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Abstract. We revisit the non-bilinear incidence rate model proposed by Severo,
in order to introduce a derived dynamical model taking into account the hetero-
geneities related to environment, immunity and genetics. The properties of that
model can be better understood by the means of the population dynamics theory.

1. Introduction

Microparasites may be thought of as those parasites which have direct reproduction
— usually at a very high rates — within the host. Hosts that recover from infection
usually acquire immunity against reinfection for some time, and often for life. When
the transmission stages of the parasite pass directly from one host to the next, this
is called direct transmission. For such infective agents, it makes sense to divide
the host population into relatively few classes (compartments) of individuals, for
instance, susceptible, exposed, infectious and recovered-and-immune [1].

When a quantitative epidemiology of directly transmitted infectious diseases is
considered, two fundamental mathematical concepts are evoked. The first is related
to the adequate contact. It is supposed, for the group of individuals concerned,
that at any given instant there is a certain chance of contact between any two
individuals sufficient for the transmission of the disease if one is in infective stage
and other is a susceptible. However, the possibility of an infective individual actually
communicates the disease to susceptible individuals in his vicinity may depend on
the virulence of the microorganisms, the extend to which they are discharged, the
natural resistance of the susceptible individuals, the degree of proximity, and so on.
The other concept relates to the mass action principle. The chance of a new case
of infection in a very short interval of time is jointly proportional to the length of
the interval and the numbers of susceptible and infectious individuals [3].

The mass action principle implies that in the community all susceptible and
infectious individuals mix together homogeneously. This homogeneously mixing of
individuals, at a first approximation, is most nearly realized in small household
groups, but it is clearly at variance with the observed facts of social behaviour in
a large town. In a homogeneous mixing assumption, all the local details — school
groupings, family size, geographical location, social habits — are averaged out, and
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epidemiological and demographic processes are treated as occurring at rates that
depend only on the average number or density of susceptible, infectious and immune
individuals. Therefore, the difficulty of applying this approach should always be
borne in mind when one is trying to deal with processes in large communities
[3]. However, tests against data lead us to the conclusion that inhomogeneities
associated with age-specific differences in contact rates, geographical location (cities
versus village), social and cultural factors (family size, number of sexual partners)
and genetic heterogeneity within the host population (leading to ‘carriers’ versus
normal infectives) may be important in particular applications.

Anderson and May [1] assessed the effects of the foregoing aspects under a
slightly modified homogeneous mixing assumption. In a different way, Severo [5] [6]
introduced a great modification in the homogeneous mixing assumption. Instead
of a direct product between the numbers of susceptible and infectious individuals,
he considered that the probability of a new infection might be expressed as the
product between the number of susceptible individuals with power 1 − b and the
number of infectious individuals with power l. The parameters l and b were called
the ‘infection power’ and the ‘safety-in-numbers power’, respectively. Liu et al. [4]
analyzed the stability conditions of the non-bilinear incidence rate similar to that
proposed by Severo, except that the power 1− b was replaced by q.

In this paper we survey the effects of three inhomogeneities associated with the
host population and the environment in the evolution of the epidemics in a commu-
nity. The first is the immunological memory, which is clearly an important topic to
consider when interaction occurs between host and parasite, both at the individual
and at the population level. For example, a major determinant of the transmis-
sion dynamics of most microparasitic organism is the degree of specific population
immunity induced by either natural infection or vaccine. This herd immunity pro-
tects directly the immune individuals from reinfection, but also confers an indirect
protection to susceptible individuals. The second is the spatial non-uniformly dis-
tribution of the population [2], in such a way that the rates of transmission of an
infectious disease are significantly higher in some place than in others. For instance,
the environment (demographic, geographic and climatic) conditions may favor or
not the spread out of the disease. Finally, the third is the genetic heterogeneity.
For example, the carriers, which are ‘silent’ or inapparent individuals harbouring
virus or bacterium and infectious individuals in the asymptomatic stage, evade the
sanitary vigilance and can make contacts with other people, highly complicating
both the epidemiology and the control. This non-uniformly distribution in space of
carriers increases the risk of infection in the population.

