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Abstract

In order to analyze the effects of acquired immunity and the contact pattern with infested water on the

overall transmission of schistosomiasis, a semi-stochastic model is proposed. The model�s assumptions are
the simplest possible to enhance the differences between two hypotheses. With respect to the human host, it

is assumed the mounting of an immune response after elapsing a fixed period of time L from the first in-

fection, which is partially effective and never lost. With respect to the contact pattern with infested water, it

is assumed a decreasing age-related function. Both models are compared to a purely random model, which

is taken as the basic model.
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1. Introduction

Schistosomiasis is the human infection, probably, with the most complex biological cycle,
which involves at least two host species (human and snail), two free-living transmission stages of
the parasite (cercariae and miracidia) and distinct environments. Humans are the principal de-
finitive host for the five schistosome species. Adult worms live in the venous system of intestine
(S. mansoni, S. japonicum, S. mekongi and S. intercalatum) or the urinary bladder (S. haemato-
bium) [1].
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As a result of the parasite sexual reproduction in different human organs, the characteristically
shaped eggs pass through the vesical or intestinal wall in order to find their way to outside via the
host excreta. In fresh water the eggs hatch and release ciliated motile miracidia that soon pene-
trate into the snail (the intermediate host). Inside the snail the miracidia multiply asexually, and in
4–6 weeks hundreds of thousands of motile forked-tail cercariaes emerge. These are the infective
forms to the human host. For each species of schistosome and for each geographic region there is
a specific snail as the intermediate host. Therefore, it is believed that the geographic distribution of
schistosomiasis depends on the distribution of the specific snails. On encountering human skin,
the cercariae actively penetrate it, causing a local reaction. In the process of invasion, the cer-
cariaes lose their tails and change into schistosomulaes that migrate to the lungs and liver; in
about 6 weeks they mature to adult worms, mate and descend, via the venous system, to their final
habitat. The life-span of adult worms is still a controversy, ranging from 5 to 10 years to more
than 30 years [2,3].

The most used epidemiological data to describe the schistosomiasis is the so-called prevalence

curve, that is, the proportion of individuals shedding viable eggs in faeces (or urine) plotted
against age. The essential relationship between prevalence and age, which is repeatedly observed
in the studies of age-specific prevalence data of schistosomiasis, is a build up in the early years,
peaking around 10–20 years of age, dropping thereafter, and stabilizing at some endemic level
[4,5]. It is remarkable that this behaviour of the prevalence curve is observed even when the
prevalence is very low, reaching a peak of only 5% [6].

Mathematical models have great potential for advancing the understanding of schistosome
transmission and as a tool for the design of control programmes [7]. As the life-cycle of schis-
tosome is extremely complex, it is very difficult to understand the quantitative contribution of
different components of transmission to the level of infection in a human population. For the
same reason, it is difficult to predict the quantitative effects of intervention on human infection
and disease. As prediction is central to the question of decision about competing intervention
options, models with predictive capacity can be a powerful tool to help the disease control
problems.

To be of any use, however, models must be sufficiently realistic and grounded in what is un-
derstood of the schistosome biology [7]. This implies the inclusion of some biological details such
as the role of acquired immunity on the disease dynamics, the pattern of contacts (related to age
and spatial) of individuals with cercariae infested water or the effects related to the environment.
Models which incorporate neither the acquired resistance to infection nor the age-dependent
parameters cannot reproduce typical age–intensity or age–prevalence patterns. For a review of
schistosome infection modelling see [7,8].

Acquired immunity among the humans has important consequences for the epidemiology of
schistosome infection [7,9–11]. The question of whether humans mount an immune response to
schistosomiasis is of basic biological interest and important in the context of disease control
[12]. There is accumulating evidence that the human host develops a protective immune re-
sponse to schistosome infection [13,14]. However, the immune response to this and other large
parasites differs from that of viruses and bacteria, and appears to be acquired gradually, con-
comitant, and may afford only partial protection against further infections. In addition, ac-
quired host responses can act to reduce rates of parasite establishment, fecundity and survival
[15].
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Another aspects to be considered in the dynamics of schistosomiasis transmission is the ob-
served frequency of contacts among humans with presumably contaminated water [16–18]. The
lowering in the prevalence among elder individuals can be thought of decreasing in the contacts
with infested water. The introduction of this kind of information is the basis of the Holford and
Hardy�s stochastic model [5].

The second most used data is the age-dependent egg output curve. This curve is also charac-
terized by an early build up, peaking slightly earlier than the prevalence curve [19]. Following this
peak, there is a decline in the egg output but the decline does not reach zero, rather it approaches
some other asymptote [20,21]. The mean population worm burden can be obtained from this set
of data.

The third kind of data is the age-dependent variance in the egg output among the human
population. This kind of data is difficult to obtain but is very important to what follows. This
variance divided by mean egg output is the well known dispersion curve and typically assumes high
values at lower ages, dropping quickly to a minimum value around 10–15 years, raising thereafter
to stabilize at a certain level [21]. The mean population worm dispersion can be obtained from this
set of data.

The fourth type of data described in the literature is the proportion of shedding snails (those
releasing cercariaes), or the combined proportion of latent (those already infected but not re-
leasing cercariaes yet) and shedding snails [22].

From the first set of data the age–prevalence curve PðaÞ can be derived, and from the second
and third sets of data, assuming that each worm produces a certain number of eggs, the age-mean
number of worms harboured by the human population mðaÞ and the parasite age–dispersion curve
dðaÞ can be derived [21]. Instead of these latter two variables, in this paper we consider the
population mean worm burden m and mean worm dispersion d.

In this paper we present the comparison between simple models considering acquired immunity
against schistosomiasis [23] and age-structured contact pattern with cercariae infested water
taking into account the above four kinds of data related to the schistosomiasis transmission. The
acquired immunity is partially protective, that is, after the first infection there is a fixed length of
time L after which the rate of infection is dramatically reduced [24–26]. The contact pattern with
infested water is constrained to the infective parameter, setting an age-related function. The re-
sults obtained from both models are compared between them and with the basal results yielded
from a purely random process (Poisson) model.

This paper is organized as follows. Section 2 presents the general model, from which we derive
three special cases given in Sections 2.1, 2.2 and 2.3; and in Section 2.4 we derive the basic re-
production ratio. Section 3 deals with the epidemiological values: the prevalence curve (Section
3.1), the mean worm burden and the mean dispersion (Section 3.2) and the basic reproduction
ratio (Section 3.3) obtained from the models taking into account field data. The epidemiological
findings are discussed in Section 4 and some conclusions are summarized in Section 5.

2. The model

We develop a general model including acquired immunity and contact pattern with infested
water. Since the role of immunity in controlling re-infection is not entirely known [12], we have to
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construct a model for the acquired immunity assuming its existence. With respect to the contact
pattern, we assume that the frequency of contacts with infested water is described by an age-
dependent function. The classical models related to schistosomiasis can be divided into two dis-
tinct groups: fitting-prevalence [5,7] and transmission dynamics analyses [8].

