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Abstract-Many directly transmitted diseases present a strong age dependent pattern of infection. 
Such dependency is analyzed by a mathematical model encompassing an age-structured pattern of 
contacts. From an age-structured contact rate modeling, we estimate the parameters related to the 
contact rate based on the age dependent force of infection calculated from a seroprevalence data 
obtained from a nonimmunized population. 

This model, with parameters completely determined, is used to assess the effects of vaccination 
strategies. This is done by calculating the new equilibrium age dependent force of infection and its 
correlated variables: the average age of the acquisition of the first infection, the rate of new cases of 
infection, and the risk of Congenital Rubella Syndrome. Also, we present a rough estimation of the 
basic reproduction ratio and the vaccination rate at which the disease can be considered eradicated 
(threshold). @ 1999 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

In a previous paper [l], we presented a theoretical framework to deal with the spread out of 

directly transmitted infections, developing an age-structured pattern of contacts among indi- 

viduals in the community. From this pattern of contacts among individuals, we obtained an 

age-structured contact rate taking into account the transmissibility (infectivity) of virus. 

However, when dealing with a constant contact rate modeling, there are classical results related 

to the basic reproduction ratio and the lower value (threshold) for the vaccination rate above 

which the disease can be considered eradicated. These results are easily estimated from real 

data. With respect to age-structured modeling, there are also well-defined results related to the 

basic reproduction ratio Rc and the threshold vaccination rate. For instance, Greenhalgh [2] and 

Inaba [3] showed the existence and uniqueness of the nontrivial solution for the Hammerstein 

equation similar to that presented in [l]. They showed that the bifurcation from the trivial to 

nontrivial solution of the Hammerstein integral equation occurs when the spectral radius assumes 

unity value. Furthermore, they related this spectral radius with the basic reproduction ratio, and 
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stated that whenever Rc, < 1, the disease is not able to establish in the community, and when 
Ro > 1, then the disease can be settled at an endemic level. Following the same arguments, they 
showed the procedure to calculate the threshold vaccination rate. 

In the present paper, we deal with the age-structured model developed in [I] as follows. First, 
we calculate the age-structured force of infection from a cross sectional seroprevalence data col- 
lected from Caieiras City, a nonimmunized small town in Sao Paulo State, Brazil [4]. Afterwards, 
this force of infection is used to estimate the parameters of the contact rate. Once all the param- 
eters of the model are completely characterized, then this model is used to assess the impact of a 
vaccination schedule restricted on susceptible individuals comprised on an age interval. Observe 
that this form of vaccination stands between the pulse vaccination [5,6] and vaccination regardless 
of the age of the individuals [7]. Since the spectral radius results are still under study, here we 
show only an approximate value for the basic reproduction ratio and the threshold contact rate. 

This paper is organized as follows. In Section.2, we transport the model which was introduced 
in [l], in Section 2.1, we defined the correlated variables with respect to the force of infection and 
an approximation for the basic reproduction ratio and the threshold vaccination rate are presented 
in Section 2.2. In Section 3, we present the numerical simulations of the epidemiological values: 
the natural force of infection in Section 3.1, the estimation of the parameters of the contact 
rate in Section 3.2, the approximated basic reproduction ratio and the threshold vaccination 
ratio in Section 3.3 and the force of infection under vaccination and its correlated variables, the 
average age of the acquisition of the first infection (the age of the infection, hereafter), the rate 
of new cases of infection (the rate of infection, hereafter), and the risk of Congenital Rubella 
Syndrome (the risk of CRS, hereafter), in Section 3.4. The results are discussed and commented 
in Section 4. The results, by applying the spectral radius theory, related to the existence and 
uniqueness, together with the stability of the integral equation obtained in [l], are left to a further 
work. 

2. THE MODEL 

Initially, some results are transported from [l]. The age-structured contact rate developed was 
of form 

P (a, a’> = Pofi(a)e- 
bsla-a'1 , 

where PO (dimension of time) is the period of exposure, bs (dimension of time-‘) is the infective 
contact rate, and the function fi(a) is 

h(a) = 
b3 (a/W h e-a/bz 

W(h + 1) 2 _ e-bsa ’ (2) 

where br is the average number of contacts, bz (dimension of time) is togetherness period, and 
I’(X) is the gamma function. 

