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We propose a mathematical model to deal with directly transmitted infections incorporat-
ing the loss of immunity. The model is developed taking into account a constant contact
rate among individuals and an age-dependent vaccination rate. Based on this model, we
analyse the effects of re-infection in a community under a vaccination strategy.
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1. Introduction

Mathematical models have been proved to be useful tools for quantitative epidemiology,
producing many important results. In this way, previously developed mathematical models
to describe directly transmitted infections assuming lifelong immunity produced some
interesting results. One of them states that the introduction of any form of perturbation in
the host—parasite system, like vaccination, leads the dynamical system through unexpected,
and sometimes undesirable, patterns such as damped oscillations in the force of infection
(Schwartz & Smith, 1983; Yang, 1997, 1998, 2001). Another result establishes the shift
of the average age of the acquisition of the first infection to elder ages (Anderson & May,
1991). However, this paradigm does not remain valid if the vaccination is carried out on an
age interval such that the lower bound of the age interval under vaccination is higher than
the natural (without vaccination) average age of the acquisition of the first infection (Yang,
2001).

The scenario is quite different when the vaccine does not induce lifelong immunity,
ewen though the disease-induced immunization may appear to be everlasting (Rouderfer
et al., 1994). For this reason, the loss of immunity can play an important role in a
highly vaccinated population by increasing the number of susceptible individuals. For
instance, when we consider the vaccination of very young children against rubella (Massad
et al., 1994, 1995), we could have an increase in the number of cases of congenital
rubella syndrome (CRS) due to the fact that women may lose the induced immunization
during the fertile age. Several papers have dealt with the rubella infection considering
a mathematical model without considering the loss of immunity, but incorporating a
vaccination schedule (Anderson & May, 1985; Coutimt@l., 1993; Greenhalgh, 1990;
Massadet al., 1995). One further example is related to measles. In Brazil, the actually
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adopted routine vaccination scheme is the first dose at nine months and the second at 15
months. Besides this scheme, several national vaccination campaigns occurred in 1980,
1987, 1990 and 1992. In the last campaign approximately 48 million children under 15
years were covered. Even this great effort to control the disease did not prevent a severe
measles outbreak in 1997, infecting a higher fraction of elder individuals (Guerra L.M.
Pavaetal., 1999).

In this paper we propose a mathematical model to describe directly transmitted
infections taking into account the loss of immunity. The model assumes a constant contact
rate among individuals in the community and a vaccination programme which is carried
out on a fixed age interval. These considerations result in an age-structured system of
partial differential equations (Trucco, 1965b), which is analysed in the steady state. Trucco
(1965a) applied this time- and age-dependent system of equations to cellular growth, and
Dietz (1975) used for the first time for the description of an age-dependent vaccination
programme. Yang & Silveira (1998) considered a particular application of the model
proposed here by taking into account a community which was not vaccinated against
rubella. They fitted the model to serological data for rubella obtained from Caieiras City,
Brazil (Azevedo Netcet al., 1994), before the introduction of a vaccination strategy. A
mathematical model considering a fixed latent period and nonpermanent immunity was
treated by Greenhalgh (1997), while both periods were treated as delays by Cooke & van
den Driessche (1996).

For the re-infection model, we present a methodology to assess the effects of
vaccination and loss of immunity on the force of infection and onbihsic reproduction
ratio. In Section 2 we present the re-infection model, where the boundary and initial
conditions and the steady-state values are given, respectively, in Sections 2.1 and 2.2. In
Section 3 we present the analysis of the steady states before and after the introduction of a
vaccination, respectively, in Sections 3.1 and 3.2, and the effects of a vaccination strategy
are presented in Section 3.3. Finally, in Section 4 we present a brief conclusion.

2. Themode€

In this section we develop a model for directly transmitted infections encompassing loss
of immunity. We assume the very simple hypothesis that vaccine-induced immunity and
disease-induced immunity protect the individual for the same amount of time. The reason
behind this simplification, which results in a unique loss of immunity rate for the immune
individuals, consists of the possibility of obtaining an analytical approach to treat the
model (at least we can obtain an integral equation). However, Roud¢de(1994) dealt
with a more elaborate model considering different loss rates for the induced and acquired
immunities and also a boosting of the waning of immunity by re-infection or vaccination.
Let us consider a closed community divided into four groulst, a), H(t, a),
Y(t,a) and Z(t, a) which are, respectively, the densities depending onaagétimet
of susceptible, exposed (latent), infectious and recovered (immune) individuals. When
the entire population is subdivided into four non-intercepting compartments according
to the infection status considering re-infection, we are dealing with the SEIRS model.
Therefore, these four compartments are described dynamically by the following set of
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partial differential equations:

Xt a) + LX(t,a) = rZ(t,a) — [+ A1)+ v@] X(t, a)
2H(t @)+ ZH(ta) = AOX(, ) — (u+0) H(t, a)

(1)
Yt + LYt a =oHta—(u+y) Yt a
2zt a+ Lzt a) = v@Xta+yY(t,a — (u+7)Z(t, ),
where
Alt) = /Oo B'Y(t, a)da )
0

is the force of infectiony is the natural mortality ratey 1 andy 1 are, respectively,
the average incubation and recovery periads) is the age-dependent vaccination rate,
B’ is the constant contact rate per individual ands the immunity loss rate. Maternally
derived antibodies are not considered, nor are the boosting of immunity by vaccination
or secondary infections (Rouderfet al., 1994). See Yang (1997, 1999a,b) for an age-
structured contact rate model.

We analyse a vaccination strategy described by the equation

v(@) =vl(@a—a)b (—a), Q)

whered (x) is the Heaviside or step function amds a constant vaccination rate applied
on the rangéa;,ay], wherea; anday are, respectively, the lower and upper bounds of the
age interval vaccinated. This function describes the vaccination of individuals comprised
on a fixed age interval. We use the term ‘vaccination of individuals’ to mean vaccination
of both individuals susceptible from birth and of immune individuals who lose the induced
immunity (technically these individuals are under re-vaccination).