The general semi-stochastic model [27] is presented in Appendix A, where the acquisition of
worms by humans is treated stochastically (migration–death type) and the age-distribution of the
individuals is treated deterministically. Briefly, the probability of a non-immune person with age
between a and aþ da being infected in the steady state is kðaÞda, where kðaÞ is the transmission
rate (or force of infection) among non-immune individuals. It also reflects the fact that all in-
vading cercariaes maturate to adult form; the human host build an immune response up after
elapsing a fixed period of time L from the first infection, which is partially effective, that is,
protection against further infections is not fully avoided but controlled to some extent, and ever-
lasting, that is, in the absence of the adult worm the immunity processes do not fade away. So the
probability of a partially immune person with age between a and aþ da (with a > L) being in-
fected in the steady state is k0ðaÞda, where k0ðaÞ is the transmission rate among immune indi-
viduals; adult worms inside the host die with a constant rate lw and the human population is
treated deterministically under a constant death rate lh. With respect to the snail population, it is
treated deterministically, which is exactly equal to May�s model [28], considering that the
snail population is constant. As pointed out by May, this is a very strong assumption. He also
considered that the snails begun to release cercariaes after a period of time s from the first in-
fection.

With respect to the transmission rate kðaÞ, we recall the general age-dependent function pro-
posed by Holford and Hardy [5], which is

kðaÞ ¼ ðb1 þ b2aÞe�b3a þ b4; ð1Þ
where the parameters bi, for i ¼ 1, 2, 3 and 4, are related to the environment. These parameters
also take into account the water contact pattern and the degree of infestation of water with
cercariaes eliminated by infected snails. In some manner, the frequency of contacts of humans
with the infested water is allowed to vary with age [18]; however the acquired immunity can be
described by the parameter L (a time delay to build up the immune response) and different age-
dependent transmission rates according to the immune status.

In the steady state, the semi-stochastic function relating the probability generating function for
the number of worms distributed among non-immune individuals with age between a and aþ da
(Appendix A) is given by

F ða; xÞ ¼ S0 e�lha

Z a

a�L
kðsÞe�KðsÞ½1þ ðx� 1Þe�lwða�sÞ�eðx�1Þe�lwða�sÞWða;sÞds; ð2Þ

where lh and lw are the mortality rates associated to humans and worms, respectively, and the
function relating the probability generating function for the number of worms distributed among
the immune individuals with age between a and aþ da (with a > L) is given by

F 0ða; xÞ ¼ S0 e�lha

Z a�L

0

kðsÞe�KðsÞ½1þ ðx� 1Þe�lwða�sÞ�

	 eðx�1Þ e�lwða�sÞWða0þL;sÞ eðx�1Þ e�lwða�s�LÞW0ða;sÞ ds: ð3Þ
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The parameter S0 is the new-born rate and the functions KðsÞ, Wða; sÞ and W0ða; sÞ are given by

KðsÞ ¼
R s
0
kðsÞds;

Wða; sÞ ¼
R a
a0

kðsÞelwðs�sÞds;

W0ða; sÞ ¼
R a
a0þL k0ðsÞelwðs�s�LÞ ds:

8><>: ð4Þ

These probability generating functions describe the model that considers the susceptible indi-
vidual having the first infection at age A, becoming immune after elapsed a period of time L and
mounting up an age-related resistance to infection (see [29,30] for multiple cercariae infections per
event).

From the probability generating functions F ða; xÞ and F 0ða; xÞ we can derive the age–prevalence
curve, the mean worm burden per person and the dispersion of worms per person. The age–
prevalence curve can be obtained directly from the probability generating functions, which can be
interpreted as the risk (probability) of an individual being infected at the age a. The last two
variables are derived from the first and the second moments of the probability generating func-
tions. Both results can be thought of corresponding to the deterministic approach.

Our aim is to compare the epidemiological findings obtained from models considering the
acquired immunity or the water contact pattern. In order to do this, we split the general semi-
stochastic model into two sub-models, which are fitted to the prevalence curve to estimate the
model�s parameters. Then we examine the effects of both features in the schistosomiasis trans-
mission calculating epidemiological parameters like the basic reproduction ratio. Initially, how-
ever, we present the purely random (Poisson) model to set a referential framework.

2.1. Model 1: Poisson model

The pure Poisson model is presented to fix the basic model. In this model, the transmission rate
does not depend on any variable, assuming a constant value. By the fact that the transition
probability assumes a constant value, we have a purely random model (the Poisson distribution).
The pure Poisson process is obtained from Eq. (2) by letting kðaÞ ¼ k. This model has the
probability generating functions given by

F ða; xÞ ¼ S0 e�lha exp ðx
�

� 1Þk 1� e�lwa

lw

�
ð5Þ

and F 0ða; xÞ ¼ 0, since the immunity is not being taken into account (L ! 1).
Considering the probability generating function given by Eq. (5), we use Eqs. (A.26) and

(A.29), from Appendix A, to derive the age–prevalence curve P ðaÞ, the mean number of parasites
m and the mean dispersion d. They are

P1ðaÞ ¼ 1� exp

�
� k

1� e�lwa

lw

�
; ð6Þ

m1 ¼
k

lh þ lw

ð7Þ
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and

d1 ¼ 1þ klh

ðlh þ lwÞðlh þ 2lwÞ
: ð8Þ

Observe that, if lh ¼ 0 (there is not renewal of individuals), then d1 ¼ 1, resulting in the pure
random (Poisson) process.

2.2. Model 2: simple water contact pattern model

The simple age-structured contact pattern with infested water is obtained from Eq. (2) by
letting kðaÞ ¼ ke�ba, which comes from Eq. (1) by setting b2 ¼ b4 ¼ 0. Note that we are consi-
dering the simplest dependency of the water contact pattern with age. This model has the
probability generating functions given by

F ða; xÞ ¼
S0 e�lha exp ðx� 1Þk e�ba�e�lwa

lw�b

	 

for lw 6¼ b;

S0 e�lha expððx� 1Þkae�lwaÞ for lw ¼ b

(
ð9Þ

and F 0ða; xÞ ¼ 0, since the immunity is not being taken into account (L ! 1). The parameter b is
the avoidance rate, which increases with the age and avoids contacts with infested water. This is a
parameter depending on the changes of habits induced by sanitary education and of economic
activities.

Considering the probability generating function given by Eq. (9), we use Eqs. (A.26) and
(A.29), from Appendix A, to derive the age–prevalence curve PðaÞ, the mean number of parasites
m and the mean dispersion d. They are

P2ðaÞ ¼ 1� exp � k e�ba�e�lwa

lw�b

	 

for lw 6¼ b;

1� expð�kae�lwaÞ for lw ¼ b;

(
ð10Þ

m2 ¼
klh

ðlh þ lwÞðlh þ bÞ ð11Þ

and

d2 ¼ 1� klh

ðlh þ lwÞðlh þ bÞ þ
2kðlh þ lwÞðlh þ bÞ

ðlh þ 2lwÞðlh þ lw þ bÞðlh þ 2bÞ : ð12Þ

This dispersion shows a deviation from the Poisson process.
The mean worm burden m2 is limited and monotonically decreasing function with respect to b,

which has the limiting values given by

m2 ¼
k

lh þ lw

for b ¼ 0;

0 for b ! 1:

8<:
Note that the mean worm burden can reach null value by increasing the avoidance parameter

(avoiding the contact with infested water by sanitary education).
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2.3. Model 3: simple acquired immunity model

The acquired immunity model is obtained from Eqs. (2) and (3) by letting k0ðaÞ ¼ k0 and
kðaÞ ¼ k. Note that we are considering the simplest form for the acquired immunity consideration.
This model has the probability generating functions given by

F ða; xÞ ¼
S0 e�lha exp ðx� 1Þk 1�e�lwa

lw

	 

� e�ka

h i
for a6 L;

S0 e�lha exp � k ða� LÞ � ðx� 1Þ 1�e�lwL

lw

h i	 

� e�ka

n o
for a > L

8<: ð13Þ

for non-immune individuals, and

F 0ða;xÞ¼

0 for a6L;

S0 e�lha
R a�L
0

k½1þðx�1Þe�lwða�sÞ�e�ks exp ðx�1Þk e�lwða�s�LÞ � e�lwða�sÞ

lw

þk0

k
1� e�lwða�s�LÞ

lw

" # !
ds

for a> L

8>><>>:
ð14Þ

for immune individuals.
Considering the probability generating functions given by Eqs. (13) and (14), we use Eqs.

