
IMA Journal of Mathematics Applied in Medicine and Biology(2002)19, 113–135

The effects of re-infection in directly transmitted infections
modelled with vaccination
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We propose a mathematical model to deal with directly transmitted infections incorporat-
ing the loss of immunity. The model is developed taking into account a constant contact
rate among individuals and an age-dependent vaccination rate. Based on this model, we
analyse the effects of re-infection in a community under a vaccination strategy.
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1. Introduction

Mathematical models have been proved to be useful tools for quantitative epidemiology,
producing many important results. In this way, previously developed mathematical models
to describe directly transmitted infections assuming lifelong immunity produced some
interesting results. One of them states that the introduction of any form of perturbation in
the host–parasite system, like vaccination, leads the dynamical system through unexpected,
and sometimes undesirable, patterns such as damped oscillations in the force of infection
(Schwartz & Smith, 1983; Yang, 1997, 1998, 2001). Another result establishes the shift
of the average age of the acquisition of the first infection to elder ages (Anderson & May,
1991). However, this paradigm does not remain valid if the vaccination is carried out on an
age interval such that the lower bound of the age interval under vaccination is higher than
the natural (without vaccination) average age of the acquisition of the first infection (Yang,
2001).

The scenario is quite different when the vaccine does not induce lifelong immunity,
even though the disease-induced immunization may appear to be everlasting (Rouderfer
et al., 1994). For this reason, the loss of immunity can play an important role in a
highly vaccinated population by increasing the number of susceptible individuals. For
instance, when we consider the vaccination of very young children against rubella (Massad
et al., 1994, 1995), we could have an increase in the number of cases of congenital
rubella syndrome (CRS) due to the fact that women may lose the induced immunization
during the fertile age. Several papers have dealt with the rubella infection considering
a mathematical model without considering the loss of immunity, but incorporating a
vaccination schedule (Anderson & May, 1985; Coutinhoet al., 1993; Greenhalgh, 1990;
Massadet al., 1995). One further example is related to measles. In Brazil, the actually
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adopted routine vaccination scheme is the first dose at nine months and the second at 15
months. Besides this scheme, several national vaccination campaigns occurred in 1980,
1987, 1990 and 1992. In the last campaign approximately 48 million children under 15
years were covered. Even this great effort to control the disease did not prevent a severe
measles outbreak in 1997, infecting a higher fraction of elder individuals (Guerra L.M.
Paiva et al., 1999).

In this paper we propose a mathematical model to describe directly transmitted
infections taking into account the loss of immunity. The model assumes a constant contact
rate among individuals in the community and a vaccination programme which is carried
out on a fixed age interval. These considerations result in an age-structured system of
partial differential equations (Trucco, 1965b), which is analysed in the steady state. Trucco
(1965a) applied this time- and age-dependent system of equations to cellular growth, and
Dietz (1975) used for the first time for the description of an age-dependent vaccination
programme. Yang & Silveira (1998) considered a particular application of the model
proposed here by taking into account a community which was not vaccinated against
rubella. They fitted the model to serological data for rubella obtained from Caieiras City,
Brazil (Azevedo Netoet al., 1994), before the introduction of a vaccination strategy. A
mathematical model considering a fixed latent period and nonpermanent immunity was
treated by Greenhalgh (1997), while both periods were treated as delays by Cooke & van
den Driessche (1996).

For the re-infection model, we present a methodology to assess the effects of
vaccination and loss of immunity on the force of infection and on thebasic reproduction
ratio. In Section 2 we present the re-infection model, where the boundary and initial
conditions and the steady-state values are given, respectively, in Sections 2.1 and 2.2. In
Section 3 we present the analysis of the steady states before and after the introduction of a
vaccination, respectively, in Sections 3.1 and 3.2, and the effects of a vaccination strategy
are presented in Section 3.3. Finally, in Section 4 we present a brief conclusion.

2. The model

In this section we develop a model for directly transmitted infections encompassing loss
of immunity. We assume the very simple hypothesis that vaccine-induced immunity and
disease-induced immunity protect the individual for the same amount of time. The reason
behind this simplification, which results in a unique loss of immunity rate for the immune
individuals, consists of the possibility of obtaining an analytical approach to treat the
model (at least we can obtain an integral equation). However, Rouderferet al.(1994) dealt
with a more elaborate model considering different loss rates for the induced and acquired
immunities and also a boosting of the waning of immunity by re-infection or vaccination.

Let us consider a closed community divided into four groups:X(t, a), H(t, a),
Y(t, a) and Z(t, a) which are, respectively, the densities depending on agea at time t
of susceptible, exposed (latent), infectious and recovered (immune) individuals. When
the entire population is subdivided into four non-intercepting compartments according
to the infection status considering re-infection, we are dealing with the SEIRS model.
Therefore, these four compartments are described dynamically by the following set of
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THE EFFECTS OF RE-INFECTION MODELLED WITH VACCINATION 115

partial differential equations:


∂
∂t X(t, a) + ∂

∂a X(t, a) = π Z(t, a) − [µ + λ(t) + ν(a)] X(t, a)

∂
∂t H(t, a) + ∂

∂a H(t, a) = λ(t)X(t, a) − (µ + σ) H(t, a)

∂
∂t Y(t, a) + ∂

∂aY(t, a) = σ H(t, a) − (µ + γ ) Y(t, a)

∂
∂t Z(t, a) + ∂

∂a Z(t, a) = ν(a)X(t, a) + γ Y(t, a) − (µ + π) Z(t, a),

(1)

where

λ(t) =
∫ ∞

0
β ′Y(t, a) da (2)

is the force of infection,µ is the natural mortality rate,σ−1 andγ −1 are, respectively,
the average incubation and recovery periods,ν(a) is the age-dependent vaccination rate,
β ′ is the constant contact rate per individual andπ is the immunity loss rate. Maternally
derived antibodies are not considered, nor are the boosting of immunity by vaccination
or secondary infections (Rouderferet al., 1994). See Yang (1997, 1999a,b) for an age-
structured contact rate model.

Weanalyse a vaccination strategy described by the equation

ν(a) = νθ (a − a1) θ (a2 − a) , (3)

whereθ(x) is the Heaviside or step function andν is a constant vaccination rate applied
on the range[a1,a2], wherea1 anda2 are, respectively, the lower and upper bounds of the
age interval vaccinated. This function describes the vaccination of individuals comprised
on a fixed age interval. We use the term ‘vaccination of individuals’ to mean vaccination
of both individuals susceptible from birth and of immune individuals who lose the induced
immunity (technically these individuals are under re-vaccination).

The system of (1) can be summed up to generate the equation for the density dependent
on ageN(t, a) of the total number of individuals, withN(t, a) = X(t, a) + H(t, a) +
Y(t, a) + Z(t, a). By doing this we are disregarding the distribution of the infection in
the community to deal only with the age distribution of the individuals in the community,
which is given by

∂

∂t
N(t, a) + ∂

∂a
N(t, a) = −µN(t, a). (4)

This equation shows the effect of a constant mortality rate amongst individuals of all
ages. Greenhalgh analysed the effects of a density-dependent mortality rate on the disease
propagation (Greenhalgh, 1997).