The age dependent force of infection, with the pattern of contacts and the vaccination rate 
given by equations (1) and (2)) was obtained as Hammerstein equation 

s L 

A(a) = P B(a, <)e-N(C)X(<)e-A(O d(, 
0 

where L is the upper limit for the duration of human life, p = ,&Xb is the transmission coefficient 
with &, (dimension of time-‘) being the new-born rate and A(<) = s,‘X(t) dt and N(C) = 

s,’ y(t) dt are integral functions. Finally, B(a, <) is the quasikernel given by 

B(a, C) = _fl(a) Lfi(f4 MC - a) + f3(a, CM~ - <>I , (4 
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with 8(x) being the step or Heaviside function, and the auxiliary functions &(a, () and fs(a, <) 

are given by 

fz(o, C) = 
,e-PC,-MC-a) 

(P + Y + b3) (P + tJ + b3) ’ 

f3(% 0 = 

,,-PC,-‘a@-0 2crb3e-fiLa 

(CL + Y - b3) (CL + g - b3) - 
[ 
(p + r)2 - b;] (o - y) (5) 

x e 

i 

--?(a-C) _ 
[(p + g)2 - bi - (a - y) (2~ + y + g)] e-O(a-C) 

[(P + 42 - b!] 1. 

where U, y, and I_L are, respectively, the incubation, recovery, and mortality rates. Observe that 

,LlB(a, <) is the kernel when u = 0. 

The integral equation (3) depends on the parameters of the contact rate and the vaccination 

rate. With respect to the parameters of the contact rate, we fit them based on the seroprevalence 

curve. In relation to the vaccination rate, since it is usual to vaccinate individuals comprised on 

an age interval, we consider the expression 

u(u) = uqu - 4qu2 - a), (6) 

where al and a2 are, respectively, the lower and upper bound of the age interval of susceptible 

individuals vaccinated, and v is the constant vaccination rate. Hereafter, al will be referred as 

the lower age vaccinated. Also, we assume that the immunization produces a lifelong immunity, 

and we neglect the effect of the maternally derived antibodies. This form of controlling strategy 

stands between the pulse vaccination [5] and vaccination regardless the individuals age [7]. 

2.1. The Correlated Variables 

From the age dependent force of infection X(a), we can calculate the following three correlated 

variables [7]. 

(1) The age of the infection is defined by 

~ = s,” 4a)X(a) da 
g A(a)X(a) da ’ (7) 

where X(u) is the age-specific susceptible individuals in a vaccinated population. 

(2) The ratio between the rates of infection restricted on the age interval [AI, Az] after and 

before vaccination strategy is defined by 

where Xc(a) is the age-specific susceptible individuals in a community without vaccination 

and Xc(u) is the corresponding natural force of infection. The definite integral gives the 

incidence rate. The choice of lower (Al) and upper (AZ) bounds of age interval to analyze 

this parameter (also the risk of CRS, mainly) is to encompass the average range of age 

that women usually get pregnant. 
(3) The ratio between the risks of CRS on the age interval [Al, AZ] after and before vaccination 

strategy is defined by 

w(&,Az) = 
JA”, X(e)X(e)F(a) do 

sA4’ Xo(a)Xo(a)F(a) da’ 
(9) 
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where the definite integral is the risk of CRS rate, and F(a) is the fertility function given 

bY 
F(a) = rz(u - ri)e-T2(a-T1)0(a - ri), (IO) 

with the parameters ~1 (time) and 7-2 (time-‘) being, respectively, the minimum age 
women are able to get pregnant and the fertility loss rate. The fertility function parameters 
were fitted to the demographic data from the State of Sk Paulo, Brazil, considering the 
age of pregnancy [8]. 

In this paper, we deal with the numerical solution of the integral equation (3). By doing this, 
we can assess different vaccination strategies. For this reason, we compare the natural force of 
infection &(a) with the new force of infection x(a) resulting from a vaccination strategy taking 
into account the above three correlated variables. 