(A.26) and (A.29), from Appendix A, to derive the age–prevalence curve P ðaÞ, the mean number
of parasites m and the mean dispersion d. They are

P3ðaÞ¼

1� exp �k
1� e�lwa

lw

� �
for a6L;

1� exp �k ða�LÞþ1� e�lwL

lw

� �� �
�
R a�L
0

k½1� e�lwða�sÞ�e�ks exp �k
e�lwða�s�LÞ � e�lwða�sÞ

lw

þk0

k
1� e�lwða�s�LÞ

lw

" # !
ds

for a> L;

8>>>>>><>>>>>>:
ð15Þ

m3 ¼
k

lh þ lw

1

"
� ðk � k0Þe�lhL

k þ lh

#
ð16Þ

and

d3 ¼ 1� k
lh þ lw

1

"
� ðk � k0Þe�lhL

k þ lh

#
þ
f1 þ k�k0

lw
f2ðLÞ � ðk�k0Þ2

klw
e�lhL

k
lhþlw

1� ðk�k0Þ e�lhL

kþlh

h i ; ð17Þ

where f1 and f2ðLÞ are given by

f1 ¼
2k2

ðlh þ lwÞðlh þ 2lwÞ
ð18Þ

and

f2ðLÞ ¼
klh e

�lhL

lw

2k0

kþlh
þ lhþ3lw

lhþ2lw
e�lwL

lh þ lw

24 þ
kð1�e�lwLÞþk0

k þ kð1�e�lwLÞ�k0

lhþ2lw

k þ lh

35: ð19Þ

Observe that the worm burden and the dispersion depend on the immunity parameter L.
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The mean worm burden m3 is limited and monotonically increasing function with respect to L,
which has the limiting values given by

m3 ¼
k

lhþlw

k0þlh
kþlh

for L ¼ 0;
k

lhþlw
for L ! 1:

(
The delay (immunologically weakened individuals) to build up the immunity (high values of L)
increases the mean worm burden. Note that the mean worm burden never reaches null value, even
that we could have a perfect immune reaction.

Up to this point we developed the model considering only the definitive host. In fact, the
transmission rates k and k0 are unrelated up to this moment to the transmission rate regarded to
the snail population. To close the life-cycle of the schistosome infection we need the proportion of
snails that are infected and shedding cercariaes. In order to do this we consider May�s model [28]
for the snail population.

2.4. The overall schistosomiasis transmission

In this section, taking into account the average values calculated from the first and the second
moments of the probability generating functions, we deal with the overall schistosomiasis
transmission, which corresponds to the deterministic approach. Hence, the complete description
of the schistosomiasis transmission is done considering the mean worm burden in the community,
given by one of Eqs. (7), (11) or (16) depending on the model under study, with the mean pro-
portion of the shedding snails. The main goal of the model considering the interaction between
human host and snail population is to obtain the basic reproduction ratio R0, which provides the
average number of female worms produced by one coupled female worm during its entire life-
span.

With respect to the snail population, they are subdivided as susceptible, latent (infected but not
eliminating cercariaes) and infected (those that had survived the incubation period s and are
eliminating cercariaes). According to May�s model [28] related to the snail population, the pro-
portion of shedding snails z in the equilibrium is given by

z ¼ l00
s

ks e�l0ss

�
þ 1

z

��1

; ð20Þ

where ks is the snail transmission rate, l0
s is the mortality rate of the latent snails, l00

s is the
mortality rate of the infected snails, i.e., the shedding snails, and z is the maximum attainable
value for the proportion of shedding snails, which is given by

z ¼ e�l0ss

l00s
l0s
� l00s

l0s
� 1

	 

e�l0ss

: ð21Þ

May�s model is a modification of Macdonald�s [31] model encompassing the differential mortality
rates among infected snails and the incubation period s. The limiting values for z are zðks ¼ 0Þ ¼ 0
and zðks ! 1Þ ¼ z.

Macdonald�s model predicts the proportion of infected snails at equilibrium with unrealistically
large values when compared with current epidemiological data [22,32,33] when the value of R0 is
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great. On the other hand, low values of R0 are incompatible with the endemic stability (in the sense
of opposing to controlling efforts) of schistosomiasis. A similar qualitative criticism was previ-
ously made by Jordan [34] to Macdonald�s model [31]. A stochastic version of Macdonald�s model
was proposed by N�aasell and Hirsch [35]. Although this version obviously improves the simple
deterministic Macdonald�s model, it results essentially in the same endemic instability.

May�s [28] developments represent a major improvement on Macdonald�s model, although it
still fails to explain some aspects of the epidemiology of schistosomiasis. It is true, however, that it
explains the observed low value of z, but it does not explain the stability of the endemic level of the
disease [36]. It should be mentioned that one of the main purpose of May�s paper was to inves-
tigate the influences of the mating function and the breaking point [37] in the schistosomiasis
transmission, which have not been considered in this paper.

The overall schistosomiasis transmission is analyzed in terms of the dimensionless transmission
parameters T1 and T2, which were used by N�aasell and Hirsch [35] and May [28], instead of the
previous transmission rates k, k0 and ks.

The parameter T1 is the overall transmission coefficient from human to snail encompassing all
the probabilistic events occurring in the environment. It is given by

T1 ¼
1
2
gEP1Nh

l00
s

; ð22Þ

where gE is the number of eggs shed by each couple of schistosomes per unit of time; P1 is the
probability of a released egg to develop to miracidia and to infect a snail; Nh is the total popu-
lation of human host; and l00

s is the mortality rate of the shedding snails. As mentioned above, we
are not concerning about the mating between male and female worms, given by mating function
/ðmÞ [28]; for this reason we set half for the probability of mating when there is m mean worm
burden. This constant mating function, /ðmÞ ¼ 1=2, also describes hermaphroditic helminthiasis
modeling [38].

The parameter T2 is the overall transmission coefficient from snail to human encompassing all
the probabilistic events occurring in the environment. It is given by

T2 ¼
gCP2Ns

lw

; ð23Þ

where gC is the number of cercariae released by an infected snail per unit of time; P2 is the
probability of a cercariae to infect a human host; Ns is the total population of snails; and lw is the
death rate of adult worms.

Therefore, we can relate the transmission rates k, k0 and ks to the dimensionless transmission
coefficients T1 and T2, according to N�aasell and Hirsch [35]. The snail transmission rate can be set
as

ks ¼ l00
smiT1; ð24Þ

where the index i stands for the model on consideration, with i ¼ 1, 2 or 3.
The worm transmission rate among non-immune individuals can be set as

k ¼ ðlh þ lwÞzT2; ð25Þ
which depends on the environment due to the parameters z and T2. With respect to the worm
transmission rate among immune individuals, since the role of acquired immunity in controlling
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re-infection is not entirely known, we suppose that the infection among immune individuals is also
influenced by the environment, in which case we have

k0 � bk ¼ ðlh þ lwÞbzT2; ð26Þ
where b, with 06 b < 1, is the partial protection conferred by the immunity. Note that the risk of
the infection among immune individuals depends on the fluctuation in the environment�s para-
meters but situates always at a lower level in comparison with the risk among non-immune in-
dividuals (k0 < k).