The system of partial differential equations (1) is mathematically well-posed if we
provide the initial and boundary conditions. Instead of solving numerically the dynamical
system, we are interested only in the equilibrium values. For this reason, in the next
sections we provide the initial and boundary conditions, which correspond to the natural
equilibrium values, and the equilibrium values under a vaccination programme.
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116 H. M. YANG

2.1 The boundary and initial conditions—the natural equilibrium values

First, let us determine the boundary conditions, which are the values assigned to the
dynamic variables at birth (a = 0) and at maximum attainable age (a = ∞). In the
model, we are not taking into account the immigration and the passage of the virus through
placenta (vertical transmission). Therefore, all new-borns are considered susceptible to the
virus and there is no input rate related to immigration into any compartment, hence the
boundary conditions are given by




X(t, 0) = N∗

H(t, 0) = 0

Y(t, 0) = 0

Z(t, 0) = 0,

(5)

whereN∗ is the total birth rate which can be related to the (per capita) natality rate. If
we assume that the number of new-borns in a given time interval is equal to the number
of individuals who die in that given time interval then we must haveN∗ = µN, with N
being the constant population size. The set of boundary conditions given ata = ∞ is
X(t, ∞) = H(t, ∞) = Y(t, ∞) = Z(t, ∞) = 0. As we can see later, these conditions are
automatically satisfied by the system (1).

Second, let us consider the initial conditions. The main goal in dealing with the system
(1) is the analysis of a vaccination strategy, described by (3). For this reason the initial
conditions are taken as the natural equilibrium values, corresponding to the endemic
equilibrium of this system before the introduction of vaccination (ν= 0), designed as




X(0,a) = X0(a)

H(0,a) = H0(a)

Y(0,a) = Y0(a)

Z(0,a) = Z0(a),

(6)

which are determined next. These equations state that att = 0 a vaccination programme is
introduced in a community in equilibrium.

The equilibrium values obtained before the introduction of the vaccination are given by
the system (1) dropping out the partial derivative of the dynamic variables with respect to
time and settingν = 0. Instead of the age distributions of the individuals, we use the age-
specific fractions of individualsx0(a), h0(a), y0(a) andz0(a), where, for instance,x0(a) =
X0(a)/N0(a) is the age-specific fraction of susceptible individuals and analogously for
other compartments. For the age-structured population we haveN0(a) = N∗e−µa, which
is the solution of (4) at the equilibrium. Therefore, combining (1) and (4) in the steady
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THE EFFECTS OF RE-INFECTION MODELLED WITH VACCINATION 117

state, we have the system of equations


d
da x0(a) = πz0(a) − λ0x0(a)

d
dah0(a) = λ0x0(a) − σh0(a)

d
da y0(a) = σh0(a) − γ y0(a)

d
da z0(a) = γ y0(a) − πz0(a),

(7)

where the natural (without vaccination) force of infection is given byλ0 =
β ′N∗ ∫ ∞

0 y0(a)e−µa da, which is (2) in the equilibrium.
Observe that the mortality rateµ does not appear in the system of differential equations

(7). This fact results from the identity

d

da
x0(a) ≡ d

da

[
X0(a)

N0(a)

]
= 1

N0(a)

d

da
X0(a) + µx0(a)

for the age-specific fraction of susceptible individuals, and the corresponding identities
for the other three classes. We use correspondingly this equation with the equations of
system (1), at equilibrium without vaccination, divided byN0(a). To solve the system
(7) given by the fractions of individuals, we use the initial conditionsx0(0) = 1 and
h0(0) = y0(0) = z0(0) = 0, which are the boundary conditions given by (5) divided by
N∗.

The solutions of the system of differential equations (7) can be obtained in terms of
the age-specific fraction of susceptible individuals. The solutions, which correspond to the
natural endemic equilibrium (in the absence of vaccination), are



x0(a) = e−λ0a + π
∫ a

0 B(a − s)x0(s) ds

h0(a) = e−σa
∫ a

0 eσsλ0x0(s) ds

y0(a) = e−γ a
∫ a

0 eγ τ σe−στ
∫ τ

0 eσsλ0x0(s) dsdτ

z0(a) = e−πa
∫ a

0 eπa′
γ e−γ ea′ ∫ a′

0 eγ τ σe−στ
∫ τ

0 eσsλ0x0(s) dsdτ da′,

(8)

where the kernelB(a − s) is given by

B(a − s) = λ0σγ




e−σ(a−s)

(σ−λ0)(σ−π)
− e−γ (a−s)

(γ−λ0)(γ−π)

γ − σ
+

e−π(a−s)

(γ−π)(σ−π)
− e−λ0(a−s)

(γ−λ0)(σ−λ0)

λ0 − π


 . (9)

This kernel can be derived from (13) in the next section, by changingλ to λ0 and letting
ν = 0.

The solutions given by (8) are completely determined if we havex0(a). On the other
hand, the solution forx0(a) can be obtained from the first equation of system (8) when
an estimated value forλ0 is available; reciprocally, if we have an estimatedx0(a) then we
can calculateλ0. Moreover, the first equation of system (8) determining the age-specific
fraction of susceptible individuals is a non-homogeneous linear Volterra integral equation,
and the kernel given by (9) is quadratically integrable (L2-function) on[0,a] × [0,a].
Therefore, this Volterra integral equation has only one solution forx0(a) (Tricomi, 1985).
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118 H. M. YANG

2.2 The equilibrium values under vaccination

The system (1) can be solved to obtain the equilibrium values after the introduction of
the vaccination. The calculations in order to obtain the solutions are analogous to those
presented in the preceding section. Equations (1) and (4) are combined, in the steady state,
to result in the system of equations



d
da x(a) = πz(a) − [λ + ν(a)] x(a)

d
dah(a) = λx(a) − σh(a)

d
da y(a) = σh(a) − γ y(a)

d
da z(a) = ν(a)x(a) + γ y(a) − πz(a),

(10)

wherex(a), h(a), y(a) andz(a) are the age-specific fractions of individuals, for instance
x(a) = X(a)/N(a) and so on, while the age-structured population density is given
by N(a) = N0(a) = N∗e−µa, since we are not considering the differential mortality
due to the disease. The force of infection in the presence of vaccination is given by
λ = β ′N∗ ∫ ∞

0 y(a)e−µa da. The initial conditions are obtained from (5) divided byN∗,
that isx(0) = 1 andh(0) = y(0) = z(0) = 0.