2.2. Approximated Threshold Values 

In this section, we present a method to estimate, approximately, the threshold values. Accord- 
ingly in [2,3] the basic reproduction ratio can be related to the spectral radius. If the spectral 
radius assumes a value greater or equal one, then there is a unique and stable nontrivial force 
of infection. This result is independent of the choice of norm on the function space considered. 
However, we are interested in the approximated estimations, since the numerical results related 
to the spectral radius theory are in study. By the fact that the approximated estimations are 
heavily dependent on the chosen norm, we will consider three norms: ]] . ]]I-norm for Li[O, L], the 
absolutely integrable functions, ]I. ]I s-norm for Lz[O, L], the quadratically integrable functions, and 
sup-norm (I] . llm) for C[O, L], th e continuous functions [9]. We apply these three approximated 
estimations to the age-structured model considering an age dependent contact rate previously 
developed [l] and then, we compare them. 

2.2.1. An approximation for the basic reproduction ratio 

Based on the three norms, I] . ]]I-norm for Ll[O, L], (1 . ]]2-norm for Ls[O, L], and sup-norm for 
C[O, L], we develop an approximate method to estimate the basic reproduction ratio. Observe 
that the kernel given by expression (4) can be treated as absolutely and quadratically integrable 
functions, and as a continuous function, on the range [0, L]. 

Observing the integral equation (3), we note that the trivial solution x(a) = 0 is always possible. 
This is true, if we have p = 0. Additionally, we must have the trivial solution for lower values of 
the transmission coefficient. Here, the approximated estimation for the basic reproduction ratio 
is developed looking only at the trivial solution. We will show that if 0 5 p 5 pth, then we can 
conclude that the trivial solution is the unique stable solution. However, if /3 > ,Dth, then we 
cannot ensure anything. 

The integral equation (3), letting v = 0, has the kernel given by PB(a, <)e-*(c). This equation 

has the trivial solution as the unique if the mapping TX(a) = pst B(a,<)e-“(C)X(c) d< is a 
contraction. Observe that B(a, C) is continuous for a, < E [0, L], B(a, C)e-*(C) satisfies a Lipschitz 
condition with respect to x(a) (see [lo] for the proof), and B(a, C) IS absolutely or quadratically 
integrable function. Therefore, if ]/~]]]B(u, <)]I < 1, th en x(u) = 0 is the unique solution (see [9, 
Chapter 51). Hence, the under-estimation of the transmission coefficient to ensure the unique 
solution comes from Pth = ]]B(u, <)]I-‘. In relation to the three norms being considered, this can 
be set as 

{sup[J~]B(u,~)]du:O~~< L]}-I, for ll.lll-norm, 

[s,L s,” IWU, CM2 &I 41 -1’2 I for ]].]]2 -norm, p = 1 {sup [Jt ]B(u,<)] dC : 0 < a < L]>-l, for sup-norm. 

(11) 
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This result shows that, for p < pth, there is a unique solution (fixed point) for the force of 

infection according to the contraction mapping theorem, which is X(a) = 0. 

The approximated estimation provided by the contraction mapping theorem does not provide 

us with the exact value of p (bifurcation point) at which the trivial solution becomes unstable, 

and appears the unique nontrivial solution. However, we know that there is p’(> pth) at which 

occurs the bifurcation, whose value is obtained when the spectral radius assumes value one. 

For this reason, the approximated approach provides us with the over-estimation of the basic 

reproduction ratio, R,“, which is given by 

Note that the basic reproduction ratio is given by Ro = /3/p’ [2]. 

R;=$. (12) 

2.2.2. An approximation for the threshold vaccination rate 

Now, let us consider one community under a vaccination strategy. Generally, a vaccination 

strategy does not change the pattern of contacts when directly infectious diseases are considered, 

which is not true regarded to the sexually transmitted diseases [7]. The result given below takes 

into account the assumption that the pattern of contacts and the transmission coefficient are not 

altered by the vaccination strategy. 