We can, now, write the mean worm burden m and the mean proportion of shedding snails z as
functions of the dimensionless parameters T1 and T2 and the basic reproduction ratio R0.

2.4.1. Model 1: Poisson model
The proportion of infected snails and the mean worm burden, given by Eqs. (20) and (7), re-

spectively, can be rewritten in terms of the dimensionless transmission coefficients T1 and T2 using
Eqs. (24) and (25). They are

z1 ¼ z 1� 1
R1
0

	 

;

m1 ¼
zðR1

0
�1Þ

e�l0ssT1
;

8<: ð27Þ

where

R1
0 ¼ e�l0ssT1T2 ð28Þ

is the basic reproduction ratio related to the Poisson model.
Note that for R1

0 < 1, the only biologically viable solution is z ¼ 0 and m1 ¼ 0, in which situ-
ation we have the eradication of the disease; while the unique biologically viable endemic situation
is attained if we have R1

0 > 1. Therefore, at R1
0 ¼ 1 we have the change from trivial to non-trivial

solution.
The results related to Macdonald�s model [31] can be retrieved from Eqs. (27) and (28) letting

s ¼ 0. The maximum attainable fraction of shedding snails is z ¼ 1 and the basic reproduction
ratio is R0 ¼ T1T2. Therefore, May�s model diminished drastically the value of z, but at the ex-
penses of decreasing in the same proportion the value of the basic reproduction ratio.

This pure random model states that schistosomiasis can be eradicated by improving the san-
itary conditions and chemotherapy (diminishing the transmission coefficients T1 and T2) and/or by
applying the molluscicides (increasing the mortality rate l0

s). The parameters l0
s and s vary greatly

with temperature, hence abiotic conditions act strongly upon the schistosomiasis transmission.

2.4.2. Model 2: simple water contact pattern model

The proportion of infected snails and the mean worm burden, given by Eqs. (20) and (11),
respectively, can be rewritten in terms of the dimensionless transmission coefficients T1 and T2
using Eqs. (24) and (25). They are

z2 ¼ z 1� 1
R2
0

	 

;

m2 ¼
zðR2

0
�1Þ

e�l0ssT1
;

8><>: ð29Þ
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where

R2
0 ¼

lh

lh þ b
e�l0ssT1T2 ð30Þ

is the basic reproduction ratio related to the water contact pattern model.
The basic reproduction ratio R2

0 is limited and monotonically decreasing function with respect
to b, which has the limiting values given by

R2
0 ¼

R1
0 for b ¼ 0;

0 for b ! 1:

(
Besides the environment parameters T1 and T2, the basic reproduction ratio depends on the pa-
rameter b related to the interaction human-environment.

Note that the eradication condition can be achieved acting only on the avoidance parameter,
since we can obtain a value for b such that R2

0 ¼ 1. The appearance of this new parameter to reach
the eradication condition shows that we do not need so much efforts to eradicate schistosomiasis.

2.4.3. Model 3: simple acquired immunity model

The proportion of infected snails and the mean worm burden, given by Eqs. (20) and (16),
respectively, can be rewritten in terms of the dimensionless transmission coefficients T1 and T2. In
the acquired immunity model the transmission rates are related to the dimensionless transmission
coefficients T1 and T2 according to Eqs. (24)–(26).

In this model, we have

z3 ¼ 2 M1

M2
T2

	 
�1

T2z
M1

M2
� 1

M2R3
0

	 

� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2z

M1

M2
� 1

M2R3
0

	 

� 1

h i2
þ 4 M1T2z

M2
1� 1

R3
0

	 
r( )
;

m3 ¼ M2T2z

2ðM2þT2zÞ T2z
M1

M2
� 1

M2R3
0

	 

� 2

R3
0

� 1
	 


þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2z

M1

M2
� 1

M2R3
0

	 

� 2

R3
0

� 1
	 
h i2

þ 4 M2þT2z

M2R3
0

1� 1
R3
0

	 
r( )
;

8>>>>><>>>>>:
ð31Þ

where

M1 ¼ 1� ð1� bÞe�lhL;

M2 ¼ lh
lhþlw

;

(
and

R3
0 � R1

0 ¼ e�l0ssT1T2 ð32Þ
is the basic reproduction ratio related to the acquired immunity model.

When both k and k0 are dependent on the environment, the classical result related to the directly
transmitted infections is retrieved, that is, the immunity does not matter on the basic reproduction
ratio. The reason behind it is the polluted water, which plays the main role in the transmission of
schistosomiasis, once the human immune reactions avoid only partially new infection and do not
eliminate the previously harboured worms. However, we can analyze, by introducing the vacci-
nation effort in this model, the existence of the schistosomiasis eradication condition by vaccine
(when available) [39].
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3. Epidemiological findings

In this section we are concerned with the fitting of the age–prevalence curve of schistosomiasis
with the aim of estimating the model�s parameters. The first attempt we are aware of is due to
Hairston [4] who used a modified catalytic model [40] to determine the force of infection to
schistosomiasis by fitting the age-related prevalence curves from many distinct endemic regions.
In some areas he obtained reasonable model fittings while in others the model fittings were not
appropriately obtained, hence it was necessary to use different curves to fit the data from different
age groups in the same region. Another attempt is due to Holford and Hardy [5] who fitted a
stochastic model to the same set of data [20,21] used by Hairston [4]. Although a best fitting was
obtained with the model that used four parameters, the descendent phase of the prevalence curve
is explained as a reduction of the water contact pattern that increases with age. This is not entirely
supported by experimental evidence [17,41]. The latter work compared the egg outputs by males
and females and found essentially no difference, although the two groups have different water
contact patterns.

3.1. Fitting the model

We present the maximum likelihood fitting [42] of the data, using the equations related to the
prevalence curve, from two distinct highly endemic areas, namely, Touros district, Brazil [43], and
the region of Misungwi, Tanzania [21]. In the first region, schistosomiasis is due only to S.
mansoni, while in the second, it is due only to S. haematobium. The logarithm of likelihood,
disregarding the constant term, is

l ¼
Xn
i¼1

fnpi ln½PjðaiÞ� þ nni ln½1� PjðaiÞ�g for j ¼ 1; 2 or 3; ð33Þ

where n is the number of age intervals, npi and nni are the numbers of individuals with presence
and absence of parasite eggs, respectively, in each age interval ai, and the subscript j stands for
one of the three models. The prevalence curve PjðaiÞ is one of the functions given by Eqs. (6), (10)
and (15), according to the model. This expression is maximized using the non-linear Levenberg–
Marquardt method [44] (Appendix B).

The prevalence curves obtained from the models are fitted against field data. Tables 1 and 2
show the estimated model�s parameters: the rates k, lw, b and k0; the elapsing time L and the
logarithm of likelihood of the fitting l for the data from Touros and Misungwi, respectively.

The human mortality rate lh was obtained from actuarial data, and its value was found to be
0.015 years�1. The sensitivity analysis of the model�s parameters can be done using the values
presented in these tables [45], which is left to a further work.

Figs. 1 and 2 show the age–prevalence curves fitted to epidemiological data from Touros and
Misungwi areas.