The steady-state system of (10), with the vaccination rate given by (3), is solved
in terms of the age-specific fraction of susceptible individuals. The resulting integral
equations are


x(a) = e−λa−φ(a) + π
∫ a

0 [B1(a, s) + B2(a, s)] x(s) ds

h(a) = e−σa
∫ a

0 eσsλx(s) ds

y(a) = e−γ a
∫ a

0 eγ τ σe−στ
∫ τ

0 eσsλx(s) dsdτ

z(a) = e−πa
[∫ a

0 eπsν(s)x(s) ds+ ∫ a
0 eπa′

γ e−γ a′ ∫ a′
0 eγ τ σe−στ

∫ τ

0 eσsλx(s) dsdτ da′
]

,

(11)

where the functionφ(a) is given by

φ(a) = [ν (a − a1)] θ (a − a1) θ (a2 − a) + [ν (a2 − a1)] θ (a − a2) , (12)

which results fromφ(a) = ∫ a
0 ν(s) ds, and the kernelsB1(a, s) andB2(a, s) are obtained

from the equations


B1(a, s) = e−λa−φ(a)ν(s)eπs
∫ a

s e(λ−π)t+φ(t) dt

B2(a, s) = γ σλe−λa−φ(a)eσs
∫ a

0

∫ a
0

∫ a
0 e(λ−π)t+φ(t)e(π−γ )a′

e(γ−σ)τ

×θ
(
t − a′) θ

(
a′ − τ

)
θ (τ − s) dτ da′ dt

= γ σλe−λa−φ(a)eσs
∫ a

s

∫ a
τ

∫ a
a′ e(γ−σ)τ+(π−γ )a′+(λ−π)t+φ(t) dτ da′ dt.

(13)

These integrals can be calculated taking into account the relative positions among the ages
a, s, t , a′, τ , a1 anda2.
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THE EFFECTS OF RE-INFECTION MODELLED WITH VACCINATION 119

The kernelsB1(a, s) andB2(a, s) can be written as

B1(a, s)=ν

{[
e−π(a−s) − e−(λ+ν)(a−s)

λ + ν − π

]
θ (a − a1) θ (a2 − a) −

[
νe−λ(a−a2)e−π(a2−s)

(λ − π) (λ + ν − π)

+e−ν(a2−s)e−λ(a−s)

λ + ν − π
− e−π(a−s)

λ − π

]
θ (a − a2)

}
θ (s − a1) θ (a2 − s) (14)

and

B2(a, s)=λσγ {[b0 (a − s) θ (a1 − s)] θ (a1 − a) + [b1 (a, s) θ (a1 − s)

+b2 (a − s) θ (s − a1) θ (a2 − s)] θ (a − a1) θ (a2 − a)

+ [b3 (a, s) θ (a1 − s) + b4 (a, s) θ (s − a1) θ (a2 − s)

+b0 (a − s) θ (s − a2)] θ (a − a2)} , (15)

where the auxiliary functionsb0 (a − s), b1 (a, s), b2 (a − s), b3 (a, s) andb4 (a, s) are
given by

b0 (a − s) =
e−σ(a−s)

(π−σ)(λ−σ)
− e−γ (a−s)

(π−γ )(λ−γ )

γ−σ
+

e−π(a−s)
(γ−π)(σ−π)

− e−λ(a−s)
(γ−λ)(σ−λ)

λ−π
,

b1 (a, s) =
e−σ(a−s)

(π−σ)(λ+ν−σ)
− e−γ (a−s)

(π−γ )(λ+ν−γ )

γ−σ
+ e−π(a−s)

(λ+ν−π)(γ−π)(σ−π)
+ e−(λ+ν)(a−a1)

×
[

νe−σ(a1−s)
(π−σ)(λ+ν−σ)(λ−σ)

− νe−γ (a1−s)
(π−γ )(λ+ν−γ )(λ−γ )

γ−σ
+

νe−π(a1−s)
(λ+ν−π)(γ−π)(σ−π)

− e−λ(a1−s)
(γ−λ)(σ−λ)

λ−π

]
,

b2 (a − s) =
e−σ(a−s)

(π−σ)(λ+ν−σ)
− e−γ (a−s)

(π−γ )(λ+ν−γ )

γ−σ
+

e−π(a−s)
(γ−π)(σ−π)

− e−(λ+ν)(a−s)
(γ−λ−ν)(σ−λ−ν)

λ+ν−π
,

b3 (a, s) =
e−σ(a−s)

(π−σ)(λ−σ)
− e−γ (a−s)

(π−γ )(λ−γ )

γ−σ
+

e−π(a−s)
(γ−π)(σ−π)

− e−ν(a2−a1)e−λ(a−s)
(γ−λ)(σ−λ)

λ−π

+νe−λ(a−a2)

[
e−(λ+ν)(a2−a1)

e−σ(a1−s)
(π−σ)(λ+ν−σ)(λ−σ)

− e−γ (a1−s)
(π−γ )(λ+ν−γ )(λ−γ )

γ−σ

−
e−σ(a2−s)

(π−σ)(λ+ν−σ)(λ−σ)
− e−γ (a2−s)

(π−γ )(λ+ν−γ )(λ−γ )

γ−σ
+ e−(λ+ν)(a2−a1)e−π(a1−s)−e−π(a2−s)

(λ+ν−π)(γ−π)(σ−π)(λ−π)

]

and

b4 (a, s) =
e−σ(a−s)

(π−σ)(λ−σ)
− e−γ (a−s)

(π−γ )(λ−γ )

γ−σ
+ e−π(a−s)

(λ−π)(γ−π)(σ−π)
− e−λ(a−a2)

×
[

νe−σ(a2−s)
(π−σ)(λ+ν−σ)(λ−σ)

− νe−γ (a2−s)
(π−γ )(λ+ν−γ )(λ−γ )

γ−σ
+

νe−π(a2−s)
(γ−π)(σ−π)(λ−π)

+ e−(λ+ν)(a2−s)
(γ−λ−ν)(σ−λ−ν)

λ+ν−π

]
.

Note that all the auxiliary functions are combinations of exponentially decaying functions.
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As in the preceding section, the solution forx(a) is obtained from the first equation
of the system (11) if we have estimated values forλ andν; reciprocally, if we have an
estimatedx(a) then we can calculateλ andν. Moreover, the first equation of the system
(11) is a non-homogeneous linear Volterra integral equation with respect to the unknown
variablex(a). Additionally, the kernelsB1(a, s) and B2(a, s) are piecewise continuous
with respect to the agesa ands, which make them quadratically integrable functions (L2-
functions) on[0,a]× [0,a]. Therefore, we have only one solution forx(a) (Tricomi, 1985)
when a finite vaccination rate is considered.

Observe that the system of integral equations (8) of the preceding section can be
obtained from the system of equations (11) lettingν = 0, and the kernel given by (9)
corresponds to the auxiliary functionb0 (a − s), if we substituteλ by λ0.

The new equilibrium value, given by the system of integral equations (11), can be either
trivial (eradication of the disease) or non-trivial (disease controlled at a low prevalence)
with respect to the force of infection. In the next section we show more details about these
two equilibrium points.