This paper is divided as follows, in order to deal with the inhomogeneities. In
section 2, we present a summary of the non-bilinear incidence rate modeling results
(subsection 2.1), which are compared with a simple application of the population
dynamics theory (subsection 2.2). Based on these results, in section 3 we develop
a model considering a variable force of infection, which depends on the dynamical
variables, and a brief conclusion is presented in section 4.
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2. The Non-Bilinear Incidence Rate Modeling

To develop a model encompassing the herd immunity, the non-uniformly distribu-
tion in space and the genetic heterogeneity of the individuals, it is worth to under-
stand the stochastic model proposed by Severo [5]. Since Liu et al. [4] analyzed
the deterministic version of the stochastic model proposed by Severo, we summarize
their results for the SEIR (Susceptible-Exposed-Infectious-Recovered) model.

2.1. Outline

The deterministic model proposed by Liu et al. [4], in terms of the fractions of
susceptible (s), exposed (e), infectious (i) and recovered (r) individuals, is





d
dts = µ− βils− µs,
d
dte = βils− (σ + µ) e,
d
dt i = σe− (γ + µ) i,
d
dtr = γi− µr,

(2.1)

where σ, γ and µ are, respectively, the latent, recovery and mortality rates; β is the
contact rate, l is a positive parameter and s+e+ i+r = 1, with the form βils being
introduced to take into account the fact that the incidence rate could increase more
gradually than linear in i and s. For instance, if the number of infectives is very
high, so that exposure to the disease agent is virtually certain, the incidence rate will
respond slower than linearly with respect to i. In contrast, a rate of increase faster
than linear would be observed under various conditions, for example, if multiple
exposure to the disease vector were necessary before infection occurred.

For the trivial equilibrium point, given by s∗ = 1 and e∗ = i∗ = r∗ = 0, the
stability analysis resulted in





if 0 < l < 1 ⇒ Unstable saddle,

if l = 1 and
{

R0 ≤ 1
R0 > 1

⇒
⇒

Globally asymptotically stable,
Unstable,

if l > 1 ⇒ Locally asymptotically stable,

where the basic reproduction ratio R0 is given by

R0 =
βσ

(σ + µ) (γ + µ)
. (2.2)

The stability analysis (regarded to the trivial and non-trivial equilibrium points)
remains valid for any value of the safety-in-numbers power q. For this reason we
considered q = 1 in the system of equations (2.1). It is important to note that
the trivial equilibrium point changes its stability (from unstable to stable) with the
increasing in the infection power l.

The non-trivial equilibrium point, designed as s∗, e∗, i∗ and r∗, can be deter-
mined. The fraction of infectious individuals i∗ is the solution of the equation

R0

i1−l

(
1− i

R

)
= 1, (2.3)
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where R = σµ/ [(σ + µ) (γ + µ)]. This solution for i∗ provides the other fractions
by the equations s∗ = R−1

0 (i∗)1−l, e∗ = γ+µ
σ i∗ and r∗ = γ

µ i∗.
The stability analysis for the non-trivial equilibrium point provides that





if 0 < l < 1 ⇒ One locally asymptotically stable point,

if l = 1 and
{

R0 ≤ 1
R0 > 1

⇒
⇒

One unstable point,
One locally asymptotically stable point,

if l > 1 and





R0 < H−1

R0 = H−1

R0 > H−1

⇒
⇒
⇒

There is not non-trivial equilibrium point,
One unstable point,
Two non-trivial points,

where the auxiliary function H is given by H = 1
l

(
l−1

l R
)l−1

. For l > 1 and
R0 > H−1, the small non-trivial equilibrium (i∗1) is a unstable saddle and the large
non-trivial equilibrium (i∗2 > i∗1) may be node (stable or unstable) or limit cycle
(stable or unstable). We note that the results related to the homogeneously mixing
assumption can be retrieved by setting l = 1 in the system of equations (2.1). It is
important to note that the large non-trivial equilibrium point changes its stability
(from stable to unstable) with the increasing in the infection power l.

Note that a linear model is obtained if we set l = 0 in the system of equations
(2.1). In this case the trivial equilibrium point does not exist, and the unique non-
trivial equilibrium point is always stable. This model does not present threshold
conditions, and may be used to describe a large group of non-transmissible diseases.
However, the trivial equilibrium point appears if l departs from zero, whose stability
goes from unstable to stable with the increasing l. The turning value is l = 1, in
which case we have the classical result where R0 alone plays the role of its stability.