The fitted parameters are those given in Tables 1 and 2. We observe that the models 2 and 3
improved substantially the fittings in comparison with the model 1, nevertheless the model 3
presented the best fitting. Note that in this paper we are comparing the simplest forms for the
acquired immunity and age-structured contact pattern hypotheses.
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The improvement in the fittings can be seen applying the model selection criteria, specially the
Schwarz criterion [46]. The criterion proposed by Schwarz is

BIC ¼ l� k
2
lnðnÞ;

where l is the logarithm of the likelihood of the fitting, k is the number of model�s parameters and
n is the number of observations. The penalty associated with the number of estimated parameters
in this criterion is stronger than in the Akaike criterion.
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Fig. 1. Age–prevalence curves fitted to data from Touros, Brazil. The curves show the fittings of the models 1, 2 and 3.

Table 1

Parameters fitted against data (n ¼ 15) from the region of Touros, Brazil, where �df� stands for the degree of freedom

Model 1 Model 2 Model 3

k 0.160� 0.021 0.13� 0.40 0.120� 0.010

lw 0.217� 0.033 0.110� 0.024 0.090� 0.024

k0 or bðÞ – 0.017� 0.004ðÞ 0.047� 0.012

L – – 8.07� 0.10

l )1515.24 )1498.82 )1493.69
df 12 11 10

Table 2

Parameters fitted against data (n ¼ 39) from the region of Misungwi, Tanzania, where �df� stands for the degree of

freedom

Model 1 Model 2 Model 3

k 0.355� 0.040 0.28� 0.46 0.221� 0.010

lw 0.333� 0.041 0.126� 0.015 0.079� 0.010

k0 or bðÞ – 0.027� 0.003ðÞ 0.042� 0.005

L – – 8.96� 0.03

l )2705.98 )2587.12 )2534.34
df 36 35 34
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Table 3 shows the Schwarz criterion (Bayesian Information Criterion) values based on the
logarithm of the likelihood of the fittings given in Tables 1 and 2.

We note the fittings getting better in the models 1, 2 and 3, in this order. The BIC difference
(designed by �bic�) is high when comparing models 2 and 3 with model 1, but between models 2
and 3, the difference is low.

The hypotheses related to the acquired immunity and age-structured contact pattern can de-
scribe, in some extent, the ascending and descending phases of the characteristic age-dependent
prevalence curve related to schistosomiasis. However, the prevalence alone is not a good epide-
miological measure, for this reason the better understanding of the schistosomiasis transmission
requires the knowledge about the intensity of the infection [47].
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Fig. 2. Age–prevalence curves fitted to data from Misungwi, Tanzania. The curves show the fittings of the models 1, 2

and 3.

Table 3

The value of BIC using Schwarz criterion based on the penalization of the logarithms of likelihood of the fitting l of the
three models for Touros, Brazil, and Misungwi, Tanzania

Touros, Brazil Misungwi, Tanzania

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

)BIC 1517.95 1502.88 1499.11 2709.64 2592.62 2541.67

k 2 3 4 2 3 4

n 15 15 15 39 39 39

bic21 – 15.07 (0.99%) – – 117.0 (4.32%) –

bic31 – – 18.84 (1.24%) – – 168.0 (6.20%)

bic32 – – 3.776 (0.25%) – – 50.95 (1.97%)

We calculated the difference between BICs, defined by bicij ¼ BICi � BICj, and the corresponding relative value, given

by 100	 bicij=jBICij (which is given between parenthesis), where the subscript i stands for the type of the model. k and

n stand, respectively, for the number of model�s parameters and the number of observations.
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3.2. The mean worm burden and the dispersion

To give a more reliable analysis of the schistosomiasis transmission, we can now use the fitted
parameters shown in Tables 1 and 2 to calculate the mean worm burden per person and the mean
dispersion per person for the two regions.

The mean worm burden per person shows the intensity of the infection in the community. This
value measures the degree of morbidity and the level of the parasite transmission in the com-
munity. The dispersion per person in a community shows how the parasite is distributed in the
community: randomly distributed (d ¼ 1, distributed like Poisson), distributed in an aggregate
(d > 1, negative binomial distribution) or statistically over-dispersed (d < 1, binomial distribu-
tion) fashion. For instance, as the dispersion d becomes larger and larger the mean worm burden
m is increasingly realized by having most people with zero worms and a few people with many
worms [48]. This feature indicates that the individuals with heavy worm burden (in general,
symptomatic) are easily found in the community, which is not true in relation to individuals with
light worm burden. Conversely, as the dispersion d becomes smaller and smaller, we have the
most people harbouring the same amount of worms, which makes easy the task of finding the
infected individuals.

We use Eqs. (7) and (8); (11) and (12); and (16) and (17), respectively, for models 1, 2 and 3, to
calculate the mean worm burden and the dispersion for Touros district, Brazil, and the region of
Misungwi, Tanzania. These values are shown in Table 4.

Remember that in the region of Touros we have the transmission of S. mansoni, while in the
region of Misungwi, we have S. haematobium.

Observe that the competing models (labelled 2 and 3) present quite same amounts of the mean
worm burden, which are lower than the basic model (labelled 1). This implies that the hypotheses
considering the acquired immunity and the age-structured contact pattern can avoid the hyper-
infection. However, the dispersion is much more increased in the acquired immunity model than
the age-structured contact pattern model (especially for the S. haematobium transmission in
Tanzania). Therefore, the acquired immunity appears to act in such a manner that the distribution
of the parasite among the individuals in the community [47] tends to the aggregated fashion. One
of the effects of this aggregation is to difficult the controlling mechanisms, specially those based on
the parasitological examination. This epidemiological procedure finds individuals harbouring
moderate to heavy worms; for this reason the transmission can be maintained by the asymp-
tomatic (presenting low worm parasite charge, hence evading the parasitological examination)
individuals, which represent a large group of individuals.

Therefore, the acquired immunity modeling can explain the great difficult to control the
schistosomiasis transmission. It is worth to mention that the paper by Barbour and Kafetzaki [49]

Table 4

The mean worm burden and the mean dispersion for Touros, Brazil, and Misungwi, Tanzania

Touros, Brazil Misungwi, Tanzania

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

m 0.689 0.506 0.593 1.020 0.712 0.795

d 1.023 1.151 1.603 1.023 1.368 6.713
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have attempted to explain the dispersion of worms by invoking concomitant immunity and
multiple entrances.

3.3. The basic reproduction ratio

The last epidemiological parameter to be considered to compare the competing models is the
basic reproduction ratio. To calculate the basic reproduction ratio R0, we need the estimated
values of the following parameters.

The parameters related to the intermediate host are obtained from the literature. From data
described by Sturrock, for Biomphalaria glabrata [50] and for Bulinus (Physopsis) nasutus pro-

ductus [51] snails, we can estimate the snail transmission rate fitting these data using Eq. (20).
Considering the values l0

s ¼ 10:8 years�1, l00
s ¼ 21:6 years�1 and s ¼ 0:083 years, the estimated

value is as ¼ 0:921 years�1 [23]. Taking into account these values, the maximum attainable value
for the proportion of shedding snails can be calculated using Eq. (21), resulting in z ¼ 0:25. The
steady-state value for z was arbitrarily set at 0.01.

The values for the dimensionless transmission coefficients T1 and T2, defined by Eqs. (22) and
(23), are calculated using Eqs. (24) and (25) for the models 1 and 2. The parameters related to the
snails are those given above, and the values for k, lw and m are given in Tables 1, 2 and 4. With
respect to the parameter T2, observe that we must consider carefully Eq. (26), which relates T2 with
k0, for the model 3. The factor b in Eq. (26) provides a higher value for T2 than that provided by
Eq. (25). In this case, we neglect the second calculation and use the lower value for T2, which
corresponds to consider only Eq. (25).