3. Analysis of the model

We supposed that a vaccination strategy is introduced in a community originally at a
natural endemic equilibrium, and we scaled the initial time,t = 0, with the beginning
of the vaccination programme. The new equilibrium values corresponding to the system of
equations (1) were determined. We present more results related to the equilibrium values.

3.1 Before the introduction of a vaccination strategy

We took the natural endemic situation in the community (Anderson & May, 1985), just
before introduction of a vaccination programme, as the initial conditions given by (6).
Hence, from the first equation of (8) we can obtain the fraction of susceptible individuals
x0 in the community as

x0 =

∫ ∞

0
x0(a)N0(a) da∫ ∞

0
N0(a) da

, (16)

whereN0(a) waspreviously defined, andx0(a) is given by the first equation of system (8).
The fraction of susceptible individuals before the introduction of a vaccination strategy

can be easily calculated. The value for
∫ ∞

0 x0(a)N0(a) da can be obtained by multiplying
both sides of the first equation of (8) byN0(a) and performing the integration, which is
easily done, since the kernel is a function of difference between agesa ands, and is given
by

x0 = µ (µ + σ) (µ + γ ) (µ + π)

(µ + λ0) (µ + σ) (µ + γ ) (µ + π) − λ0σγπ
. (17)

This formula can be rewritten setting the average natural force of infectionλ0 as a function
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THE EFFECTS OF RE-INFECTION MODELLED WITH VACCINATION 121

of the fraction of susceptible individualsx0, resulting in

λ0 = µ
x−1

0 − 1

1 − σγπ
(µ+σ)(µ+γ )(µ+π)

. (18)

This relation shows clearly the dependency of the force of infection with the loss of
immunity rateπ .

On the other hand, the average natural force of infection can be obtained from its
definition given by (2). In order to do this, we solve the equilibrium system (10), with
ν = 0, in terms ofy0(a), which results in the non-homogeneous linear Volterra integral
equation

y0(a) = λ0σ

[
e−γ a
γ−λ0

− e−σa
σ−λ0

γ−σ
+ e−λ0a

(γ − λ0) (σ − λ0)

]
+ π

∫ a

0
B(a − s)y0(s) ds. (19)

Again, this equation can be integrated over all ages because the kernelB is a function of
the difference between agesa ands. Therefore, substituting this equation into (2) in the
steady state, and calculating the integration, we have

λ0 = µ
R0 − 1

1 − σγπ
(µ+σ)(µ+γ )(µ+π)

. (20)

In this case, thebasic reproduction ratio R0 is given by

R0 = β

β th
, (21)

where the total contact rateβ = β ′N is the number of infectious individuals met by all the
susceptible individuals per year, and its threshold valueβ th is defined by

β th = (µ + σ) (µ + γ )

σ
. (22)

We note that thebasic reproduction ratiodoes not depend explicitly on the immunity loss
rate (Anderson & May, 1991), although the average natural force of infection depends on
this parameter.

Comparing formulae related to the average natural force of infection, given by (18)
and (20), we can relate thebasic reproduction ratio R0 with the proportion of susceptible
individualsx0 by

R0 = 1

x0
. (23)

This relation is valid only when the disease is endemic in the population. On the other way,
this identity can be obtained considering that in the equilibrium, theeffective reproduction
ratio R, which obeys the relationR = R0x0, is unity. The parameterR0 is essentially a
mathematical parameter since it cannot be measured directly from the field data, although
it plays an important role in the stability analysis of the equilibrium points.
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The solutions given by the system (8) were obtained supposing thatλ0 > 0 (according
to (20) we must haveR0 > 1), which is always true if we havex0 < 1, according to
(23), orβ > β th, according to (21). Whenλ0 = 0, the solutions becomex0(a) = 1 and
h0(a) = y0(a) = z0(a) = 0, and the age-density of susceptible individuals is given by
X0(a) = N0(a) = N∗e−µa. This case corresponds toR0 = x0 = 1 or β = β th. Next, we
treat the question about the stability of the trivial and non-trivial (with respect to the force
of infection) equilibrium points.

Without a vaccination strategy, the system (1) does not depend on age. By
integrating over all ages and dividing by the total population size, for instancex̄0(t) =∫ ∞

0 X0(t, a) da/N, the resulting system is given by




d
dt x̄0(t) = µ + π z̄0(t) − [β ȳ0(t) + µ] x̄0(t)

d
dt h̄0(t) = β ȳ0(t)x̄0(t) − (σ + µ) h̄0(t)

d
dt ȳ0(t) = σ h̄0(t) − (γ + µ) ȳ0(t)

d
dt z̄0(t) = γ ȳ0(t) − (π + µ) z̄0(t),

(24)

where the force of infection is given byλ0(t) = β ȳ0(t). This set of equations can be
obtained from the system (30) given in the next section by lettingν = 0.

The system of equations (24) has two equilibrium points. The first is given by the
trivial equilibrium point (λ0 = 0), with coordinates̄x0 = 1 andh̄0 = ȳ0 = z̄0 = 0, and the
non-trivial equilibrium point (λ0 > 0), with coordinates



x̄0 = 1
R0

h̄0 = µ(µ+σ)(µ+γ )2(µ+π)(R0−1)
βσ [(µ+σ)(µ+γ )(µ+π)−σγπ ]

ȳ0 = µ(µ+σ)(µ+γ )(µ+π)(R0−1)
β[(µ+σ)(µ+γ )(µ+π)−σγπ ]

z̄0 = µγ (µ+σ)(µ+γ )(R0−1)
β[(µ+σ)(µ+γ )(µ+π)−σγπ ] ,

(25)

whereR0 is given by (21). The non-trivial equilibrium point is valid only forR0 > 1, and
for R0 � 1 we havethe trivial equilibrium point.

The stability of the above two equilibrium points is assessed by the eigenvalues related
to the Jacobian matrix obtained from the system (24). Note that the above results are a
particular form of the detailed solutions given in the next section by settingν = 0, hence
we give a brief description about the stability. IfR0 < 1, then the trivial equilibrium
point is locally asymptotically stable. Otherwise, the non-trivial equilibrium point is locally
asymptotically stable.