A vaccination strategy may or may not lead to the eradication of the disease. Therefore, one 

of the main goals of the mathematical model is to furnish the condition for eradication. As 

preceding results, we are interested in an approximated estimation for the threshold vaccination 

rate yth. The integral equation (3), with the vaccination rate given by equation (6), has the 

kernel given by PB(a, <)e- N(C)e-“(C). This equation has the trivial solution as the unique if 

the mapping TX(a) = ,B SOL B(a, <)eWN(C)e-*(C)X(<) d< is a contraction. Following the same 

arguments to obtain the preceding results, if IIPB(a, C)e-N(C)II < 1, then x(a) = 0 is the unique 

solution. Hence, the over-estimation of the vaccination rate to ensure the unique solution comes 

from IIPWa, W N*(c)II = 1, where N*(C) is related to yth. In relation to the three norms being 

considered, this can be set as the root of equations 

sup PB(a,~)e-~~V(S)dS da:O<c<L 1 -l=O, for 11.11 1 -norm, 

L L 

[J J 
l/2 

1 ,dB(a, (‘)e- G 4’) ds -l=O, for /l.l12 -norm, (13) 
0 0 

sup ,!JB(a, C)e-Ji v(s)ds dC : 0 < a < L 1 - 1 = 0, for sup -norm. 

The solution uth of the above three equations is the approximated threshold vaccination rate. 

The result shows that if u > v th then from contraction mapping theorem, there is a unique , 

trivial solution for the force of infection. However, there is V’ (< vth) at which the bifurcation 

occurs, whose value is given by the spectral radius. Therefore, yth is the over-estimation of 

the eradication effort. Observe that these threshold vaccination rate formulas are related to 

the transmission coefficient /?. Therefore, if this parameter assumes higher values, then the 

eradication effort increases (because yth increases). 

The integral equation (13) may or may not have a root, if we consider the vaccination rate 

given by equation (6). Note that this form of vaccination rate can describe a reasonable inter- 

vention regarded childhood infections, where the age interval covered by vaccination must play 

an important role. Therefore, the eradication effort depends on the lower age vaccinated and on 
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its range. Hence, the maximum vaccination delay for eradication oth can be estimated from the 

above equations. 

In the next section, the above epidemiological parameters with respective numerical methods 

are presented. 

3. EPIDEMIOLOGICAL RESULTS 

In this section, a numerical approach is given to the results obtained in the preceding section. 

The over-estimations of the basic reproduction ratio R,", given by equation (12), and the threshold 

vaccination rate yth, given by equation (13), are calculated considering the rubella infection. 

Rubella serological data [4] comprised a survey of 477 individuals (O-40 years) selected by cluster 

sampling technique from Caieiras, a small town located in the outskirts of SBo Paulo city, carried 

out over the period November 1990 to January 1991. This community has not previously been 

vaccinated against rubella infection. 

Besides the over-estimations of the parameters Rg and yth, we will consider a way to compare 

how these values can be related to the exact values which could be provided by the spectral 

radius. This comparison will be done indirectly as follows: we solve numerically the integral 

equation (3) and we analyze the properties of the correlated variables, especially the age of the 

infection, given by equation (7). 

However, to solve numerically the integral equation (3), we assume that this equation has a 

unique and stable nontrivial solution, accordingly the results provided by Inaba [3]. Therefore, 

the age dependent force of infection, which exists and is unique, can be obtained by solving 

the integral equation (3), with or without a vaccination strategy, by iterative method [ll]. To 

solve this equation numerically, a FORTRAN coded program was written. In Appendix A, the 

numerical methods are briefly described. 

For the rubella infection, the incubation and recovery periods are, respectively, (T = 52.0 

years-l and y = 39.0 years-‘. The mortality rate is set as ~1 = 0.015 years-l. The parameters 

of the fertility function are set as ~1 = 13.0 years, from the fact that women have a minimum age 

to get pregnant, and ~2 = 0.23 years-l, since the fertility function is zero beyond 50.0 years of 

age [8]. Also, women usually get pregnant on the age interval from Al = 18.0 years to A2 = 45.0 

years. 

3.1. The Natural Force of Infection 

The natural force of infection Xc(a) can be estimated from the seroprevalence survey, supposing 

that the host-parasite system was in equilibrium. There are some methods in the literature about 

this matter, for instance, the proposal by Farrington [12] and Keiding [13]. Here, we will calculate 

the force of infection from a fitted seroprevalence curve. 

First, from rubella data, the seroprevalence curve, called s+(a), can be fitted by the maximum 

likelihood estimation method (Appendix A.l). We choose for the prevalence curve, a polynomial 

logistic function. Table 1 shows the estimated parameters of a third degree polynomial logistic 

function. 