The system of (1) can be summed up to generate the equation for the density dependent
on ageN(t, a) of the total number of individuals, with(t,a) = X(t,a) + H(t,a) +
Y(t,a) + Z(t, a). By doing this we are disregarding the distribution of the infection in
the community to deal only with the age distribution of the individuals in the community,
which is given by

d 0
— — = — 4
atN(t’a)+8aN(t’a) uN(t, a). 4)

This equation shows the effect of a constant mortality rate amongst individuals of all
ages. Greenhalgh analysed the effects of a density-dependent mortality rate on the disease
propagation (Greenhalgh, 1997).

The system of partial differential equations (1) is mathematically well-posed if we
provide the initial and boundary conditions. Instead of solving numerically the dynamical
system, we are interested only in the equilibrium values. For this reason, in the next
sections we provide the initial and boundary conditions, which correspond to the natural
equilibrium values, and the equilibrium values under a vaccination programme.
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2.1 The boundary and initial conditions—the natural equilibrium values

First, let us determine the boundary conditions, which are the values assigned to the
dynamic variables at birtha( = 0) and at maximum attainable age & o). In the

model, we are not taking into account the immigration and the passage of the virus through
placenta (vertical transmission). Therefore, all new-borns are considered susceptible to the
virus and there is no input rate related to immigration into any compartment, hence the

boundary conditions are given by

X(t,0) = N*

H(t, 0) =0 )
Y(t,0) =0

Z(t,0) =0,

where N* is the total birth rate which can be related to the (per capita) natality rate. If
we assume that the number of new-borns in a given time interval is equal to the number
of individuals who die in that given time interval then we must haédfe= N, with N
being the constant population size. The set of boundary conditions given=ato is
X(t,00) = H(t, o0) = Y(t, 00) = Z(t, 00) = 0. As we can see later, these conditions are
automatically satisfied by the system (1).

Second, let us consider the initial conditions. The main goal in dealing with the system
(1) is the analysis of a vaccination strategy, described by (3). For this reason the initial
conditions are taken as the natural equilibrium values, corresponding to the endemic
equilibrium of this system before the introduction of vaccinatior<0), designed as

X(0,a) = Xo(a)
H(0,a) = Ho(a)
Y(©0,a) = Yo(@)
Z2(0,a) = Zo(a),

(6)

which are determined next. These equations state thatdt a vaccination programme is
introduced in a community in equilibrium.

The equilibrium values obtained before the introduction of the vaccination are given by
the system (1) dropping out the partial derivative of the dynamic variables with respect to
time and setting = 0. Instead of the age distributions of the individuals, we use the age-
specific fractions of individualgg(a), ho(a), yo(a) andzp(a), where, for instancep(a) =
Xo(a)/No(a) is the age-specific fraction of susceptible individuals and analogously for
other compartments. For the age-structured population we Kgt&® = N*e #&, which
is the solution of (4) at the equilibrium. Therefore, combining (1) and (4) in the steady
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state, we have the system of equations

A xo(@) = wzo(a) — roXo(@)
Sho(a) = Aoxo(@) — oho(a)
8yo(@ = oho@ — yyo(@)
Sz@ = yyo(@) — wzo(@),

()

where the natural (without vaccination) force of infection is given by =
B'N* [5° yo(a)e~#? da, which is (2) in the equilibrium.

Observe that the mortality ratedoes not appear in the system of differential equations
(7). This fact results from the identity
d d [ Xo(a) 1 d
—Xp(a) = — = — Xop(a a
daXo( ) oy [No(a) No(@) da o(@) + uxo(a)
for the age-specific fraction of susceptible individuals, and the corresponding identities
for the other three classes. We use correspondingly this equation with the equations of
system (1), at equilibrium without vaccination, divided Blg(a). To solve the system
(7) given by the fractions of individuals, we use the initial conditiogg0) = 1 and
ho(0) = yo(0) = z5(0) = 0O, which are the boundary conditions given by (5) divided by
N*,

The solutions of the system of differential equations (7) can be obtained in terms of
the age-specific fraction of susceptible individuals. The solutions, which correspond to the
natural endemic equilibrium (in the absence of vaccination), are

Xo(a) = €703 + 1 [ B(a— S)Xo(s) ds
ho(@) = €72 [ €SroXo(S) ds ®)
Yo(@) = €72 [ e'Toe T [ & SioXo(s) dsdr
(@) = e [Ferdye v f(?/ &Toe " [ € ShoXo(s) dsdr da,
where the kerneB(a — s) is given by
e—a(a—s) _ e—y(a—s) e—n(a—s) . e—xo(a—s)
B(@a—s) = rgoy (0—2o)(o—7) (y—2o)(y—m) + (y—m)(o—m) (y —0) (0 —A0) ' (9)
y —o lM—T

This kernel can be derived from (13) in the next section, by changitigio and letting
v=0.

The solutions given by (8) are completely determined if we haya). On the other
hand, the solution forkg(a) can be obtained from the first equation of system (8) when
an estimated value for is available; reciprocally, if we have an estimateda) then we
can calculate.g. Moreover, the first equation of system (8) determining the age-specific
fraction of susceptible individuals is a non-homogeneous linear Volterra integral equation,
and the kernel given by (9) is quadratically integrable-function) on[0,a] x [0, a].
Therefore, this Volterra integral equation has only one solutioxd@) (Tricomi, 1985).
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2.2 The equilibrium values under vaccination

The system (1) can be solved to obtain the equilibrium values after the introduction of
the vaccination. The calculations in order to obtain the solutions are analogous to those
presented in the preceding section. Equations (1) and (4) are combined, in the steady state,
to result in the system of equations

Ix@ = nz(@) - [1 + v(@] x(@)
Sh(a) = rx(@) — oh(@

dy@ = oh(@ — yy@

L2(a) = v(@X(@) + yy(@ — nz(@),

wherex(a), h(a), y(a) andz(a) are the age-specific fractions of individuals, for instance
x(a) = X(a)/N(a) and so on, while the age-structured population density is given
by N(a) = Np(@) = N*e 24, since we are not considering the differential mortality
due to the disease. The force of infection in the presence of vaccination is given by
A = B'N* fé’o y(a)e~#2da. The initial conditions are obtained from (5) divided by,
that isx(0) = 1 andh(0) = y(0) = z(0) = 0.