The discussions about the methods to estimate the force of infection and thebasic
reproduction ratio, considering re-infection, were treated elsewhere (Yang & Silveira,
1998). In that paper the effects of the re-infection on the force of infection and on thebasic
reproduction ratiowere analysed. All the results were applied to rubella considering the
seroprevalence curve obtained from a community before the introduction of immunization
against the rubella virus (Azevedo Netoet al., 1994). Briefly, Yang & Silveira (1998)
showed that the re-infection consideration resulted in two approaches: the calculation of
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THE EFFECTS OF RE-INFECTION MODELLED WITH VACCINATION 123

λ0 from estimatedx̂0(a) and the calculation ofR0 from estimatedx̂0. Both approaches
depend on the seroprevalence survey before the introduction of the vaccinationS+

0 (a),
from which they derivedx̂0(a) and x̂0, respectively, by the relations 1− S+

0 (a) and∫ ∞
0

[
1 − S+

0 (a)
]

N(a) da/N.
We present two special cases with respect to the loss of immunity parameter. When

π = 0, we have 


x0(a) = e−λ0a

x0 = µ

µ + λ0
,

(26)

and whenπ = ∞, 


x0(a) = e−λ0a + π

∫ a

0
B̄(a − s)x0(s) ds

x0 = µ (µ + σ) (µ + γ )

(µ + σ) (µ + γ ) (µ + λ0) − σγ λ0
,

(27)

where

B̄(a − s) = λ0σγ

[
e−σ(a−s)

(σ − λ0) (σ − λ0)
+ e−γ (a−s)

(γ − λ0) (γ − σ)
+ e−λ0(a−s)

(γ − λ0) (σ − λ0)

]

is the kernel.

3.2 After the introduction of a vaccination strategy

In the preceding section, we obtained the equilibrium values of the system (1) with
vaccination rate given by (3). From the age-specific fraction of susceptible individuals
in the equilibriumx(a), given by the first equation of (11), we can calculate the fraction of
susceptible individuals in the communityx using (16) and substitutingx0(a) by x(a).

The fraction of susceptible individuals in the community under a vaccination strategy
is given by

x = x1 + π (x2 + x3) , (28)

wherex1, x2 andx3 are


x1 = µ
µ+λ

{
1 − νe−(µ+λ)a1

µ+ν+λ

[
1 − e−(µ+ν+λ)(a2−a1)

]}

x2 = νµ
∫ a2

a1
x(s)e−µs


 1

(µ+ν+λ)(µ+π)
+

ν

[
e−(µ+π)(a2−s)

µ+π
− e−(µ+ν+λ)(a2−s)

µ+ν+λ

]
(λ+ν−π)(µ+λ)


 ds

x3 = µλσγ
[∫ a1

0 x(s)e−µsc1(s) ds+ ∫ a2
a1

x(s)e−µsc2(s) ds

+ ∫ ∞
a2

x(s)e−µs

(µ+λ)(µ+σ)(µ+γ )(µ+π)
ds

]
,

(29)
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with the auxiliary functionsc1(s) andc2(s) given by

c1(s)= 1

(µ + λ) (µ + σ) (µ + γ ) (µ + π)
− ν

µ + λ + ν

×

 e−(µ+σ)(a1−s)

(µ+σ)(λ−σ)(π−σ)
− e−(µ+γ )(a1−s)

(µ+γ )(λ−γ )(π−γ )

γ − σ

+
e−(µ+π)(a1−s)

(µ+π)(γ−π)(σ−π)
− e−(µ+λ)(a1−s)

(µ+λ)(γ−λ)(σ−λ)

λ − π


 + ν2e−(µ+λ+ν)(a2−a1)

(µ + λ + ν) (µ + λ)

×
[

e−(µ+π)(a1−s)

(λ + ν − π) (λ − π) (γ − π) (σ − π)

+
e−(µ+σ)(a1−s)

(λ+ν−σ)(λ−σ)(π−σ)
− e−(µ+γ )(a1−s)

(λ+ν−γ )(λ−γ )(π−γ )

γ − σ


 + ν

µ + λ

×

 e−(µ+σ)(a2−s)

(µ+σ)(λ+ν−σ)(π−σ)
− e−(µ+γ )(a2−s)

(µ+γ )(λ+ν−γ )(π−γ )

γ − σ

+ e−(µ+π)(a2−s)

(µ + π) (λ + ν − π) (γ − π) (σ − π)

+ e−ν(a2−a1)e−(µ+λ)(a2−s)

(µ + λ + ν) (π − λ) (γ − λ) (σ − λ)

]

and

c2(s)= 1

(µ + λ + ν) (µ + σ) (µ + γ ) (µ + π)

+ν


 e−(µ+σ)(a2−s)

(µ+σ)(λ+ν−σ)(π−σ)
− e−(µ+γ )(a2−s)

(µ+γ )(λ+ν−γ )(π−γ )

(µ + λ) (γ − σ)

+
e−(µ+π)(a2−s)

(µ+π)(γ−π)(σ−π)
− e−(µ+λ+ν)(a2−s)

(µ+λ+ν)(γ−λ−ν)(σ−λ−ν)

(µ + λ) (λ + ν − π)


 .

As the auxiliary functions related to the kernels, we have again a combination of
exponentially decaying functions.

The above results were obtained considering the loss of immunity and a strategy where
vaccination is applied to susceptible individuals in the age interval[a1,a2]. In order to
present analytical results related to the stability of the equilibrium points, we consider a
particular form for the vaccination rate, lettinga1 = 0 anda2 = ∞ in (3).

The dynamical system corresponding to a constant vaccination applied at all ages is
obtained by integrating the system of equations (1)–(4). The system of equations in terms
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THE EFFECTS OF RE-INFECTION MODELLED WITH VACCINATION 125

of the fractions of each class of individuals is given by


d
dt x̄(t) = µ + π z̄(t) − [β ȳ(t) + ν + µ] x̄(t)

d
dt h̄(t) = β ȳ(t)x̄(t) − (σ + µ) h̄(t)

d
dt ȳ(t) = σ h̄(t) − (γ + µ) ȳ(t)

d
dt z̄(t) = ν x̄(t) + γ ȳ(t) − (π + µ) z̄(t),

(30)

wherex̄(t) = ∫ ∞
0 X(t, a) da/N, and so on for other three compartments, and the force of

infection is given byλ(t) = β ȳ(t).
When there is a vaccination strategy, the new equilibrium values of the dynamical

system (30) are


x̄ = (µ+σ)(µ+γ )
βσ

≡ 1
R0

h̄ = µ(µ+σ)(µ+γ )2(µ+ν+π)
βσ [(µ+σ)(µ+γ )(µ+π)−σγπ ] (Rν − 1)

ȳ = µ(µ+σ)(µ+γ )(µ+ν+π)
β[(µ+σ)(µ+γ )(µ+π)−σγπ ] (Rν − 1)

z̄ = ν(µ+σ)(µ+γ )
βσ(µ+π)

+ µγ (µ+σ)(µ+γ )(µ+ν+π)
β(µ+π)[(µ+σ)(µ+γ )(µ+π)−σγπ ] (Rν − 1) ,

(31)

whereRν is thereproduction ratiogiven by

Rν = β

β th
ν

, (32)

with the threshold being given by

β th
ν = (µ + σ) (µ + γ ) (µ + ν + π)

σ (µ + π)
. (33)

Observe that we have the relationRν = R0 (µ + π) / (µ + ν + π). The non-trivial force
of infection is attained if we haveRν > 1, otherwise we haveλ = 0. Observe the equality
between the fractions of susceptible individuals before and after the introduction of a
vaccination ifλ > 0. When the vaccination eradicates the disease, we have

 x̄ = µ+π
µ+ν+π

z̄ = ν
µ+ν+π

(34)

and h̄ = ȳ = 0. This is the situation when the disease is eradicated by vaccination
programme, and, hence, the resulting proportion of susceptible individuals is not equal
to the value found before the introduction of the vaccination.