Table 1. The coefficients of the third degree polynomial logistic function adjusted by 
the maximum likelihood estimation method. 
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0 10 20 30 40 

age (years) 

Figure 1. The seroprevalence curve obtained using the estimated parameters given 
in Table 1. 

The corresponding logarithm of the likelihood function is 1 = -131.06. In Figure 1, we show 

the fitted seroprevalence curve s+(e). 

This seroprevalence curve corresponds to the logistic function with parameters given in Table 1. 

Now, the force of infection is derived from s+(u). Let us consider the age distributed fraction 

of susceptible individuals 20(u) (= Xs(a)/Nc(a), where No(a) = e-pa is the age distribution 

of individuals in the whole community) in the equilibrium before introduction of vaccination 

(V = 0). Note that th e equation for the susceptible individuals in the steady state (the first 

equation of system (l), given in Yang [l]) can be expressed in terms of the fraction Q(U) as 

-&o(u) = -Xo(a)zo(a). 

Observe that the fraction of the susceptible individuals can be related to the seroprevalence 

fitting through Q(U) = 1 - s+(a), see [4]. H ence, the age dependent natural force of infection is 

calculated by 

A,(a) = 
&+(a) 

1 - s+(e)’ (14) 

The force of infection obtained in this manner is shown in Figure 3. 

3.2. Estimation of the Model’s Parameters 

Setting v = 0 and substituting the calculated &(a) in equation (3), then the parameters 

related to the age-structured contact rate and the transmission coefficient can be determined. 

The parameters are obtained by considering the convergence of functions theory [9]. In order to 

do this, we set the force of infection As(u), derived from (14), as the target function, and the 

parameterized force of infection $(a), given by the integral equation (3), as the trial function. 

From the fact that both target and parameterized forces of infection are continuous function 
on C[O,L], the uniform convergence (sup-norm) or the convergence in the mean (]I . ]]z-norm) 
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can be applied. In the space C[O,L], a sequence of functions x:(a) converges to a function &(a) 

with respect to sup-norm if sup{]Xg(a) - &(a)] : 0 5 a 5 L} --+ 0, which is the condition of 

uniform convergence. This is not an easy norm to work with. For this reason, the less stringent 

convergence in the mean, 

s L Ix;(u) - X&)12 da + 0, 
0 

is adopted, from which a relatively easy methodology can be developed to obtain themodel’s 

parameters. 

With respect to the force of infection some explanations are needed. As shown elsewhere [4,14], 

the third degree polynomial presents a variation in the force of infection which has no biological 

interpretation after a certain age, which corresponds when the seropositivity reaches its asymptote 

(maximum value). For this reason, we can neglect any fluctuation in the seroprevalence curve 

occurring in’the asymptote. By this rationafe, we restrict the range of the age interval on 

[O.O, 18.801. The force of infection restricted on this age interval is called truncated force of 

infection (see Figure 3 below), which is used to estimate the model’s parameters. Moreover, this 

age interval comprises 412 individuals, which represents 86.4% of the sample. 

We calculate the convergence in the mean, given by condition (15), by applying the nonlinear 

least square estimation techniques (Appendix A.2). By this technique, we are calculating the 

minimum of equation (15). For this purpose, the force of infection Xc(a) was divided into equally 

spaced 604 points on the age interval [O.O, 18.801. The parameters which minimizes equation (15) 

are shown in Table 2. 

Table 2. The parameters of the age-structured contact rate calculated by the con- 
vergence in the mean. 

In Figure 2, the age-structured contact rate constructed 

Table 2 is shown. 

using the set of parameters given in 

Figure 2 shows the age-structured contact rate on [0.0,45.0], instead of the restricted age 

interval. This extension is reasonable because a high number of potentially infective contacts 

among individuals occurs at age school, around ten years (close to estimated bz), and the infective 

contacts among elder individuals drop nearly to zero. 

A methodology was developed to retrieve the effective age-structured contact rate p(u,a’) 

from the natural force of infection Xc(a). But, in reality, the force of infection is the final 

result (the “effect”, measurable) of the infection that disseminates according to the patterns of 

contacts among individuals (the “cause”, incommensurable). Therefore, uncertainties arise when 

the age dependent force of infection, which is a one-dimensional entity, is being related to the 

age-structured contact rate, which is a bidimensional entity [7]. For instance, the convergence 

sum obtained with the parameters given in Table 2 is S2(604) = 4.43 x 10e3. However, there is 

another set of parameters with lower convergence sum, S2(604) = 3.42 x 10b3. Notwithstanding, 

this set, given by bl = 0.9183, b2 = 427.5 years, b3 = 0.3741 years-‘, and p = 0.202 x 107, was 

rejected, since the value of bz is higher. 