The basic reproduction ratio R0 is obtained for the models 1, 2 and 3 using, respectively, Eqs.
(28), (30) and (32). Table 5 shows the calculated transmission coefficients T1 and T2, and the re-
sulting basic reproduction ratio.

Observe that the age-structured contact pattern modeling practically unchanged the value of
the basic reproduction ratio, while the acquired immunity modeling increased substantially this
value, in comparison with the basic model.

The consideration of the acquired immunity in the schistosomiasis modeling shows that the
eradicating efforts of schistosomiasis is highly increased (if we consider the value of R0 as the
measure of controlling effort), besides the aggregation of the parasites in the community. Both
features facilitate the perpetuation of the worm by two manners: the small core of individuals
harbouring high number of worms produces a great number of eggs (R0 great), and the large
group of individuals harbouring low number of parasites (characteristic of d great) presents high
probability of evading controlling mechanisms (specially chemotherapy), which maintains the

Table 5

The basic reproduction ratio R0 for Touros, Brazil, and Misungwi, Tanzania

Touros, Brazil Misungwi, Tanzania

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

T1 0.0619 0.0842 0.0719 0.0418 0.0599 0.0537

T2 68.907 106.84 114.12 102.03 200.95 235.09

R0 1.7397 1.7395 3.3486 1.73986 1.73988 5.1475
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prevalence at low level. Therefore, it seems that the immunity is a strong factor to stabilize the
interaction parasite–human.

4. Discussion

We developed a semi-stochastic model to understand the transmission dynamics of schistos-
omiasis in highly endemic regions. The main point of this paper is to compare a model deal-
ing with the role of human acquired immunity with a model taking into account the
age-structured contact pattern with infested water. The introduction of the parasite mating
probability [28] and/or the conservation of snail biomass density [52] in both models did not
improve the results [23].

In the absence of immunity in the human host or the age-structured contact pattern, we must
have hyper-infection to maintain the disease (model 1) due to low prevalence of shedding snails.
In relation to the model 2, the hyper-infection can be avoided in some extent, while the worms are
practically homogeneously distributed. In relation to the model 3, the hyper-infection is avoided
because the acquired immunity protects the human host from further cercariaes invasions, and the
worms harboured by individuals from this community are distributed in a aggregated fashion
(Table 4), which explains the existence of a core of individuals who have a heavy worm charge
while the population as a whole has a low worm burden. The latter consideration makes rea-
sonable our approximation of assigning half to the mating function introduced by May [28].

With respect to the basic reproduction ratio, the age-structured contact pattern modeling and
the basic model predict quite similar values, which is not true in relation to the acquired immunity
modeling. Since the age-structured contact pattern cannot aggregate the parasite among the in-
dividuals in the community, the viable female descendants produced by the fertile female are not
increased. On the other hand, the worm aggregation facilitates the production of female parasites
due to the high worm burden among small proportion of infected individuals, which increases the
probability of female parasite be mated. For this reason, when immunity consideration is included
in the model to explain the robust transmission of schistosomiasis, we observe that very low worm
burden per person is capable to maintain the disease in the community.

We discussed succinctly the controlling mechanisms corresponding to the epidemiological
parameters T1, T2, b, l0

s, b and L. Now we discuss the massive drug treatment applied in a com-
munity, which diminishes the worm burden by increasing the worm mortality rate lw. We have
two implementation of chemotherapy in the community, according to the model we consider.

The drug treatment based on the stool examination to perform the egg counting of schistos-
omiasis is a good clinical procedure aiming the controlling of schistosomiasis in highly preva-
lent regions. In these regions, due to the high intensity of infection, the epidemiological and
chemotherapeutic studies based on parasitological examination using the Kato–Katz method are
strongly recommended [53]. However, these procedures are not true for regions under massive
chemotherapy [6] and regions where the schistosomiasis transmission is very low [54].

In general, when massive drug treatment based on the stool examination is applied, it is ob-
served a drastic diminishing in the prevalence, but it remains in a low value [6]. This is due to the
sensitivity of the Kato–Katz method [55], hence the infected individuals presenting low worm
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burden are not detected by Kato–Katz method and maintain schistosomiasis transmission. The
design of the controlling mechanisms relying upon the models 1 and 2 depend uniquely on the
stool examination to detect individuals harbouring parasite.

However, the model 3 gives another approach to control schistosomiasis. Instead of relying
upon the chemotherapy of individuals based only on the stool examination, the serological
screening can be applied to the entire population to determine the individuals who will receive the
drug treatment. This approach is fundamental in regions of low prevalence or regions where the
high prevalence was diminished by improving the sanitation conditions and by drug treatment of
individuals presenting eggs in their faeces (or urine). If we assume that the levels of IgM and IgG
are related to, respectively, acute and chronic infections, then the administration of drugs must be
done according to the immune status of the individuals. Based on the level of IgM and IgG
concentrations, we can divide the entire population as: susceptible (absence of IgM and IgG),
non-immune but infected (presence of IgM), immune with parasite (presence of high concentra-
tions of IgM and IgG) and immune without parasite (presence of low concentration of IgG). A
suitable chemotherapy in a low prevalence community must be, then, applied to the individuals
classified in the latter three immune status [56], in order to reach all possible infected individuals
and to achieve the eradication condition. This chemotherapy is advisable if the drugs do not
present collateral effects, since some immune individuals without parasite can be included in the
treatment.

5. Conclusion

We summarize our findings in four points:

(1) The introduction of both the acquired immunity via the elapsing time L and the age-struc-
tured contact pattern in the schistosomiasis modeling retrieved the field data with good fit-
tings.

(2) Even the model developed by Holford and Hardy [5] comprising the age-structured frequency
of contacts with infested water fits very well the prevalence curve, it fails to explain the aggre-
gation of worms and the strong stability of the disease facing external controlling mecha-
nisms. In fact, it predicts quite the same features of the basic model with respect to the
epidemiological parameters (mean worm burden, dispersion and basic reproduction ratio)
[57].

(3) The model considering the acquired immunity, however, explains in some extent the aggre-
gation of worms (high values for the dispersion) and the facility to maintain the disease
(high values for the basic reproduction ratio), which show the difficult in controlling schis-
tosomiasis. Also, very low worm burden per person can maintain the disease in a community.

(4) The chemotherapy controlling of schistosomiasis taking into account the models 1 and 2 must
be based on the clinical and parasitological examinations, while the immune reaction taken
into account in the model 3 permits the use of seroprevalence screening specially in regions
of low prevalence, besides those already cited. Moreover, the vaccine could be considered
in the controlling mechanisms in association with the improvement of the sanitation and/or
in association with the drug treatment.
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Appendix A. Some mathematical results

The basic mathematical details were presented in [58], for this reason we present only some
mathematical results in this paper.

Let wðt; a;AÞ be a random variable that describes the distribution of the number of adult worms
k among the fraction of the human host population with age between a and aþ da that got the
first infection at age between A and Aþ da, during the instant of time t and t þ dt. From the
consideration that the human host has deterministic treatment with respect to age, the total
number of worms over all age intervals irrespective of the age of the first infection W ðaÞ is given
by

W ðt; aÞ ¼
R a
a�L wðt; a;AÞdA;

W 0ðt; aÞ ¼
R a�L
0

wðt; a;AÞdA;

(
ðA:1Þ

where the prime stands for human hosts who have already built up the immune reaction. These
integrals represent the count of worms harboured by individuals with age between a and aþ da.
The limits of the integrations are related to the attainment of the partial immunity status, that is, if
the age a is such that it is lower than Aþ L, then the individual is still developing the immunity
(with respect to the infective process, this individual behaves as the susceptible); otherwise, the
individual is immune.

