atb� ¼ ��4=ðð� þ �Þð�þ 	þ 
ÞÞ, with �t and �t defined by
Eq. (6). Note that this non-trivial equilibrium point is always biologically viable.
The Jacobian matrix of the system (20) at the non-trivial equilibrium point P�

�i
gives

the following five eigenvalues: �1 ¼ ��; �2 ¼ �ð�þ !Þ; �3 ¼ �ð�þ 	Þ; �4 ¼ �ð�þ �Þ;
�5 ¼ �ð�þ 	þ 
Þ, while the other two eigenvalues are given by the roots of the follow-
ing characteristic equation:

�2 þ ð�þ � þ 
 þ 2�Þ�þ ½�ð�þ 
 þ �Þ þ �ð
 þ �Þ� ¼ 0:

According to Routh–Hurwitz criterion the eigenvalues of this equation have negative
real part [2]. Thus, the equilibrium point P�

�i
is locally asymptotically stable and conse-

quently, both diseases can be maintained in this community by the recruitment rates,
even though �1¼ �2¼ 0.
Our purpose is to address the following question: if the diseases are able to become

established in the female inmates community even though there is no transmission, is
there an increased incidence and prevalence of infections or diseases due to recruitment
rates? We will answer this question by estimating the transmission coefficients �1 and �2
in this community.
Ferreira et al. [3] carried out the study at the Female Penitentiary of the State of São

Paulo during a 14-month period (October 1992 toNovember 1993). The sample consisted
of incarcerated women at the beginning of the study (n¼ 234) plus those admitted during
the period of the study (n¼ 116), in a total of 350 followed up women inmates.
The follow-up period (defined as the period between the initial date of incarceration

and the end of the follow-up period) was in four times; t¼ 0, 6, 12 and 14 months.
In each time of observation all individuals were screened by clinical observations
and the number of recruited individuals was registered. In Table I we present the
number of individuals discriminated by their health status and the observed recruitment
rates.
We performed the estimation of transmission coefficients among women inmates in

the Female Penitentiary of the State of São Paulo by considering four sequential times
and three observable classes (X2, Y1 and Y2). The number of individuals of the other
classes were also collected at the beginning (t¼ 0) of the study period: X1¼ 93,
Tb¼ 0, A¼ 1 and Atb¼ 6. The study period was also characterized by the following
rates (year�1): �¼ 0.4, 
¼ 0 and 	¼ 12.0 [3]. The other rates (in year�1) are: �¼ 4.0,
�¼ 6.5, !¼ 0.25, �¼ 0.5 [6].
Thus, the transmission coefficients are assessed [10] based on the number of cases

observed and the recruitment rates given in Table I. In order to do this, we minimize

TABLE I Observed number of cases at the Female Penitentiary of the State of São Paulo

t (months) Number of cases, Z(obsi ) Input, �i

0 6 12 14 0 6 12

X1 34 90 12
X2 84 83 99 105 42 2 6
Y1 21 13 18 28 20 26 0
Y2 18 22 32 35 12 0 6
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the chi-square defined as

�2 ¼
Xn
i¼1

½fZðtiÞ � ZðobsiÞgD�
2, ð21Þ

where n¼ 1, 2, 3, 4 is the number of observation times, Z(ti) is the state variables of the
system (20), Z (obsi) is the number of cases observed (Table I), D is 7� 7 diagonal
matrix, whose diagonal elements [0 1 0 1 1 0 0] depend on the number of observed
state variables.
By the non-linear least square estimation method [1], setting � ¼ ½�1 �2�

T as the
parameters space, the least square estimator must satisfy

1

2

d�2

d�
¼

Xn
i¼1

½fZðtiÞ � ZðobsiÞgD�
@ZðtiÞ

@�
D ¼ 0 ð22Þ

and

1

2

d2�2

d�2
’

Xn
i¼1

@ZðtiÞ

@�
D

� �2
> 0: ð23Þ

This inequality comes out by neglecting the second partial derivative of the state vari-
ables with respect to the parameters. We approximated the second derivative because
the other term ½fZðtiÞ � ZðobsiÞgD�ð@

2ZðtiÞ=@�
2ÞD is negligible compared to the term

retained in the Eq. (23) [8].
To solve the algebraic system of Eqs. (22) we applied the Levenberg–Marquardt

method by using the approximation in the second derivative given by Eq. (23), instead
of Newton–Raphson method. The derivatives of the state variables with respect to the
parameters space are calculated by

@Z

@�
¼

@FðZÞ

@Z

� ��1@FðZÞ
@�

, ð24Þ

where @FðZÞ=@Z is the Jacobian matrix and @FðZÞ=@� is the sensitivity matrix. We
applied fourth order stepsize controlled Runge–Kutta method to evaluated numerical
calculation of the system (20). The set of parameters �̂� which satisfies the conditions
(22) and (23) are the searched values.
In Table II we present the estimated transmission coefficients, that are based on data

collected at Female Penitentiary of São Paulo, Brazil [3].