The unique solution i∗ of the equation (2.3) decreases with increasing infec-
tion power l on the interval 0 ≤ l ≤ 1, which has the maximum value given by
i∗ = µR0/ (β + µ), when l = 0. For l > 1 the equation (2.3) has none, one or two
solutions, according to the threshold infection power lc, which is obtained as the
maximum value of the function f(i) = il−1 (1− i/R). When 1 < l < lc, we have
two solutions i∗1 and i∗2, where the first increases while the second decreases mono-
tonically with increasing l. The small i∗1 assumes values near zero and increases
abruptly to the maximum value. At l = lc, i∗1 and i∗2 encounter and assume equal
value, and above this critical value (l > lc) we do not have any positive solution.
Specially, at l = 1, we have the same value for the unique i∗ (for l < 1) and the
large i∗2 (for l > 1), showing a continuity between both solutions. Remember that
i∗1 is always unstable, while i∗2 is stable for 1 < l < l′, and unstable when l′ < l < lc,
where l′ is the root of the equation f(l) = R0i

2
2 − R (l − 1) + 1 − lγ/ (γ + µ) = 0,

with i2 being a solution of the equation (2.3).
For instance, let us consider the rubella infection, which has the corresponding

parameters (in years−1) given by β = 316, σ = 52, γ = 39 and µ = 0.017. For
this set of values, the threshold infection power is lc = 1.199. Numerically, the
monotonically decreasing continuous function with respect to l, formed first by the
unique solution i∗ (for 0 ≤ l < 1) and followed by the solution i∗2 (for 1 < l < lc),
is practically unchanged until l ∼ 0.8, and after this value the function decreases
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abruptly until lc. Therefore, the dynamical system is strongly sensitive on the
interval 0.8 ≤ l ≤ 1.199, and practically insensitive on the range 0 ≤ l < 0.8, which
shows that the infection power acts strongly in a very narrow interval. Quite same
pattern is observed for different set of values of the model’s parameters.

In the next subsection we analyze the dynamics of a population stratified into
two stages of life, in order to shed some more lights into the results presented by
the non-bilinear incidence rate modeling proposed by Severo.

2.2. Two Stages of Life Population Dynamics

Let us consider a population with a life cycle divided into two classes. For instance,
the mosquitoes population can be divided as winged and immature (comprising egg,
larvae and pupa). The dynamics of this population can be described by

{
d
dtA = Φ(B)B − (δ + µ1)A,
d
dtB = δA− µ2B,

(2.4)

where A and B are the number of immature and winged populations, respectively;
µ1 and µ2 are, respectively, the mortality rates of immature and winged population
and δ is the maturation rate. The function Φ(B) is the density dependent per-
capita oviposition rate. This system of equations is equivalent to the second and
third equations of the system (2.1), if we consider s = 1 (replenishing of susceptible
individuals who die or acquire the infection) and write the per-capita incidence as
βil ≡ κ(i)i, where κ(i) = βil−1 is the force of infection per infectious individuals.

Let us assume that the per-capita oviposition rate is given by Φ(B) = φBn−1,
with n ≥ 0, where φ is the oviposition rate. Then, we can calculate the equilibrium
points of the system of equations (2.4), and the stability of these equilibrium points
can be assessed by the eigen-values of a 2× 2 Jacobian matrix, given by

J =
[ − (δ + µ1) nφBn−1

δ −µ2

]
,

evaluated at the equilibrium point under consideration.
According to the value assigned to n, we have four different possibilities for the

equilibrium pair (A∗, B∗):

1. n = 0. In this case we have a linear dynamical system with only one non-trivial
equilibrium point given by

(
φ

δ+µ1
, δφ

µ2(δ+µ1)

)
, which is always stable.

2. 0 < n < 1. We have two equilibrium points: the trivial (0, 0) and the
non-trivial

(
µ2
δ [ δφ

µ2(δ+µ1)
]

1
1−n , [ δφ

µ2(δ+µ1)
]

1
1−n

)
. The non-trivial equilibrium

point is always stable due to tr(J∗) = − (δ + µ1 + µ2) < 0 and det(J∗) =
(1− n)µ2 (δ + µ1) > 0, where tr and det are the trace and the determinant
of the Jacobian matrix evaluated at the non-trivial equilibrium point. For the
trivial equilibrium point, we are not able to apply this method, since the Ja-
cobian matrix cannot be evaluated at this point. Nevertheless, for 0 < n < 1
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we have Bn À A in the vicinity of (0, 0), and the first equation of the system
(2.4) can be written as d

dtA ∼ φBn; hence this point is unstable [8].