Assuming the stochastic process of the above random variables as a Markov chain, we define
the transition matrix with its elements given by

Pðt þ dt; aþ dt;A; k þ 1; t; a;A; kÞ � Prfwðt þ dt; aþ dt;AÞ ¼ k þ 1jwðt; a;AÞ ¼ kg; ðA:2Þ
which is the probability of an individual with age between a and aþ dt being infected by one
worm, given that the individual has k worms. Note that we have dt ¼ da.

We define the following stochastic and deterministic transitions between t and t þ dt and a and
aþ dt. The stochastic transitions are related to the worm migration and death, while the deter-
ministic transition is related to the age-distribution of the individuals in a community.

1. The first infection occurs at age A among completely susceptible individuals. In this case we
have

Pðt þ dt; aþ dt;A; 1; t; a;A; 0Þ ¼ kðt; aÞdt þ oðdtÞ; ðA:3Þ
where kðt; aÞ is the transmission rate of parasites related to the non-immune human hosts and
oðdtÞ are terms of superior order.

2. The infections can occur at age a6Aþ L (and a > A) among non-immune individuals with k
parasites. In this case we have

Pðt þ dt; aþ dt;A; k þ 1; t; a;A; kÞ ¼ kðt; aÞdt þ oðdtÞ; ðA:4Þ
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with k ¼ 0; 1; 2; . . .. This transition is independent of the worm burden because we are treating
the infective event as migration.

3. The infections can occur at age a > Aþ L among partially immune individuals with k parasites.
In this case we have

Pðt þ dt; aþ dt;A; k þ 1; t; a;A; kÞ ¼ k0ðt; aÞdt þ oðdtÞ; ðA:5Þ
where k0ðt; aÞ is the transmission rate of schistosome for partially immune human hosts.

4. A parasite dies with a transition given by

Pðt þ dt; aþ dt;A; k � 1; t; a;A; kÞ ¼ lwðt; aÞkdt þ oðdtÞ; ðA:6Þ
where lwðt; aÞ is the per-capita mortality rate of the worms harboured by the human host (both
immune and non-immune individuals).

5. The events related to the non-occurrence of the infection are given by the transitions

P0ðt þ dt; aþ dt;A; 0; t; a;A; 0Þ ¼ 1� kðt; aÞdt þ oðdtÞ ðA:7Þ
for the individuals at age a that never had contact with parasite, where the superscript 0 stands
for the individuals who never got the infection, therefore have zero worms,

Pðt þ dt; aþ dt;A; k; t; a;A; kÞ ¼ 1� ½kðt; aÞ þ lwðt; aÞk�dt þ oðdtÞ ðA:8Þ
for the non-immune individuals comprised on the age interval A < a6Aþ L, and

Pðt þ dt; aþ dt;A; k; t; a;A; kÞ ¼ 1� ½k0ðt; aÞ þ lwðt; aÞk�dt þ oðdtÞ ðA:9Þ
for the partially immune individuals comprised on the age interval a > Aþ L.

6. The human host is treated deterministically, with the age-distribution being given by

pðt þ dt; aþ dt;A; kÞ � pðt; a;A; kÞ ¼ �lhðt; aÞpðt; a;A; kÞdt þ oðdtÞ; ðA:10Þ
where lhðt; aÞ is the per-capita mortality rate of the human host and pðt; a;A; kÞ is the age-dis-
tribution of individuals with age a, who got the first infection at age A and have k worms at time t.

Using the Chapman–Kolmogorov equation,

pðt þ dt; aþ dt;A; kÞ ¼
X1
j¼0

Pðt þ dt; aþ dt;A; k; t; a;A; jÞpðt; a;A; jÞ ðA:11Þ

and the above transitions, we obtain

d

dt
pðt; a;A; kÞ ¼ kðt; aÞpðt; a;A; k � 1Þ þ ðk þ 1Þlwðt; aÞpðt; a;A; k þ 1Þ

� ½kðt; aÞ þ klwðt; aÞ þ lhðt; aÞ�pðt; a;A; kÞ; ðA:12Þ
which describes the distribution of worms among non-immune individuals comprised on the age
interval A < a6Aþ L, and

d

dt
p0ðt; a;A; kÞ ¼ k0ðt; aÞp0ðt; a;A; k � 1Þ þ ðk þ 1Þlwðt; aÞp0ðt; a;A; k þ 1Þ

� ½k0ðt; aÞ þ klwðt; aÞ þ lhðt; aÞ�p0ðt; a;A; kÞ; ðA:13Þ
which describes the distribution of worms among partially immune individuals comprised on the
age interval a > Aþ L.
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To determine the age-distribution of individuals who never got the infection, Sðt; aÞ, we use the
transitions given by Eqs. (A.3), (A.7) and (A.10) obtaining

d

dt
Sðt; aÞ ¼ �½kðt; aÞ þ lhðt; aÞ�Sðt; aÞ; ðA:14Þ

where Sðt; aÞ ¼
R1
0

p0ðt; a;A; 0Þda.
The boundary conditions for Eqs. (A.14), (A.12) and (A.13) are, respectively,

Sðt; 0Þ ¼ S0ðtÞ; ðA:15Þ
which is the new-born rate at time t,

pðt;A;A; 1Þ ¼ kðt;AÞSðt;AÞ;
pðt;A;A; kÞ ¼ 0 for k ¼ 1; 2; . . .

�
ðA:16Þ

and

p0ðt;Aþ L;A; kÞ ¼ pðt;Aþ L;A; kÞ for k ¼ 0; 1; 2; . . . ; ðA:17Þ
which stand for the continuity (hence, the conservation) of the age-distribution of individuals
during the transition from non-immune to immune status.

The above equations can be re-written using the probability generating functions given by

f ðt; a;A; xÞ ¼
X1
k¼0

pðt; a;A; kÞxk ðA:18Þ

and

f 0ðt; a;A; xÞ ¼
X1
k¼0

p0ðt; a;A; kÞxk; ðA:19Þ

which are related to the non-immune and immune individuals, respectively. Note that we have the
additional probability p0ðt; a;A; 0Þ related to the individuals who never had contact with parasite.
Eqs. (A.14), (A.12) and (A.13) are, then, written as

o
ot Sðt; aÞ þ o

oa Sðt; aÞ ¼ �½kðt; aÞ þ lhðt; aÞ�Sðt; aÞ
o
ot f ðt; a;A; xÞ þ o

oa f ðt; a;A; xÞ
þlwðt; aÞðx� 1Þ o

ox f ðt; a;A; xÞ ¼ ½kðt; aÞðx� 1Þ � lhðt; aÞ�f ðt; a;A; xÞ
for A < a6Aþ L

o
ot f

0ðt; a;A; xÞ þ o
oa f

0ðt; a;A; xÞ
þlwðt; aÞðx� 1Þ o

ox f
0ðt; a;A; xÞ ¼ ½k0ðt; aÞðx� 1Þ � lhðt; aÞ�f 0ðt; a;A; xÞ

for a > Aþ L

8>>>>>>>>>>>><>>>>>>>>>>>>:
ðA:20Þ

and the boundary conditions given by Eqs. (A.15), (A.16) and (A.17) become

Sðt; 0ÞS0ðtÞ ¼ S0ðtÞ;
f ðt;A;A; x0Þ ¼ kðt;AÞSðt;AÞx0;
f 0ðt;Aþ L;A; x00Þ ¼ f ðt;Aþ L;A; x00Þ:

8><>: ðA:21Þ

This system of equations is related to the distribution of the worms among a fraction of age-
distributed individuals who got the first infection at age A.
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From the solution of the system of Eq. (A.20) we can obtain the distributions of the worms
according to the age-distribution of the immune and non-immune individuals, irrespective of the
age of the first infection A, through the definition (A.1). They are

F ðt; a; xÞ ¼
R a
a�L f ðt; a;A; xÞdA for a6Aþ L;

F 0ðt; a; xÞ ¼
R a�L
0

f 0ðt; a;A; xÞdA for a > Aþ L;

(
ðA:22Þ

which are used to derive the prevalence, the mean worm burden and dispersion of the worms in
the community.