The steady-state system of (10), with the vaccination rate given by (3), is solved
in terms of the age-specific fraction of susceptible individuals. The resulting integral
equations are

(10)

x(@) = e 42 9@ 4 7 [2[By(a, S) + Ba(a, 9] x(s) ds
h(a) = €772 [Z &#Sax(s) ds

y(@) = e [F&Toe0T [ Sax(s) dsdr

z(a) = e 7@ [foa €S(S)X(5) ds+ [o e ye7? fé"/ &Toe T [5 eSax(s) dsdr da’] ,
(11)
where the functiom (a) is given by
p@=[Mh@-a)]d@-a)b(@—a)+[v@-—a)ld@-a), (12)
which results fromp(a) = fé" v(s) ds, and the kernel8,(a, s) andBy(a, s) are obtained
from the equations
Bl(a’ S) — _)\a_¢(a)v(s)eﬂs fsa e()h_ﬂ)t'f‘d’(t) dt
Ba(a, s) = yore - ¢@ers (@ [ (8l mttéVglr—y)a gly—o)r
x0 (t—a’)6o (& —1)6 (r —s) drda’dt
= yore A 9@grs fsa fra f: ey =) T+HIE—y)A+G-mt+¢®) 41 da’ dt.

These integrals can be calculated taking into account the relative positions among the ages
a, s, t,a, r,a; andap.

(13)
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The kernelsB4(a, s) andB,(a, s) can be written as

e T(@=s) _ g~(tv)(@-s) pe—Ma—a) g7 (32—$)

Bl(a,s)zu{[ }H(a—al)e(az—a)—[

Atv—m A—m)(A+v—m)
e V(@-s)g-r@-s)  g-m(@-s
+ - ]9(3—32)}9(5—31)9(32—3) (14)
Ad+v—m A—T

and

B2(a,s)=2oy {[bo(@—1s)0 (a1 — )]0 (a1 — @) + [b1(a, )6 (a1 — S)
+hr(@—-9)b(s—a)b(@—-s)]b(@—-a)b(a—a
+[b3(a,s)f (a1 —S)+bs(a,s)f(s—ay) b (ag —9S)
+ho (@ —19)0 (s—a)] 0 (a—a)}, (15)

where the auxiliary functionbg (a — s), b1 (&, s), bo (@ —s), b3 (a, s) andby (a, s) are
given by
e—0(a-s) e—v(@-s e (@-s) e—A@-s)

_ @=0)0—=0) @=y)G=y) y—m—m) _ G=RHE=n
bO (a' - S) - y—o + A—TT L]

e—o(a-s) e—v(@-s) @9
_ @—0)G+v—0) _ @T—y)GFv—y) e m@a- —(A+v)(a—ap)
bl @s) = y—o + A+v—m)(y—m)(o—m) +e
veo@-s)  ev(a-s) ve7(@-s) g Aa1-9)
—0)G4v—0)(h=0) m—y)O+v=y)G—y) + Otv—m)y—mo—m) (y—M—H)
y—0 A—TC !

X

eo(@-9) v (@9 7@ (@9

_ _ @=o)0+tv=0)  @=—y)0Gtv=y) (y—m)o—m) (y—r-v)(@—A—v)
by(a—s) = y—0o + Atv—m !

e—0(@—s) _ ev@s e~ (a—s) _e—v(az—al)e—x(a—s)
_ (m—0)0—0) @—y)0=y) (y—m)(o—m) =M (o—2)
b3 (@, s) = o + —
e_a(al_s) e_y(al_s)
—A(@a—ap) | a—(A+v)(@2—a1) T—0)0Fv—0)0i—0) _ @—1)0Fv—7)0-—7)
+ve € y—o

e (3275) er(a27S) .
_ T 0—0)0=0) _ G 0t0=n g () (a—ay) g (2 -5) g7 (a2—5)
y—o (Av—m)(y—m)(oc—m)(A—m)

and

e—0(a-s) e—v(@-s) @-s)
— @=0)G=0) @—pG-y) e~ _ aAMa—ap)
ba(a,s) = V= T oo
ve—0(ax—s) _ ve— v (@2—s ve— 7 (a2—9) " e (V) (a—s)
(T—0)A+v—0)—0) T—y)G+v—y)(G—y) + y—m)oc—m)G—7) ' (y—A—v)(@—r—v)
y—0 Av—m

X

Note that all the auxiliary functions are combinations of exponentially decaying functions.
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As in the preceding section, the solution fofa) is obtained from the first equation
of the system (11) if we have estimated valuesifaand v; reciprocally, if we have an
estimatedk(a) then we can calculate andv. Moreover, the first equation of the system
(11) is a non-homogeneous linear Volterra integral equation with respect to the unknown
variablex(a). Additionally, the kernelsBi(a, s) and By(a, s) are piecewise continuous
with respect to the agesands, which make them quadratically integrable functiohs-(
functions) or{0, a] x [0, a]. Therefore, we have only one solution fai@) (Tricomi, 1985)
when a finite vaccination rate is considered.

Observe that the system of integral equations (8) of the preceding section can be
obtained from the system of equations (11) letting= 0, and the kernel given by (9)
corresponds to the auxiliary functidig (a — s), if we substituter by Ag.

The new equilibrium value, given by the system of integral equations (11), can be either
trivial (eradication of the disease) or non-trivial (disease controlled at a low prevalence)
with respect to the force of infection. In the next section we show more details about these
two equilibrium points.