3. n = 1. In this case we have, again, a linear dynamical system, which has
only one trivial equilibrium point given by (0, 0). Independently of the initial
conditions, this point is stable if φ < µ2(δ+µ1)

δ and, otherwise, unstable. Note
that if φ > µ2(δ+µ1)

δ , then the population goes to infinity.

4. n > 1. We have two equilibrium points: the trivial (0, 0) and the non-trivial(
µ2
δ [µ2(δ+µ1)

δφ ]
1

1−n , [µ2(δ+µ1)
δφ ]

1
1−n

)
. The trivial equilibrium point is always

stable due to tr(J∗) = − (δ + µ1 + µ2) < 0 and det(J∗) = µ2 (δ + µ1) > 0.
Contrarily, the non-trivial equilibrium point is always unstable due to tr(J∗) =
− (δ + µ1 + µ2) < 0 and det(J∗) = − (n− 1)µ2 (δ + µ1) < 0. This non-trivial
equilibrium point is the so called breaking point. If the initial conditions are
such that they are below the breaking point then the population goes to the
extinction; otherwise, the population goes to infinity.

In summary, when 0 ≤ n < 1, the oviposition rate Φ(B) maintains the size of
the population always at a finite level. In another words, if the size of the popu-
lation decreases, then the oviposition is greatly increased, while if the population
increases so much, the oviposition is greatly decreased (Φ(B) = φ

B1−n ). Hence,
the power n mimics the effects of a limiting amount of the available food. On the
other hand, when n ≥ 1, the oviposition is strongly dependent on the size of the
mature individuals (Φ(B) = φBn−1), for this reason the population either goes to
extinction or increases indefinitely, depending on the initial conditions supplied to
the dynamical system. In this case, the power n mimics the effects of the mating
function in the growth of the population, which increases with increasing number
of individuals in the population. For this reason, trivial equilibrium point is always
stable.

Comparing these results with those provided by the model proposed by Severo,
we can observe that the per-capita force of infection κ(i) plays exactly the same
role of the per-capita oviposition rate Φ(B), for l < 1. Therefore, if the infection
power l is small, then the disease tends to be maintained at an endemic level in
the community, because great numbers of infectious and immune individuals are
avoided. This is true for less infective diseases, like rubella and measles. For l ≥ 1
(high infective diseases), the difference comes out due to the first equation of the
system (2.1), which constrains the population to be constant. In that epidemio-
logical model, the stable non-trivial equilibrium point (i∗2) arises due to the role
of the susceptible individuals, which appears multiplying the incidence rate in the
dynamical system, which avoids in some extent (for l ≈ 1) the self eradication of
the disease after infecting all individuals. The low non-trivial equilibrium point
(i∗1) acts as the breaking point. But, when both non-trivial equilibrium points are
unstable, the dynamical system goes to the exhaustion of the susceptible individ-
uals. For this reason first appear both breaking point and a stable equilibrium
point (1 < l < l′), followed by two breaking points (l′ < l < lc), and, then, the
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disappearing of the non-trivial equilibrium points (l > lc). Epidemiologically, in the
first case, the endemicity is dependent on the initial conditions (e.g., introduction
of a minimum quantity of infectious individuals); in the second case, the disease
exhausts all susceptible individuals depending on the initial conditions; while in the
last case, the disease exhausts all susceptible individuals independent of the initial
conditions.

Therefore, the model considering a non-bilinear incidence rate, with the non-
linearity restricted only to the infectious individuals, is more suitable to describe
an infection directly transmitted than the bilinear incidence rate modeling. In the
next section we develop a model based on this dynamical behaviour, letting the
infection power l to vary with respect to the dynamical variables.