Let us consider the steady state. For this reason we did not provide initial conditions to the
system of Eq. (A.20). Dropping out the time dependence (and setting the time differentiation
zero), the second and the third equations of the system (A.20) led to the solutions f ða;A; xÞ and
f 0ða;A; xÞ in equilibrium, given by

f ða;A; xÞ ¼ S0 e�lhakðAÞe�KðAÞ½1þ ðx� 1Þe�lwða�AÞ� exp ðx� 1Þe�lwða�AÞWða;AÞ
�  

;

f 0ða;A; xÞ ¼ S0 e�lhakðAÞe�KðAÞ½1þ ðx� 1Þe�lwða�AÞ� exp ðx� 1Þe�lwða�AÞWða0 þ L;AÞ
�  

	 exp ðx� 1Þe�lwða�A�LÞW0ða;AÞ
	 


;

8>>><>>>:
where S0 is the new-born rate and the functions KðxÞ and Wðx; yÞ are given by Eq. (4). These
solutions can be integrated over all age A, according to Eq. (A.22), to yield F ða; xÞ and F 0ða; xÞ
resulting Eqs. (2) and (3) of the main text.

The semi-stochastic feature of the functions (A.22) are better understood when we consider
x ¼ 1 in Eqs. (2) and (3). In this situation we are not concerned with the probabilistic distribution
of the worms in the human host, and the human host is distributed according to

F ða; 1Þ ¼
S0 e�lhað1� e�kaÞ; a6 L;

S0 e�lha½e�kða�LÞ � e�ka�; a > L;

(
F 0ða; 1Þ ¼ S0 e�lha½1� e�kða�LÞ�; a > L:

8><>: ðA:23Þ

The functions F ða; 1Þ and F 0ða; 1Þ describe the age-distribution of non-immune and immune in-
dividuals, respectively, that have had the contact with the worms. Finally, the age-distribution of
individuals that never have had contact with worms is given by

SðaÞ ¼ S0 e�lhae�ka: ðA:24Þ

Therefore, the age-distribution of the human population can be obtained disregarding the worm
contact experience of the community, yielding

NðaÞ ¼ S0 e�lha; ðA:25Þ
which comes summing up the two equations of (A.23) and Eq. (A.24).

From the above functions we can derive the following variables. The age–prevalence curve is
given by the relation

P ðaÞ ¼ 1� F0ðaÞ þ F ða; 0Þ þ F 0ða; 0Þ
SðaÞ ; ðA:26Þ
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the age-mean worm burden per person is

mðaÞ ¼
o
ox F ða; xÞ

!!
x¼1

þ o
ox F

0ða; xÞ
!!
x¼1

SðaÞ ðA:27Þ

and the age–dispersion (coefficient of variation) of worms per person is given by

dðaÞ ¼ 1� mðaÞ þ

o2

ox2
F ða;xÞ

!!!
x¼1

þ o2

ox2
F 0ða;xÞ

!!!
x¼1

SðaÞ

mðaÞ ; ðA:28Þ

where the numerator is the second moment.
From the last two variables mðaÞ and dðaÞ we can calculate the corresponding average value per

person, which is given by

n ¼
R1
0

nðaÞSðaÞdaR1
0

SðaÞda
; ðA:29Þ

where nðaÞ is one of the variables mðaÞ and dðaÞ.

Appendix B. Likelihood estimation

The logarithm of likelihood function (33), disregarding the constant term, is estimated by
likelihood estimation. To perform this estimation, the initial guess must be provided by the least
square method. Let pi be the observed value. Then the sum of squares approximate the v2 value,
given by

v2ðXjÞ ¼
Xn
i¼1

½Pjðai;XjÞ � pi�2 for j ¼ 1; 2 or 3; ðB:1Þ

where Pjðai;XjÞ is one of the functions given by Eqs. (6), (10) and (15), with X1 ¼ ½k lw�
T
,

X2 ¼ ½k lw b�T and X3 ¼ ½k lw k0 L�T being the corresponding spaces of model�s parameters to
be fitted, and n is the number of age intervals considered. The superscript T stands for the
transposition of matrix.

The chi-square (B.1) minimizes, for each j, at

yðXjÞ ¼
1

2

o

oXj
v2ðXjÞ ¼

Xn
i¼1

½Pjðai;XjÞ � pi�
o

oXj
Pjðai;XjÞ ¼ 0; ðB:2Þ

because the second derivative, which is the standard deviation,

r�2ðXjÞ ¼
1

2

o2

oX2
j

v2ðXjÞ �
Xn
i¼1

o

oXj
Pjðai;XjÞ

� �2
ðB:3Þ

neglecting the second derivatives with respect to the model�s parameters by settingPn
i¼1½ o

oXj
Pjðai;XjÞ�2 �

Pn
i¼1½Pjðai;XjÞ � pi� o2

oX2
j
Pjðai;XjÞ, has a positive value.

The estimator that obeys (B.2), bXXj, is used as the initial guess in the maximum likelihood es-
timation method with the logarithm of the likelihood function given by (33). This expression
maximizes, for each j, at
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yðXjÞ ¼
o

oXj
lðXjÞ ¼

Xn
i¼1

npi
Pjðai;XjÞ

�
� nni
1� Pjðai;XjÞ

�
o

oXj
Pjðai;XjÞ ¼ 0; ðB:4Þ

because the second derivative, which is the standard deviation,

r�2ðXjÞ ¼ � o2

oX2
j

lðXjÞ �
Xn
i¼1

npi
½Pjðai;XjÞ�2

(
þ nni
½1� Pjðai;XjÞ�2

)
o

oXj
Pjðai;XjÞ

� �2
; ðB:5Þ

disregarding, again, the second derivatives with respect to the model�s parameters, has a negative
value. The estimator that obeys (B.4), bXXj, is the value searched.

Both the least square and likelihood estimations of the model�s parameters are non-linear fitting
method. Then we applied the Levenberg–Marquardt method, with the new set of values of the
parameters in each iterations are being given by

r�2
LMðXjÞ ¼

r�2ðXjÞð1þ eÞ on the diagonal;
r�2ðXjÞ off the diagonal;

�
ðB:6Þ

where e is an auxiliary parameter used in the Levenberg–Marquardt method [44]. The parameter L
is dependent on h function (Heaviside), which has the derivative

o

oL
hðL� tÞ ¼ dðL� tÞ; ðB:7Þ

where dðtÞ is the Dirac delta function.
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