The stability of the trivial and non-trivial equilibrium points of the dynamical system
(30) can be assessed by the roots (eigenvalues) of the characteristic equationΦ (ϕ)

Φ (ϕ) = det(J − ϕI) = 0,
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whereI is a 4×4 identity matrix andJ is the Jacobian matrix obtained from the linearization
of the system (30). The Jacobian matrix is given by

J =




− (µ + ν) − β ȳ(t) 0 −β x̄(t) π

β ȳ(t) − (µ + σ) β x̄(t) 0

0 σ − (µ + γ ) 0

ν 0 γ − (µ + π)




,

which must be evaluated at the equilibrium point.
With respect to the stability of the trivial equilibrium point, substituting the coordinates

of the trivial equilibrium point (which are given by (34) andh̄ = ȳ = 0), into the Jacobian,
we can calculate the roots of the characteristic equation. The eigenvalues are

 ϕ1 = −µ

ϕ2 = − (µ + ν + π)

plus the roots of the second-order polynomial

ϕ2 + (2µ+ σ + γ ) ϕ + (µ + σ) (µ + γ ) (1 − Rν) = 0.

The remaining two eigenvalues have negative real part if and only ifRν < 1. Therefore, the
trivial equilibrium point is locally asymptotically stable ifRν < 1. Note that the condition
R0 < 1 in the absence of the vaccination can be obtained straightforwardly.

With respect to the stability of the non-trivial equilibrium point, we substitute the
coordinates given by (31) into the Jacobian and calculate the roots of the characteristic
equation given by

Φ (ϕ)=
{

[(µ + σ) + ϕ] [(µ + γ ) + ϕ] − βσ

R0

}
× {[(µ + π) + ϕ] [(µ + ν + β A(Rν − 1)) + ϕ] − πν}
+βσ A

{
β [(µ + π) + ϕ]

R0
− γπ

}
(Rν − 1) = 0,

where the positively definedA is given by

A = µ (µ + σ) (µ + γ ) (µ + ν + π)

β [(µ + σ) (µ + γ ) (µ + π) − σγπ ]
.

This fourth-order polynomial has theϕ–independent term given by the coefficient

c0 = µβσ A

[
(µ + γ + π) + (µ + γ ) (µ + π)

σ

]
(Rν − 1),

which is positively defined if and only ifRν > 1. According to the conjecture given
in Leite et al. (2000), the non-trivial equilibrium point is locally asymptotically stable
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THE EFFECTS OF RE-INFECTION MODELLED WITH VACCINATION 127

if Rν > 1. Note that the conditionR0 > 1 in the absence of the vaccination can be
obtained straightforwardly. The stability analysis of a more elaborated mathematical model
considering a fixed latent and nonpermanent immunity was made by Greenhalgh (1997),
which, due to other non-linearities besides the productx̄(t)ȳ(t), presents a more extended
stability analysis.

Note that the trivial equilibrium point is stable ifRν < 1, and the non-trivial
equilibrium point is stable ifRν > 1. Therefore, the bifurcation from the trivial equilibrium
point to the non-trivial equilibrium point occurs at the valueRν = 1.

We obtained two equations describing the distribution of the infection in the
community: the age-specific fraction of susceptible individualsx(a), given by (11), and
the fraction of susceptible individuals in the communityx, given by (28). Both quantities
depend on the unknown force of infectionλ and the vaccination rateν. We must, therefore,
consider a suitable device to estimate these unknown parameters.

To estimate the force of infectionλ and the vaccination rateν, we must be able to derive
the quantitiesx̂(a) and x̂. Both quantities can be derived from a seroprevalence survey
S+(a) from a community under vaccination, supposing that the perturbation introduced
by a vaccination strategy in the host–parasite system drove the system to the new steady
state. Hence,̂x(a) and x̂ can be obtained by the relations, respectively, 1− S+(a) and∫ ∞

0

[
1 − S+(a)

]
N(a) da/N. Note that such a seroprevalence curve with regard to the

vaccination in a steady state is not available, although the seroprevalence curve just after
the introduction of the vaccination was obtained (Massadet al., 1995). However, this kind
of data is not appropriate to be used in the model, as in the initial moments just after the
introduction of a vaccination there is an enhanced alteration in the force of infection (Yang,
1998).

The values related to the natural endemic situation can be compared with the
equilibrium situation after the introduction of the vaccination. The link between the
situations before and after the introduction of a vaccination strategy is dealt with in the
next section.

3.3 The effects of a vaccination strategy

The steady states considering a vaccination strategy and a natural distribution of the
infection in the community are linked by the system of partial differential equations (1).
For this reason, the natural endemic situation is taken as the initial conditions, given by
(6), which is modified each time constrained by the perturbed (by vaccination) system of
dynamical equations (1) until the new equilibrium is reached. Note that the first equation
of the system (11) and the equation (28) do not depend on the initial force of infection.
Therefore, we must relate the new (under vaccination) equilibrium value with the natural
(without vaccination) endemic situation. By the foregoing results, the natural endemic
situation was characterized by a single force of infectionλ0 parameter, while the new
steady state was characterized either by a singe vaccination rateν parameter or by both
vaccination rateν and force of infectionλ parameters. The first situation represents the
eradication of the disease by vaccination while the last shows a vaccination controlling the
disease to some extent.

Let us analyse the last case, when we must have two equations to estimate the
unknown variablesλ and ν. The first equation comes from the well known paradigm
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which establishes that the equilibrium fractions of susceptible individuals before and after
introduction of vaccination strategy (when the eradication of the disease is not achieved)
are equal. Note that this relation can be seen clearly by comparing the first equations of the
systems of solutions (25) and (31). The second equation is provided by the first equation
of the system of integral equations (11).

To relate the known natural force of infectionλ0 with the unknown force of infection
λ and vaccination rateν, we equate (17) and (28) (Anderson & May, 1985) Yang (1997).
This results in a transcendental equation

µ (µ + σ) (µ + γ ) (µ + π)

(µ + λ0) (µ + σ) (µ + γ ) (µ + π) − λ0σγπ
= x1 + π (x2 + x3) , (35)

wherex1, x2 and x3 are given by (29) and depend onλ and ν. From this equation we
can obtain numerically, for instance, the vaccination rate for each value of the force of
infection, that is,ν(λ).