3. The Variable Force of Infection Model

From the results presented in the preceding section, we observe, always, that the
locally asymptotically stable equilibrium point is the non-trivial (s∗,e∗,i∗,r∗), when
0 < l < 1, and the trivial equilibrium point (1,0,0,0), when l > 1. This behaviour
was obtained considering non-linear per-capita force of infection κ(i) and constant
infection power l. Hence, instead of setting a constant value for the infection power
l, we let it vary according to the dynamical variables s, i and r. We drop out
the latent individuals e by letting σ → ∞, since this parameter influences weakly
the behaviour of the dynamical system [7]. The assumptions that regulate the
dependency of the infection power, now called θ, with the dynamical variables are:

1) the spatial heterogeneity and the herd immunity contribute to drive the dynam-
ical system to the trivial equilibrium point. We assume that the protection
given by herd immunity obeys a linear relation with respect to r, while the
constant term represents the natural barrier, so θp(r) = p′0 + p′r, and

2) the risk represented by the available susceptible individuals and the carriers (due
to the genetic heterogeneity) contribute to drive the dynamical system to the
non-trivial equilibrium point. We also assume a linear relation for this form
of risk with respect to s and i, setting θh(s, i) = as + h′i.

Therefore, taking into account the above two assumptions, that is, the immune
individuals plus the environment (healthy or polluted) can be thought of as barriers
against the dissemination of the infection, while the susceptible and infectious in-
dividuals can be considered to facilitate the transmission of the virus, the infection
power θ can be described by

θ(s, i) =
p0 + p (1− s− i)

s + hi
, (3.1)

where we have p0 = p′0/a, p = p′/a, h = h′/a, and r = 1 − s − i. The parameters
p and p0 are protection degrees conferred by the herd immunity and the environ-
ment, respectively, and h is the hazard degree due to the carriers distributed inho-
mogeneously in the community. The protection degrees measure how the immune
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individuals and the environment are opposing to an adequate contact, whereas the
hazard degree is a measure of the ability of the infection being transmitted whenever
an adequate contact is made among susceptible and infectious individuals.

The generalized non-bilinear incidence SIR modeling can be written as
{

d
dts = µ− [λ(s, i) + µ] s,
d
dt i = λ(s, i)s− (γ + µ) i,

(3.2)

where the decoupled fraction of recovered individuals is obtained from r = 1−s− i,
and λ(s, i) = βiθ(s,i) is the variable non-linear force of infection.

The system of equations (3.2), with the non-linear force of infection given by
λ(s, i) = βiθ(s,i), presents two asymptotic situations. The first is the disease free
population, given by the trivial equilibrium point, and the other, the disease at an
endemic level in a population, given by the non-trivial equilibrium point(s). In this
paper we restrict to the analysis of the trivial equilibrium point.

By inspecting the system of equations (3.2), we observe that the trivial equilib-
rium point (1,0) is always possible. The stability of this trivial solution is provided
by analyzing the system of infection (3.2) in the vicinity of the equilibrium point
(1,0). Rewriting the fraction of infectious individuals given by the equation (3.2) as

d
dt i =

[
βsi

p0−1+(p+1)r−(h−1)i

1−r+(h−1)i − (γ + µ)
]
i ≤ β

[
i

p0−1+(p+1)r−(h−1)i

1−r+(h−1)i −R−1
0

]
i, (3.3)

because we have 1 ≥ s (= 1− i− r); and R0 = β/ (γ + µ), by letting σ →∞ in the
equation (2.2). We observe that the stability depends on the sign of the exponent.
In other words, since 1− r + (h− 1) i > 0, if

p0 − 1 + (p + 1) r − (h− 1) i ≥ 0, (3.4)

then the trivial equilibrium point can be stable and, otherwise, is always unstable.
First, let us understand the role of the environment related parameter p0. De-

pending on the value assumed by p0, the upper semi-plane (for simplicity, restricted
to h > 1), that obeys the inequality (3.4), contains or not the origin (which is the
trivial equilibrium point). Hence, the inequality (3.4) is a necessary condition to
have the stability of the trivial equilibrium point. To be more clear, in the i × r-
plane, the semi-region positively defined contains the trivial equilibrium if p0 ≥ 1.
Hence, if p0 ≥ 1, then (1,0) can be stable. Otherwise, the semi-region positively de-
fined does not contain the trivial equilibrium (1,0). Hence, if 0 < p0 < 1, then (1,0)
is always unstable. Observe that on the line equation p0−1+(p + 1) r−(h− 1) i = 0
the classical result is retrieved, that is, if R0 ≤ 1, then (1,0) is stable, only when
p0 ≥ 1. Therefore, the disease cannot be eradicated in a polluted environment
(given by 0 < p0 < 1, which means individuals living in a community with very bad
socio-economic and sanitation conditions).