From the truncated force of infection, we obtained the model’s parameters. Now, the force of 

infection provided by the model can be calculated by iterating the integral equation (3) setting 

v = 0. In this case, we have a particular iteration (see the general case in Appendix A.3) given 

x;+ya> = a/y B(a, &$(<)e- J,’ xg(s) %C, n=o, l,..., 
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a 
Figure 2. The effective age-structured contact rate @(a, a’) in years-’ and a and a’ 
in years) obtained using parameters given in Table 2. 

0.16 
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z 0.12 

2 
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$ 0.08 

0.04 

10.00 20.00 

age (years) 

30.00 40.00 

Figure 3. The truncated (thin curve) and model’s (thick cur+) natural forces of 
infection (years-‘). 

where ,$(a) is the extension to the age interval [O.O, 45.01 of the truncated Xc(a) as xi(a) = &,(a) 

if a 5 18.8 and x:(u) = X0(18.8), otherwise. 

Figure 3 shows both the truncated and the model’s force of infection. 

As cited before, the truncated force of infection is valid on the age interval [O.O, 18.801. On this 

age interval, the average age of the acquisition of the first infection, obtained from equation (7), is 

~0 = 6.88 years. Moreover, the model’s force of infection, extended to the age interval [O.O, 45.01, 

gives for the age of the infection, a0 = 7.41 years, higher than that provided by the truncated 
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one. In all the following simulations, the extended age interval is adopted. 

3.3. Estimation of the Approximated Threshold Values 

The value of the transmission coefficient, p = 5330.90 from the last row of Table 2, is fixed to 

obtain the approximated threshold values. In Table 3, the approximated threshold transmission 

coefficient pth, calculated from equation (ll), and the over-estimation of the basic reproduction 

ratio (Rg = P/Pth) are presented for two norms (Appendix A.4). 

Table 3. The over-estimation of the basic reproduction ratio for //. \\z- and sup-norms. 

For the sup-norm, Table 3 shows the age asup, which corresponds to the maximum value of 

Jt IB(a,C)l d< at which Pth was found. The (\.(I - 1 norm is not considered here (see Appendix A.4). 

When dealing with the threshold vaccination rate, it is interesting to relate the vaccination rate 

to the proportion covered by vaccination, since the latter is easier to understand. The proportion 

related to the vaccination rate can be calculated taking into account only the age interval being 

vaccinated. Then, we have 

Sz12 X(a) da 

P(y) = ’ - Sk”,’ X0(a) da’ (16) 

Nevertheless, almost all individuals older than six months are susceptibles [4], then, in early ages, 

the susceptible individuals can be approximated by the total population. By doing X0(a) N 

Xbe-fiLa and X(a) cz Xbe vale-(@+Y)a for al < a < a2, a relation between vaccination rate and 

the proportion of the effectively vaccinated is obtained by 

p 1 _ e-_(P+v)(aZ--al) 
p(u) N 1 - - 

p+v l-e-P(Q-al) . (17) 

Equation (17) gives the effective proportion of susceptible individuals covered by vaccination on 

the age interval al to a2, disregarding the fraction of susceptible individuals infected naturally. 

The approximation (17) becomes more and more imprecise when al and a2 are increased. 

By the form of the vaccination rate given in equation (6), the eradication effort depends on 

the lower age vaccinated al and on its range. In order to analyze the effects of the range of 

age interval covered by vaccination, and to estimate the maximum vaccination delay aih to have 

eradication, two possible vaccination strategies are presented. 

First, the effects of the range of age interval covered by vaccination is analyzed. To do this, 

the lower age vaccinated al is fixed and the range is increased by varying a2. Figure 4 shows, 

for )I . Il2-norm and sup-norm, the approximated threshold vaccination rate yth, calculated from 

equation (13). 