3. Analysis of the model

We supposed that a vaccination strategy is introduced in a community originally at a
natural endemic equilibrium, and we scaled the initial titnes 0, with the beginning

of the vaccination programme. The new equilibrium values corresponding to the system of
equations (1) were determined. We present more results related to the equilibrium values.

3.1 Before the introduction of a vaccination strategy

We took the natural endemic situation in the community (Anderson & May, 1985), just
before introduction of a vaccination programme, as the initial conditions given by (6).
Hence, from the first equation of (8) we can obtain the fraction of susceptible individuals
Xo in the community as

/ Xo(@)Np(a) da
0
/ - No(a) da
0

whereNp(a) waspreviously defined, angp(a) is given by the first equation of system (8).
The fraction of susceptible individuals before the introduction of a vaccination strategy
can be easily calculated. The value fgof xo(a)Ng(a) da can be obtained by multiplying
both sides of the first equation of (8) INp(a) and performing the integration, which is
easily done, since the kernel is a function of difference betweenaageds, and is given

by

Xo = (16)

_ up+o)(uw+y) @+
(+r0) (L +0) (u+y) (u+m) = rooym

Xo (17)

This formula can be rewritten setting the average natural force of infexgias a function
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of the fraction of susceptible individuakg, resulting in

-1
Xo -1

1— — orm
(u+o) (u+y) (u+m)

M=U . (18)

This relation shows clearly the dependency of the force of infection with the loss of
immunity rater.

On the other hand, the average natural force of infection can be obtained from its
definition given by (2). In order to do this, we solve the equilibrium system (10), with
v = 0, in terms ofyg(a), which results in the non-homogeneous linear Volterra integral
equation

(@) = Ago i—__v;_% + e +n/a B(@a— s)yo(s)ds (19)
Yl = 407 | = T 5 "0 (0 — o) o Yois) e

Again, this equation can be integrated over all ages because the Beimel function of
the difference between agasands. Therefore, substituting this equation into (2) in the
steady state, and calculating the integration, we have
Ro—1
Ao = 1_ oyTm : (20)
(u+o)(u+y) (u+m)

In this case, théasic reproduction ratio Ris given by

p
%,

where the total contact rae= B’N is the number of infectious individuals met by all the
susceptible individuals per year, and its threshold v#ffiés defined by

Ro = (21)

(n+0o)(u+y)
—

B = (22)
We note that thévbasic reproduction ratiaoes not depend explicitly on the immunity loss
rate (Anderson & May, 1991), although the average natural force of infection depends on
this parameter.

Comparing formulae related to the average natural force of infection, given by (18)
and (20), we can relate thmsic reproduction ratio Rwith the proportion of susceptible
individualsxg by

1
Ro = o (23)
This relation is valid only when the disease is endemic in the population. On the other way,
this identity can be obtained considering that in the equilibriumeffextive reproduction
ratio R, which obeys the relatioR = RgXo, is unity. The parameteRy is essentially a
mathematical parameter since it cannot be measured directly from the field data, although
it plays an important role in the stability analysis of the equilibrium points.
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The solutions given by the system (8) were obtained supposingghatO (according
to (20) we must havd?y > 1), which is always true if we havey < 1, according to
(23), or g > B, according to (21). Wheng = 0, the solutions become(a) = 1 and
ho(a) = yp(@) = zp(a) = 0, and the age-density of susceptible individuals is given by
Xo(a) = Nog(a) = N*e#2, This case corresponds B = Xo = 1 or 8 = 8. Next, we
treat the question about the stability of the trivial and non-trivial (with respect to the force
of infection) equilibrium points.

Without a vaccination strategy, the system (1) does not depend on age. By
integrating over all ages and dividing by the total population size, for instagte =
f(;’o Xo(t, a) da/N, the resulting system is given by

dX0) = p+w20(t) — [BYo(t) + 1] Ko(t)
dho(t) = BYoXo(t) — (o + ) ho(t)
490(t) = ohot) — (v + 1) Yo(t)

d20t) = yJot) — (7 + ) 20(0),

(24)

where the force of infection is given byg(t) = BVp(t). This set of equations can be
obtained from the system (30) given in the next section by lettiag0.

The system of equations (24) has two equilibrium points. The first is given by the
trivial equilibrium point (o = 0), with coordinatesy = 1 andhg = Yo = Zp = 0, and the
non-trivial equilibrium point (4 > 0), with coordinates

7 1

o = £0et0)@ty)? (et (Ro—1)
0 = Boluto)utnutm)—oya] (25)

Yo = p(p+0) (uty) (ptm) (Ro—1)
0 = Bl(uto)(uty)(ntn)—oyx]
50 — _ yuto)(uty)(Ro—D
Bl(u+o)(u+y)(utm)—oyn]’

whereRy is given by (21). The non-trivial equilibrium point is valid only f& > 1, and
for Rp < 1 we havethe trivial equilibrium point.

The stability of the above two equilibrium points is assessed by the eigenvalues related
to the Jacobian matrix obtained from the system (24). Note that the above results are a
particular form of the detailed solutions given in the next section by seitiag0, hence
we give a brief description about the stability. B < 1, then the trivial equilibrium
pointis locally asymptotically stable. Otherwise, the non-trivial equilibrium point is locally
asymptotically stable.

The discussions about the methods to estimate the force of infection arthgie
reproduction ratio, considering re-infection, were treated elsewhere (Yang & Silveira,
1998). In that paper the effects of the re-infection on the force of infection and draghe
reproduction ratiowere analysed. All the results were applied to rubella considering the
seroprevalence curve obtained from a community before the introduction of immunization
against the rubella virus (Azevedo Nedd al., 1994). Briefly, Yang & Silveira (1998)
showed that the re-infection consideration resulted in two approaches: the calculation of
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Ao from estimatedkg(a) and the calculation oRy from estimatedkp. Both approaches
depend on the seroprevalence survey before the introduction of the vacci@lﬂan
from which they derivedkg(a) and Xp, respectively, by the relations 4 $ (a) and
Jo [1— S (@] N(a) da/N.