Let us suppose that we can obtain an age-specific fraction of susceptible individuals
x̂(a) from available seroprevalence data (at equilibrium). With the aim of calculating the
force of infection in the presence of vaccination, we apply the convergence in the mean
theory Tricomi (1985), that is

∫ ∞

0

∣∣∣x j (a) − x̂(a)

∣∣∣2 da → 0 , with j = 0,1,2, . . . , (36)

where theλ-parametrizedx(a) forms a sequence of functions{x(a)} provided by the first
equation of the system (11) for eachλ j . This convergence in the mean can be treated
as one-dimensional minimization (in relation toλ) based on theλ-parametrized function
x(a) with respect to the target function̂x(a) (Yang & Silveira, 1998). The value ofλ
that minimizes

∫ ∞
0

∣∣x(a) − x̂(a)
∣∣2 da can be calculated by the Brent method (Presset al.,

1989).
During the j th step in the Brent method, we must calculatex j (a) for eachλ j . First, the

vaccination rateν can be calculated for eachλ j using (35) to obtainν(λ j ). Second, both
λ j andν(λ j ) are used to calculatex j (a). This function can be obtained by the iterative
method, becausex(a) is a unique solution of the non-homogeneous linear Volterra integral
equation, given by the first equation of the system (11) with the kernels given by (14) and
(15). Therefore, we can calculate the age-specific fraction of susceptible individuals by the
iterative equation

x j
n+1(a)=e−λ j a−φ j (a) + π

∫ a

0
[B1(a, s) + B2(a, s)] x j

n(s) ds,

with n = 0,1,2, . . . , for a fixed j , (37)

whereφ j (a) is calculated only in terms ofν(λ j ). On the other handx j
n+1(a), x j

n(a) (which
are, respectively, the(n + 1)th andnth iterations of the age-specific fraction of susceptible
individuals) and the kernelsB1(a, s) andB2(a, s) are calculated in terms ofλ j andν(λ j ).
The initial approximation is given byx j

0(a) = x j −1(a) (when j = 0, we can usex0
0(a) =

x̂(a) as the initial approximation).
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The natural force of infection can be calculated using (36) and (37) settingν = 0 (Yang
& Silveira, 1998). For the age-specific fraction of susceptible individuals in a community
prior to the start of vaccination, we use (8).

Next, if the vaccination rate is such that we could reach the condition of the eradication
of the disease, then (35) does not remain valid any more, and we must estimate only the
vaccination rate, settingλ = 0 in the first equation of (11). Therefore, the vaccination rate

ν can be calculated by the minimization of
∫ ∞

0

∣∣x(a, ν j ) − x̂(a)
∣∣2 da, wherex(a, ν j ) is

given by the first equation of (11), withν j being the vaccination rate corresponding to the
j th step of the Brent method. For eachν j calculated in the minimization method, we can
obtain the age-specific fraction of susceptible individuals by the iterative equation

x j
n+1(a)=e−φ j (a) + π

∫ a

0
B1(a, s)x j

n(s) ds,

with n = 0,1,2, . . . , for a fixed j , (38)

whereφ j (a), x j
n+1(a), x j

n(a) (respectively, the(n + 1)th andnth iterations of the age-
specific fraction of susceptible individuals) andB1(a, s) are calculated in terms ofν j .

Since the only available rubella seroprevalence survey is related to the moment just
after the introduction of the vaccination (Massadet al., 1995), we present two easy
analytical examples.

3.3.1 Vaccination of susceptible individuals of all ages.We consider a vaccination
scheme where the age interval vaccinated is given bya1 = 0 anda2 = ∞. By doing this,
we can retrieve the classical results.

A vaccination carried out on all ages is described by the age-specific fraction of
susceptible individuals obeying

x(a) = e−(λ+ν)a + π

∫ a

0
B̂(a − s)x(s) ds, (39)

where

B̂(a − s) = ν
e−π(a−s) − e−(λ+ν)(a−s)

λ + ν − π
+ λσγ b2 (a − s) . (40)

Integrating (39), the fraction of susceptible individuals in a community results in

x = µ (µ + σ) (µ + γ ) (µ + π)

(µ + λ + ν) (µ + σ) (µ + γ ) (µ + π) − π [ν (µ + σ) (µ + γ ) + λσγ ]
. (41)

These expressions can be related to the natural equilibrium values.
The equality of the susceptible individuals before and after the vaccination, which are

given, respectively, by (41) and (17), results in

λ = λ0

(
1 − 1

Rν

)
, (42)
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whereRν is thereproduction ratiowhen there is a vaccination strategy, given by

Rν = νth

ν
, (43)

with the threshold value for the vaccination rateνth being

νth = λ0

[
1 + π

(µ + σ + γ )

(µ + σ) (µ + γ )

]
. (44)

This reproduction ratiois given in terms of the force of infectionλ0, which is the same as
(32) given in terms of the contact rateβ. Note thatλ = λ0 for ν = 0, andλ = 0 for all
ν � νth. Observe that the minimum vaccination effortνth to reach the eradication of the
disease increases linearly with the loss of immunity parameter.

Note that the solution given by (39) depends on the force of infection and the
vaccination rate. Unless we have an infinite vaccination rate (whileπ is maintained finite),
the age-specific fraction of the susceptible individuals is not a zero function. However, we
note that the force of infection can be diminished down to zero.

We present two special cases with respect to the loss of immunity parameter. When
π = 0, we have 


x(a) = e−(λ+ν)a

x = µ

µ + λ + ν
,

and if we apply the equality of the fractions of susceptible individuals before and after the
introduction of the vaccination, we have the same equations (42) and (43). However, (44)
becomes

νth = λ0,

for the threshold vaccination rate. Finally, thereproduction ratiois given by

Rν = R0
µ

µ + ν
,

which comes from (46).
On the other extreme, whenπ = ∞, we have


x(a) = e−(λ+ν)a +

∫ a

0
B̃(a − s)x(s) ds

x = µ (µ + σ) (µ + γ )

(µ + σ) (µ + γ ) (µ + λ) − σγ λ
,

where

B̃(a − s)=λσγ

[
e−σ(a−s)

(σ − γ ) (σ − λ − ν)
+ e−γ (a−s)

(γ − λ − ν) (γ − σ)
+ e−(λ+ν)(a−s)

(λ + ν − γ ) (λ + ν − σ)

]

+νe−(λ+ν)(a−s)
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TABLE 1 The results related to the classical models are presented. We have the models SEIR,
SEIRS and SEIS represented by the loss of immunity rate assuming, respectively, the values
π = 0, 0 < π < ∞ andπ = ∞

SEIR SEIRS SEIS

λ0 = µ (R0 − 1) λ0 = µ(µ+σ)(µ+γ )(µ+π)
(µ+σ)(µ+γ )(µ+π)−σγπ

(R0 − 1) λ0 = (µ + σ) (µ + γ )

µ + σ + γ
(R0 − 1)

λ = λ0

(
1 − ν

νth

)
λ = λ0

(
1 − ν

νth

)
λ = λ0

νth = λ0 νth = λ0

[
1 + π

(µ+σ+γ )
(µ+σ)(µ+γ )

]
νth = ∞

is the kernel. If we apply the equality of the fractions of susceptible individuals before and
after the introduction of the vaccination, we have

λ = λ0,

which implies that (44) must be given by

νth = ∞,

for the threshold vaccination rate. This shows clearly that the vaccination as a eradicating
mechanism is related only to those infections which induce to some degree of immunity.