4.2. Comments

The HIV transmission coefficient is null in this approach. That is, there is no increase in
the incidence of HIV infection or AIDS disease among female inmates. The absence of

TABLE II The fitted transmission coefficients
considering three compartments observed

Parameters Fitted values

�1 0.00� 0.02

�2 0.175� 0.0002

�2 2278.34
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transmission among them can be explained by rigorous watchfulness that avoids the
HIV transmission routes, that is, it aborts any attempts of intravenous drug usage
and it does not permit the sexual intercourse during the visiting. In spite of that,
since the admitted prisoners may serve as a source of cases to the prison, an increase
in the prevalence of HIV infection may be observed and HIV infection is maintained
among them. Conversely, TB is a directly transmitted air-borne infection. The
women inmates are together during meals, sunbathing or walking, owing to which an
increased incidence of MTB infection may also occur.
The estimated transmission coefficients suggest that the watchfulness can avoid the

new cases of HIV infection, but not new cases of MTB infection. That is, as Ferreira
et al. [3] characterized in their follow up study, our estimation also characterizes an
increased incidence of MTB infection and TB disease with a high prevalence of HIV
infection in a female prison. Using the values of the estimated transmission coefficients,
Fig. 2 shows the fitting.

5. DISCUSSION

The importance of the effects of opportunistic infections on the course of HIV are now
being explored by mathematical models. In this paper we proposed to analyze a model
which describes the dynamical interaction of co-infections in a closed community.
Our major contribution consists in showing how we can determine the non-trivial
equilibrium point through biological simplifications. That procedure was called control
technique and it was made valid when we showed that the non-trivial stable equilibrium
points are precisely the points which are feasible from a biological aspect. Also, we

FIGURE 2 The dynamic behavior of the seven state variables of the model considering the fitted transmis-
sion coefficients based on three observable classes.
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noted that the analysis of the stability basins of MATB model is based on the
parameters � (natural mortality or remaining time in prison or in mental institution),
� and �. We made the sensitivity analysis of the parameters and through this analysis
we observed that the parameters (�,�, �) are the most sensitive in the MATB model.
We point out that the basin R1R4 strongly depends on the value given to �; this

parameter is sensitive to all MATB model variables. From an epidemiological view-
point, this is remarkably relevant as � is the remaining time in prison for punishment
or in the mental institution for treatment. It seems obvious that the longer the individ-
ual remains in a prison, for instance, the easier the disease transmission becomes. When
� and � belong to this basin there seems to exist a strong competition between AIDS
and TB and the prevalence of one of the diseases must happen in the population
depending on the MATB initial condition. It was shown that the necessary and
sufficient condition for the existence of the basin R1R4 is that �c> �t and �c> �t
(Fig. 1). There is a value �* such that Pt(�t(�*), �t(�*))¼Pc(�c(�*), �c(�*)). If
���*, the basin R1R4 vanishes. The coordinates of the point Pt grow with �;
the basin R� rises and the possibility of eradicating the diseases in the community
(or prison) is proportional to the � value.
Furthermore, the growth of � provides a decrease in basin R7 (where AIDS and TB

co-exist), while basins R1 and R4 grow and R3 decreases. In epidemiological terms it
means that the shorter an individual stays in prison the smaller the possibility of the
diseases co-existing. That is, there exists a strong negative interaction between the
two infections in the host. So, depending on the values of the pair (�, �) there exists
a greater possibility of the TB prevalence or AIDS prevalence (the basins R4 or R1,
respectively) or the eradication of the both diseases (the basin R�) than the co-existence
of the diseases (the basin R7).
According to Fig. 1, we can also observe that MTB infection, in some extent, could

be a preventive factor of the insurgence of HIV infection, if the incidence and preva-
lence of HIV is low. However, once HIV infection is established in a community
(i.e., high transmission coefficient and high prevalence), the presence of MTB infection
worsens the clinical picture for HIV, restricting this infection among AIDS individuals.
On the other hand, the presence of HIV, infection can activate MTB infection, even to
very low values for the MTB transmission coefficient. For this reason, TB occurs
among AIDS individuals and, differently to the first situation, the increase in the
MTB transmission coefficient leads to the co-infection with TB disease.
The model that we have analysed in this paper is useful for understanding the

importance of the effects of opportunistic infections on the course of HIV. For
instance, TB seemed to have been controlled and eradicated in the developed
countries. Nevertheless, in the last couple of decades the incidence of TB has been
steadily growing. In the US in particular, the growth has been dramatic since 1984,
and HIV is believed to be culprit. The Biotheorems 2, 3 and 4 show this fact.
When HIV did not exist TB could be controlled (Biotheorems 3 and 4). However,
we had an increased incidence of TB, because of, indeed, TB is an opportunistic infec-
tion on the course of HIV (Biotheorems 2 and 4). Besides that, we have also applied
the methodology to assess the transmission coefficients for HIV and MTB infections.
In order to estimate these parameters we introduced strong assumptions because
a reliable estimation is obtained when we have data about all subpopulation. Even
though, we may be assured that this methodology can be used straight to any
population data relating to co-infection.
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