We present two special cases with respect to the loss of immunity parameter. When
7 = 0, we have

Xo(@) = e 0%

w (26)

XO = —!
H+ 2o

and whenr = oo,

a
Xo(@) = e *0? ¢ n/ B(a — s)Xo(s) ds
0

1 hs YR s N @)
(m+0o)(n+y)(1+2ro) —oyio
where
_ eo@-9) e v @9 eHo@-9)
B@ =9 =2y [(o “h @ —h0) G- G-i0E —m)]

is the kernel.

3.2 After the introduction of a vaccination strategy

In the preceding section, we obtained the equilibrium values of the system (1) with
vaccination rate given by (3). From the age-specific fraction of susceptible individuals
in the equilibriumx(a), given by the first equation of (11), we can calculate the fraction of
susceptible individuals in the communityusing (16) and substitutingy(a) by x(a).

The fraction of susceptible individuals in the community under a vaccination strategy
is given by

X=X+ 7 (X2 +X3), (28)
wherexy, X2 andxs are

—(nt2r)ag _ _
_n _ e TR M g (utv+a)(a—an)
X1 = A {1 AFv+2 [1 e ]

e (ut+1)(ag—s) _ e (1+v+i)(ag—s)
_ a us 1 =g TESTEDY
X2 = vu [ X(s)e ey e R e TEwy; ds

(29)
X3 = UACY [/5"1 X(s)e HScy(s) ds+ faiz X(s)e Scy(s) ds

00 X(s)e HS
+ o GG GG ds] ’
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with the auxiliary functiong;(s) andcx(s) given by

1 v
WD +o)+y)(w+m)  p+rtv

e—(u.-%—(r)(al—s) _ e—(/“*'V)(al—S)
(uto)(A—o)(r—0) (u+y)A—y)(T—y)

Y — 0O

c(s)=

e—(;¢+7r)(a1—s) _ ef(w)»)(al—s)
(utm)(y—m)o—m)  (u+A)(y—A)(c—A)
A—T m+r+v)(u+2)

v2e—(ut+itv)(az—ay)
_I_

e (utm)(@-s)
8 [<A+u—n><x—n)<y—n>(a—n>

e (ut+o)(ag—s) _ e (ut+y)(ag—s)
(A+v—0)(h—0)(T—0) A+v=y)O=y)T—y) + v

y —o n+A

+

e (1+0) (ag—s) _ e (uty)(a—s)
(u+o)(A+v—0) (T —0) (n+y)A+v—y)(T—y)

Yy — 0o

e (1) (@—9)

+
m+m)h+v—m)(y —m)(c —m)
e V(@—a1) g—(n+21)(@2—s) ]

T @ 0o N —n

and
1
C2(8)=
mt+2r+v)(u+o)(mw+y)(pn+m)
e—(quU)(asz) . e*(#*’y)(aZ’S)
+ (uto)A+v—o)(Tr—0) (u+y)At+v—y)(Tr—y)
%
(w+2)(y —o)
e~ (1+7)(ag—s) e (ut+i+v)(ag—s)
n (wtm)y—m)o—m) — (u+r+v)y—r—v)(e—i—v)

(L+1)0+v—m)

As the auxiliary functions related to the kernels, we have again a combination of
exponentially decaying functions.

The above results were obtained considering the loss of immunity and a strategy where
vaccination is applied to susceptible individuals in the age intdiagéy]. In order to
present analytical results related to the stability of the equilibrium points, we consider a
particular form for the vaccination rate, lettiag = 0 anday = oo in (3).

The dynamical system corresponding to a constant vaccination applied at all ages is
obtained by integrating the system of equations (1)—(4). The system of equations in terms
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of the fractions of each class of individuals is given by

i X(1) = p+72Z(t) — [BY®) +v + u] X(1)

() = ﬁi_/(t)f((t) — (o +w)h(t) (30)
=oht) — (v + W y®)

= vX(1) +yy(O) — (7 + p) 2(1),

So 2la glo go
NI <
= =
N— ~—

wherex(t) = f0°° X(t,a)da/N, and so on for other three compartments, and the force of
infection is given by (t) = By(t).

When there is a vaccination strategy, the new equilibrium values of the dynamical
system (30) are

% = Wtout+y) _ 1

- Bo ~ R
o pu(uto) (uty)A(uvtm) _
h = Blirowrnarm-am (R =D (31)
y = upto)(uty)(p+v+m) (R, — 1)

Bl(u+o)(u+y)(ut+m)—oya] V'V

5 _ vuto)(pty) my (pto)(uty)(ut+v+m) _
Z= "ftn T Bl arm—oya] (R =1,

whereR, is thereproduction ratiogiven by

B
RU = Wa (32)
with the threshold being given by
ﬁihz(u+0)(u+y)(u+v+7r)_ (33)

o (u+m)

Observe that we have the relati® = Ry (u + 7) / (uw + v + ). The non-trivial force

of infection is attained if we havR, > 1, otherwise we have = 0. Observe the equality
between the fractions of susceptible individuals before and after the introduction of a
vaccination ifA > 0. When the vaccination eradicates the disease, we have

)—( — u+m

n+v+m (34)
5 __ )%
z= HFv+m

andh = y = 0. This is the situation when the disease is eradicated by vaccination
programme, and, hence, the resulting proportion of susceptible individuals is not equal
to the value found before the introduction of the vaccination.

The stability of the trivial and non-trivial equilibrium points of the dynamical system
(30) can be assessed by the roots (eigenvalues) of the characteristic equ@tjon

P (¢p) =det(J —¢l) =0,
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wherel is a 4x 4 identity matrix and is the Jacobian matrix obtained from the linearization
of the system (30). The Jacobian matrix is given by

—(n+v) — By 0 —BX(t) m
J— BY() —(uto)  BX() 0 ’
0 o —(n+y) 0
v 0 y —(u+m)

which must be evaluated at the equilibrium point.