For a strategy that vaccinates susceptible individuals at all ages, the classical results
can be retrieved from the above equations. In Table 1 we summarize the results related to
SEIR, SEIRS and SEIS models.

Note that we haveR−1
ν = ν/νth and R0 = 1/x0. From Table 1, which presents the

results related to a vaccination carried out over all ages, we can assess some effects of the
re-infection in the distribution of an infection in a community.

First, the force of infection increases monotonically and reaches the asymptote with
increasing loss of immunity rate. Ifσ = γ = 30 � µ = 1/60 (in years−1), the
asymptotic force of infection (related toπ = ∞) is around 900 times greater than the force
of infection related to the lifelong immunity (π= 0). However, thebasic reproduction
ratio is not affected by the loss of immunity rate and maintains its value (consequently
the fraction of susceptible individuals is also fixed) whatever the force of re-infection that
is taken into account. Therefore, for a fixedbasic reproduction ratiovalue (the contact
rate is then fixed), the increase in the force of infection with increasing loss of immunity
rate is explained by an increase in the number of infectious individuals circulating in a
community. Hence, if the disease does not induce immunity, we must have an increase
in the number of infectious individuals circulating in the community around 900 times
the one obtained when considering the lifelong immunity, while the number of recovered
individuals goes to zero.

Second, the threshold vaccination rate increases linearly with the increasing loss of
immunity rate. Considering the above values forσ , γ andµ, we have a small value (0·067)
for the inclination of the line. This has important implications when vaccination strategy
is considered to eradicate a disease. With the increasing loss of immunity rate, the great
number of infectious individuals leads to an increase of the required vaccination effort
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(higher number of susceptible individuals must be protected) for the eradication of the
disease.

Suppose that we have a seroprevalence curve obtained from field data. Then, we
can calculate the fraction of susceptible individualsx0 in this community, and thebasic
reproduction ratio R0 can be calculated as its inverse. If we do not have any kind of
information about the loss of acquired immunity, then we must theoretically assess the
possible scenarios due to the re-infection. SinceR0 is fixed, the contact rateβ is also
fixed and the force of infection increases due to the increase in the number of infectious
individuals in the community. Note that the loss of immunity results in the increasing
number of susceptible individuals. However, these increased susceptible individuals are
removed to other compartments by the high number of infectious individuals, in order to
maintain the fraction of susceptible individuals at a fixed value. Therefore, the force of
infection, given by (18), can be rewritten as

λ0 = λ0
0 + λπ

0 ,

whereλ0
0 = µ (R0 − 1) corresponds to the force of infection without loss of immunity,

and

λπ
0 = πσγµ (R0 − 1)

(µ + σ) (µ + γ ) (µ + π) − σγπ

is the additional force of infection due to the loss of immunity. In a naive interpretation,
this additional force of infection exhausts the part of the susceptible individuals increased
by the loss of immunity, while the firstλ0

0 acts on the susceptible new-borns.

3.3.2 Vaccination of susceptible individuals for an age interval without loss of immunity.
Let us consider the case where the infection and the vaccine induce lifelong immunity and
the vaccination is carried out on an age interval.

In this situation we have

x(a) = e−λa−φ(a)

for the age-specific fraction of susceptible individuals, and

x = µ

µ + λ

{
1 − νe−(µ+λ)a1

µ + ν + λ

[
1 − e−(µ+ν+λ)(a2−a1)

]}

for the fraction of susceptible individuals in a community. Suppose thatλ > 0 and the
fractions of susceptible individuals before and after the introduction of vaccination are
equal. Therefore, we have the relation

µ + λ0 = µ + λ

1 − νe−(µ+λ)a1

µ+ν+λ

[
1 − e−(µ+ν+λ)(a2−a1)

] , (45)

which shows thatλ = 0 can be achieved with finite value ofν if we choosea1 appropriately
anda2 > a1 (Yang, 1997).
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The basic reproduction ratio R0 does not depend on the loss of immunity parameter
and this is given by (21). When a vaccination strategy is introduced in a community, we can
calculate thereproduction ratio, denoted byRν . This calculation is based on the spectral
radius theory (Dezotti & Yang, 2000), and is given by

Rν = R0

{
1 − νe−µa1

µ + ν

[
1 − e−(µ+ν)(a2−a1)

]}
. (46)

Note that we haveRν=0 = R0. We can calculate the threshold vaccination rateνth above
which the disease can be eradicated settingRν = 1 in the equation. Note that this threshold
value can also be obtained if we change appropriately (45) lettingλ = 0.

4. Conclusion

Wehave proposed and analysed a model taking into account the loss of immunity induced
by both vaccine and natural infection. The framework presented here was essentially
theoretical due to the fact that we do not have any seroprevalence data after the introduction
of vaccination. However, we presented some results related to the effects of the re-infection
on the epidemiological values.

Theoretically, we showed that when a vaccination strategy results in the eradication of
the disease, an appropriate methodology is related to the application of the convergence
in the mean theory on the age-specific fraction of susceptible individuals. But, when
a vaccination strategy does not eradicate the disease, we must relate the force of
infection before the vaccination with the force of infection after the vaccination and
the corresponding vaccination rate. An appropriate methodology consists in applying the
equality of the fractions of susceptible individuals before and after the introduction of the
vaccination and, then, we apply the convergence in the mean theory on the age-specific
fraction of susceptible individuals. Note that the target age-specific fraction of susceptible
individuals must be obtained from steady-state seroprevalence data.

When vaccine is applied to susceptible individuals in all ages, we showed that the
natural force of infectionλ0 and the vaccination effortνth increase proportionally to the
loss of immunity parameterπ , while thebasic reproduction ratio R0 remains unaltered.
The constantR0 means that we have the same amount of the secondary cases generated
by a primary case for all values of the loss of immunity rate, but the number of infectious
individuals increases. For this reason, we have a higher incidence rate with the increasing
loss of immunity rate.

When we consider the question of the re-infection we conclude that the eradication
effort depends not only on thebasic reproduction ratio, but also on the force of infection.
This can be seen clearly from the relation of the force of infection with the threshold
vaccination rate, which increases with increasing loss of immunity rate. Consequently, we
must obtain information about the period of time that the immunity can protect individuals
in order to determine a suitable vaccination strategy.

Since we dealt with a constant contact rate at all ages, the force of infection does not
depend on age, and the corresponding age-specific fraction of susceptible individuals is
an exponentially decaying function. We can improve this model by taking into account a
more realistic age-dependent contact rate (Yang, 1999a). The methodology presented here
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to calculate the force of infection by the convergence in the mean theory can also be a
suitable device to estimate the immunity loss rate, together with the parameters related to
the age-dependent contact rate (Yang, 1999b).
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