Second, let us survey the sufficient condition under which the disease can be
established in a community when one infection is introduced in the community. For
this purpose, we consider the equation (3.3) in the situation r = 0, that is,

d

dt
i ≤ β

[
Ω (0)−R−1

0

]
i, (3.5)
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where Ω (0) (from the equation (3.3) with r = 0, corresponding to the time of the
introduction of an infection in the community) is the supremum in i, given by

Ω (0) = sup
0<i<im

{
i
(p0−1)−(h−1)i

1+(h−1)i

}
, (3.6)

with im = R, according to the equation (2.3). Therefore, the trivial equilibrium
point is globally asymptotically stable whenever we have Ω (0) ≤ R−1

0 , otherwise,
we cannot conclude anything. Observe that the exponent is always negative if 0 <
p0 < 1 and if p0 > 1 with i > ic (of course, ic ≤ im), where ic = (p0 − 1) / (h− 1).
In both cases the trivial equilibrium point is always unstable and the disease can be
established in the community. The exponent, on the other hand, is positive if p0 > 1
and i ≤ ic, in which case the disease may not be established in the community.

In the case p0 > 1 and i ≤ ic, we must take into account the value of Ω (0) to
assess the stability of the trivial equilibrium point, because the exponent is always

positive and the function (i)
(p0−1)−(h−1)i

1+(h−1)i is monotonically increasing. Therefore, if
Ω (0) ≤ R−1

0 , then the disease cannot be established. However, if Ω (0) > R−1
0 , then

we have a threshold fraction of infectious individuals ith obtained as a solution of

(
ith

) (p0−1)−(h−1)ith

1+(h−1)ith = R−1
0 = Ω∗, (3.7)

such that for i > ith the disease can be established. In another words, the disease
can be established if the initial fraction of infectious individuals is higher than its
threshold value. Observe that ith is diminished if R0 is increased.

To illustrate the above findings, let us consider again the rubella infection. The
set of previously given values resulted in R0 = 8.1 and R−1

0 = 0.123472. Nu-
merically, if we consider p0 = 2, p = 0.01 and h = 50, 000 for the parameters
related to the infection power, then the disease fades out if i0 = 1.37043 × 10−5

(Ω∗ = 0.123469) and it is established in the community if i0 = 1.37047 × 10−5

(Ω∗ = 0.123491). From the sufficient condition, that is, using the equation (3.7),
we obtain ith ' 1.37045 × 10−5, which situates between those two values. On the
other hand, for lower value of h, for instance h = 10, 000, the disease fades out
if i0 = 6.43814 × 10−5 (Ω∗ = 0.123490) and it is established in the community if
i0 = 6.43819 × 10−5 (Ω∗ = 0.123494). The equilibrium values corresponding to
the first case is s∗ = 0.0001 and i∗ = 0.0004; while for the second case we have
s∗ = 0.03 and i∗ = 0.0000001. Dynamically, in both cases the disease practically
exhausts susceptible individuals in the first few moments; but in the second case
(due to the lower value for h) there is the resurgence of the susceptible individuals
due to the very low fraction of infectious individuals.

4. Conclusion

We applied the population dynamics theory to understand the non-homogeneous
epidemiological model proposed by Severo. Due to the non-linearity, this model is
not well understood in its dynamics and in the stability analysis of the equilibrium
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points. From the results obtained using a very simple population dynamics model,
we clarified some aspects of the dynamics and the stability of the equilibrium points
of the epidemiological model proposed by Severo.

Based on this understanding, we proposed a variable non-linear force of infection
to analyze the onset of the epidemics diseases in the community taking into account
heterogeneities like environment, immunity and genetics. Even that we restricted to
the analysis of the trivial equilibrium point, the dynamics of the infections described
by the system of equations (3.2) provided us with some interesting epidemiological
findings. For instance, very infective diseases, like common cold and influenza,
cannot be maintained in the community due to the exhaustion of the susceptible
individuals.

Resumo. Considera-se o modelo de incidência não-bilinear proposto por Severo
com a finalidade de entender a sua dinâmica e estudar os efeitos de heterogeneidades
tais como meio-ambiente, imunidade e fatores genéticos. O primeiro objetivo é al-
cançado por meio da teoria de dinâmica populacional, enquanto o segundo é obtido
utilizando-se uma força de infecção não-linear dependente das variáveis dinâmicas.
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