With respect to the stability of the trivial equilibrium point, substituting the coordinates
of the trivial equilibrium point (which are given by (34) ahd= y = 0), into the Jacobian,
we can calculate the roots of the characteristic equation. The eigenvalues are

Y1 = —M
2 =—(u+tv+m)

plus the roots of the second-order polynomial
P’ +Qut+o+y)e+(+o)(u+y)(1—R) =0

The remaining two eigenvalues have negative real part if and oRly & 1. Therefore, the
trivial equilibrium point is locally asymptotically stable R, < 1. Note that the condition
Rp < 1in the absence of the vaccination can be obtained straightforwardly.

With respect to the stability of the non-trivial equilibrium point, we substitute the
coordinates given by (31) into the Jacobian and calculate the roots of the characteristic
equation given by

¢(¢)={[(M+0)+€0][(M+V)+<P] - %}

x{[(n+m)+el[(k+v+BAR, — 1)) +¢] — v}

—i—ﬂoA{LRZ)M —yn}(Rv _1)=0,

where the positively defined is given by

__muto)uty)(utv+m)
Blw+o)(w+y)(nw+m)—oyn]

This fourth-order polynomial has the-independent term given by the coefficient

(u+)/)(u+n)] (R, 1),
o

Co=uﬂ0A[(u+y+n)+

which is positively defined if and only iR, > 1. According to the conjecture given
in Leite et al. (2000), the non-trivial equilibrium point is locally asymptotically stable
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if R, > 1. Note that the conditiolRy > 1 in the absence of the vaccination can be
obtained straightforwardly. The stability analysis of a more elaborated mathematical model
considering a fixed latent and nonpermanent immunity was made by Greenhalgh (1997),
which, due to other non-linearities besides the prodytty(t), presents a more extended
stability analysis.

Note that the trivial equilibrium point is stable iR, < 1, and the non-trivial
equilibrium pointis stable iR, > 1. Therefore, the bifurcation from the trivial equilibrium
point to the non-trivial equilibrium point occurs at the valdg = 1.

We obtained two equations describing the distribution of the infection in the
community: the age-specific fraction of susceptible individuaks), given by (11), and
the fraction of susceptible individuals in the communitygiven by (28). Both quantities
depend on the unknown force of infectidrand the vaccination rate We must, therefore,
consider a suitable device to estimate these unknown parameters.

To estimate the force of infectionand the vaccination raie we must be able to derive
the quantitiest(a) and X. Both quantities can be derived from a seroprevalence survey
S*(a) from a community under vaccination, supposing that the perturbation introduced
by a vaccination strategy in the host—parasite system drove the system to the new steady
state. Hencek(a) and X can be obtained by the relations, respectively; 5 (a) and
Jo [1— ST (@] N(a)da/N. Note that such a seroprevalence curve with regard to the
vaccination in a steady state is not available, although the seroprevalence curve just after
the introduction of the vaccination was obtained (Masstzal., 1995). However, this kind
of data is not appropriate to be used in the model, as in the initial moments just after the
introduction of a vaccination there is an enhanced alteration in the force of infection (Yang,
1998).

The values related to the natural endemic situation can be compared with the
equilibrium situation after the introduction of the vaccination. The link between the
situations before and after the introduction of a vaccination strategy is dealt with in the
next section.

3.3 The effects of a vaccination strategy

The steady states considering a vaccination strategy and a natural distribution of the
infection in the community are linked by the system of partial differential equations (1).
For this reason, the natural endemic situation is taken as the initial conditions, given by
(6), which is modified each time constrained by the perturbed (by vaccination) system of
dynamical equations (1) until the new equilibrium is reached. Note that the first equation
of the system (11) and the equation (28) do not depend on the initial force of infection.
Therefore, we must relate the new (under vaccination) equilibrium value with the natural
(without vaccination) endemic situation. By the foregoing results, the natural endemic
situation was characterized by a single force of infectignparameter, while the new
steady state was characterized either by a singe vaccination pgeameter or by both
vaccination rate and force of infection. parameters. The first situation represents the
eradication of the disease by vaccination while the last shows a vaccination controlling the
disease to some extent.

Let us analyse the last case, when we must have two equations to estimate the
unknown variables. and v. The first equation comes from the well known paradigm
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which establishes that the equilibrium fractions of susceptible individuals before and after
introduction of vaccination strategy (when the eradication of the disease is not achieved)
are equal. Note that this relation can be seen clearly by comparing the first equations of the
systems of solutions (25) and (31). The second equation is provided by the first equation
of the system of integral equations (11).

To relate the known natural force of infectiag with the unknown force of infection
A and vaccination rate, we equate (17) and (28) (Anderson & May, 1985) Yang (1997).
This results in a transcendental equation

wpn+o)(u+y)(u+mr)
(L+20) (u+o0)(mu+y)(u+7)—Arooym

=X1+ 7 (X2 + X3), (35)

wherexs, X2 and xsz are given by (29) and depend anandv. From this equation we
can obtain numerically, for instance, the vaccination rate for each value of the force of
infection, that isp(A).

Let us suppose that we can obtain an age-specific fraction of susceptible individuals
X(a) from available seroprevalence data (at equilibrium). With the aim of calculating the
force of infection in the presence of vaccination, we apply the convergence in the mean
theory Tricomi (1985), that is

0 . 2
/ ]xl(a)—k(a) da— 0,withj =0,1,2, ..., (36)
0

where thei-parametrized(a) forms a sequence of functiofig(a)} provided by the first
equation of the system (11) for eagh. This convergence in the mean can be treated
as one-dimensional minimization (in relationitpbased on the.-parametrized function
x(a) with respect to the target functiof(a) (Yang & Silveira, 1998). The value of
that minimizes/;* [x(a) — >A<(a)|2 da can be calculated by the Brent method (Petsa.,
1989).

During thejth step in the Brent method, we must calcubetea) for eachkj . First, the
vaccination rate» can be calculated for ea¢H using (35) to obtain(A!). Second, both
A andv(il) are used to calculatel (a). This function can be obtained by the iterative
method, because(a) is a unigue solution of the non-homogeneous linear Volterra integral
equation, given by the first equation of the system (11) with the kernels given by (14) and
(15). Therefore, we can calculate the age-specific fraction of susceptible individuals by the
iterative equation

. . . a .
X), (@=eHa @ +n/0 [Bi(a, s) + Ba(a, )] X} (s) ds,
withn=0,1,2,..., forafixedj, (37)

whereg! (a) is calculated only in terms of(A}). On the other hana,, ; (a), x4 (a) (which
are, respectively, thén + 1)th andnth iterations of the age-specific fraction of susceptible
individuals) and the kernelBy(a, s) andBy(a, s) are calculated in terms af andv(r)).
The initial approximation is given by} (a) = x)~%(a) (whenj = 0, we can use&(a) =
X(a) as the initial approximation).
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The natural force of infection can be calculated using (36) and (37) setting (Yang
& Silveira, 1998). For the age-specific fraction of susceptible individuals in a community
prior to the start of vaccination, we use (8).

Next, if the vaccination rate is such that we could reach the condition of the eradication
of the disease, then (35) does not remain valid any more, and we must estimate only the
vaccination rate, settingg = 0 in the first equation of (11). Therefore, the vaccination rate
v can be calculated by the minimization §f° |x(a, v}) — >A<(a)|2 da, wherex(a, vl) is
given by the first equation of (11), withl being the vaccination rate corresponding to the
jth step of the Brent method. For eachcalculated in the minimization method, we can
obtain the age-specific fraction of susceptible individuals by the iterative equation

. . a .
er1+1(a) —e @ 47 / Bi(a, S)XA(s) ds,
0

withn=0,1,2,..., forafixedj, (38)

where(a), x},,(a), x1(a) (respectively, then + 1jth andnth iterations of the age-
specific fraction of susceptible individuals) aBg(a, s) are calculated in terms off .

Since the only available rubella seroprevalence survey is related to the moment just
after the introduction of the vaccination (Massatial., 1995), we present two easy
analytical examples.

3.3.1 Vaccination of susceptible individuals of all agedVe consider a vaccination
scheme where the age interval vaccinated is giveaiby 0 andaz; = oo. By doing this,
we can retrieve the classical results.

A vaccination carried out on all ages is described by the age-specific fraction of
susceptible individuals obeying

a
X(@) = g0 | 5 / B(a—s)x(s) ds, (39)
0

where

e 7 (a-s) __ e (A+v)(@—s)

Bla—s) = —s). 4
@a—s)y=v pRp—— +Aoybp(@a—9s) (40)

Integrating (39), the fraction of susceptible individuals in a community results in

« — npp+o)(mw+y)(n+m)
LH+r+v)(+o)(n+y)(u+m)—mavw+o)(w+y)+roy]

(41)

These expressions can be related to the natural equilibrium values.
The equality of the susceptible individuals before and after the vaccination, which are
given, respectively, by (41) and (17), results in

1

A=Ko<l—ﬁu>, (42)
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whereR, is thereproduction ratiowhen there is a vaccination strategy, given by
R, = —, (43)

with the threshold value for the vaccination raté being

(L+o+7y) ]
(m+o)m+y)]

This reproduction ratiois given in terms of the force of infectiory, which is the same as
(32) given in terms of the contact rafe Note thath = Ao for v = 0, andx = 0 for all
v > v, Observe that the minimum vaccination effolf to reach the eradication of the
disease increases linearly with the loss of immunity parameter.

Note that the solution given by (39) depends on the force of infection and the
vaccination rate. Unless we have an infinite vaccination rate (whi¢emaintained finite),
the age-specific fraction of the susceptible individuals is not a zero function. However, we
note that the force of infection can be diminished down to zero.

We present two special cases with respect to the loss of immunity parameter. When
7w = 0, we have

L [1 + 7 (44)

X(a) — ef()ﬁv)a
_*
wWH+Ar+v’

and if we apply the equality of the fractions of susceptible individuals before and after the
introduction of the vaccination, we have the same equations (42) and (43). However, (44)
becomes

W = 20,
for the threshold vaccination rate. Finally, ttegroduction ratiois given by

n
wAv’

Rv:RO

which comes from (46).
On the other extreme, when= oo, we have

a
x(a) = e’(“”)aJr/ B(a — s)x(s) ds

om0 @ty
(L+o)(m+y)(mw+Ar) —oyr’

where

e’ (a-s) e_}’(a—s) e (A+v)(@-s) :|

B(a_s)z“’y[(a—y)(o—x—v)+<y—A—v)(y—o>+@+v—y><k+v—<’>

+pe~(n@-9
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TABLE 1 The results related to the classical models are presented. We have the models SEIR,
SEIRS and SEIS represented by the loss of immunity rate assuming, respectively, the values
7=0,0<7wm <occandr =

SEIR SEIRS SEIS
- _ _ _(pto) (uy) (utm) _ _ptowty) o
rMM=n(Rp—-1) A= to) ety (tm)—oym (Ro—=1) 2= Ltoty (Ro-1
A:AO(l—v—‘;ﬁ) A:AO(l—v—ﬁﬁ) A=
th _ th _ (uto+y) th _
V —}\,o Vv —A,O[l-’-ﬂm] V=00

is the kernel. If we apply the equality of the fractions of susceptible individuals before and
after the introduction of the vaccination, we have

A = Ao,

which implies that (44) must be given by

Uth = 00,
for the threshold vaccination rate. This shows clearly that the vaccination as a eradicating
mechanism is related only to those infections which induce to some degree of immunity.

For a strategy that vaccinates susceptible individuals at all ages, the classical results
can be retrieved from the above equations. In Table 1 we summarize the results related to
SEIR, SEIRS and SEIS models.

Note that we haveR, ! = v/vih and Ry = 1/Xo. From Table 1, which presents the
results related to a vaccination carried out over all ages, we can assess some effects of the
re-infection in the distribution of an infection in a community.

First, the force of infection increases monotonically and reaches the asymptote with
increasing loss of immunity rate. ¥ = y = 30 > u = 1/60 (in years?l), the
asymptotic force of infection (related to= o0) is around 900 times greater than the force
of infection related to the lifelong immunity (7= 0). However, thebasic reproduction
ratio is not affected by the loss of immunity rate and maintains its value (consequently
the fraction of susceptible individuals is also fixed) whatever the force of re-infection that
is taken into account. Therefore, for a fixbdsic reproduction ratiovalue (the contact
rate is then fixed), the increase in the force of infection with increasing loss of immunity
rate is explained by an increase in the number of infectious individuals circulating in a
community. Hence, if the disease does not induce immunity, we must have an increase
in the number of infectious individuals circulating in the community around 900 times
the one obtained when considering the lifelong immunity, while the number of recovered
individuals goes to zero.

Second, the threshold vaccination rate increases linearly with the increasing loss of
immunity rate. Considering the above valuesdoi andu, we have a small value (0-067)
for the inclination of the line. This has important implications when vaccination strategy
is considered to eradicate a disease. With the increasing loss of immunity rate, the great
number of infectious individuals leads to an increase of the required vaccination effort
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(higher number of susceptible individuals must be protected) for the eradication of the
disease.

Suppose that we have a seroprevalence curve obtained from field data. Then, we
can calculate the fraction of susceptible individuglsin this community, and théasic
reproduction ratio B can be calculated as its inverse. If we do not have any kind of
information about the loss of acquired immunity, then we must theoretically assess the
possible scenarios due to the re-infection. Sifgeis fixed, the contact ratg is also
fixed and the force of infection increases due to the increase in the number of infectious
individuals in the community. Note that the loss of immunity results in the increasing
number of susceptible individuals. However, these increased susceptible individuals are
removed to other compartments by the high number of infectious individuals, in order to
maintain the fraction of susceptible individuals at a fixed value. Therefore, the force of
infection, given by (18), can be rewritten as

2o =29+ A3,

wherexg = u (Rp — 1) corresponds to the force of infection without loss of immunity,
and

T (wto)(uty)(utn) —oyn

is the additional force of infection due to the loss of immunity. In a naive interpretation,
this additional force of infection exhausts the part of the susceptible individuals increased
by the loss of immunity, while the fir$t8 acts on the susceptible new-borns.

3.3.2 Vaccination of susceptible individuals for an age interval without loss of immunity.
Let us consider the case where the infection and the vaccine induce lifelong immunity and
the vaccination is carried out on an age interval.

In this situation we have

x(@) = e+ 0@

for the age-specific fraction of susceptible individuals, and

pe—(u+har
=t

= [1 — e*(WrVH»)(az*al)] }
n+ A nw+v+a

for the fraction of susceptible individuals in a community. Suppose that 0 and the
fractions of susceptible individuals before and after the introduction of vaccination are
equal. Therefore, we have the relation

TR

_ % [1— e (rtvini@-an] ’
n+v

A+ o= (45)

which shows that = 0 can be achieved with finite value ofif we choosen; appropriately
anday > a; (Yang, 1997).
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The basic reproduction ratio Rdoes not depend on the loss of immunity parameter
and this is given by (21). When a vaccination strategy is introduced in a community, we can
calculate theeproduction ratio, denoted bR, . This calculation is based on the spectral
radius theory (Dezotti & Yang, 2000), and is given by

pe Hal

R, = R {1 - [1- e—<“+V><a2—al>” . (46)

MtV

Note that we havéR,_gp = Ro. We can calculate the threshold vaccination ndfeabove
which the disease can be eradicated sefpg= 1 in the equation. Note that this threshold
value can also be obtained if we change appropriately (45) lettiadD.

4, Conclusion

We have proposed and analysed a model taking into account the loss of immunity induced
by both vaccine and natural infection. The framework presented here was essentially
theoretical due to the fact that we do not have any seroprevalence data after the introduction
of vaccination. However, we presented some results related to the effects of the re-infection
on the epidemiological values.

Theoretically, we showed that when a vaccination strategy results in the eradication of
the disease, an appropriate methodology is related to the application of the convergence
in the mean theory on the age-specific fraction of susceptible individuals. But, when
a vaccination strategy does not eradicate the disease, we must relate the force of
infection before the vaccination with the force of infection after the vaccination and
the corresponding vaccination rate. An appropriate methodology consists in applying the
equality of the fractions of susceptible individuals before and after the introduction of the
vaccination and, then, we apply the convergence in the mean theory on the age-specific
fraction of susceptible individuals. Note that the target age-specific fraction of susceptible
individuals must be obtained from steady-state seroprevalence data.

When vaccine is applied to susceptible individuals in all ages, we showed that the
natural force of infectiorho and the vaccination effont! increase proportionally to the
loss of immunity parameter, while thebasic reproduction ratio Rremains unaltered.

The constanRy means that we have the same amount of the secondary cases generated
by a primary case for all values of the loss of immunity rate, but the number of infectious
individuals increases. For this reason, we have a higher incidence rate with the increasing
loss of immunity rate.

When we consider the question of the re-infection we conclude that the eradication
effort depends not only on theasic reproduction ratio, bt also on the force of infection.

This can be seen clearly from the relation of the force of infection with the threshold
vaccination rate, which increases with increasing loss of immunity rate. Consequently, we
must obtain information about the period of time that the immunity can protect individuals
in order to determine a suitable vaccination strategy.

Since we dealt with a constant contact rate at all ages, the force of infection does not
depend on age, and the corresponding age-specific fraction of susceptible individuals is
an exponentially decaying function. We can improve this model by taking into account a
more realistic age-dependent contact rate (Yang, 1999a). The methodology presented here
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to calculate the force of infection by the convergence in the mean theory can also be a
suitable device to estimate the immunity loss rate, together with the parameters related to
the age-dependent contact rate (Yang, 1999b).
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