Figure 4 shows, for [/.l\ - 2 norm (thick curves) and sup-norm, a similar behaviour, except that the 

proportion corresponding to the threshold vaccination rate is slightly higher in 11 . Ila-norm. This 

kind of strategy can describe mass vaccination campaign, which involves a broad age interval. 

Note that in mass vaccination, if the lower age vaccinated is sufficiently small, then there are no 

threshold values. 

Second, the effects of earlier and later vaccination programs are analyzed. To do this, the age 

interval covered by the vaccination program az - al is fixed, and the lower age vaccinated al is 

delayed. Figure 5 shows, for )( . II - 2 norm and sup-norm, the approximated threshold vaccination 

rate yth and a”:. 

For )I . /[z-norm (thick curves), the maximum vaccination delay to have eradication a”: lies 

on the semi-open interval [4.49,4.50), and for sup-norm, [5.06,5.07). The results are given in 
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l- 

4 0.8 - 

k 
g 

of; 
B 0.6 - 
F 

1.00 2.00 3.00 4.00 5.00 

lower age vaccinated (years) 

Figure 4. The threshold vaccination rate (with symbol Y and x30 years-’ for both 
norms which are practically coincident) and the corresponding proportion (without 
symbol) vaccinated. We fixed al = 0 years and varied a~, for 1) [In-norm (thick 
curves) and sup-norm (thin curves). 

intervals due to the numerical simulations. If ai > at:, then the disease cannot be eradicated. 
From Figure 5, when al < aih, there is a well-defined yth. From the fact that yth is the over- 
estimation of the threshold vaccination rate, then aih is the under-estimation of the threshold 
lower age vaccinated. 

In this section, all the threshold values, Pth (and R,“), yth and ~“1” are approximated values. 
These values are heavily dependent on the norm considered. These values are compared with the 
results obtained in the next section. 

3.4. Vaccination Strategies Assessment 

The new equilibrium force of infection, after the introduction of a vaccination strategy, with 
its correlated variables are presented in this section. 

Since the correlated variables are given as ratios, we present these values found before vac- 
cination: the age of the infection i& = 7.41 years, from equation (7), the rate of infection 
po(A1, AZ) = 0.03102 years- r, from the denominator of equation (8), and the risk of CRS 
wO(A~,A~) = 0.001114 years -I, from the denominator of equation (9). 

First, we present the effects of a vaccination strategy varying the range of the age interval of 
susceptible individuals vaccinated. The new forces of infection fixing the lower age vaccinated ai 
and enlarging the range of age covered by vaccination by increasing as are shown in Figure 6, 
for: [l.O, 2.01 Figure 6a and [l.O, 10.01 Figure 6b. 

The figures show that, as p increases, the peak of the force of infection is shifted rightwardly 
(to higher ages), and once a certain proportion is attained, thereafter the shift is reversed to the 
left (to lower ages). The proportion at where the shift to the right stops and then reverses to 
the left can be taken as the threshold proportion, and above it, the disease can be considered 
eradicated. The range of the shift to the right is slowed if the age interval covered by vaccination 
is increased. It is observed that the threshold proportion to have eradication obtained in this 
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lower age vaccinated (years) 
Figure 5. The approximated threshold vaccination rate (with symbol v and xl00 
years-l for (1 (12-norm and x 170 years- r for sup-norm) and the corresponding pro- 
portion (without symbol) vaccinated. We fixed a2 - al = 1.0 year and varied al, 
for 11 1(2-norm (thick curves) and sup-norm (thin curves). The threshold lower age 
vaccinated to have eradication is the vertical asymptote. 

manner situates on the interval [0.40,0.45], which is close to the range [0.44,0.50] calculated from 

the contraction mapping theorem (see Figure 5). 

From the age dependent force of infection, the ratios of the correlated variables are shown in 

Figure 7. 

Figure 7 sheds more light on the reversion phenomenon, i.e., the reverse of the shift of the 

peak of the force of infection from right to left. Figure 7a displays a feature different from 

Figure 7b. In latter figure, the ratios of the rate of infection and the risk of CRS above the 

threshold proportions are zero, but in the former, the ratio of the age of the infection increases 

and abruptly goes to zero (a mathematical artefact which was removed). Hence, Figure 7a shows 

that the reverse phenomenon is related to the nonphysical situation: a nontrivial force of infection 

resulted in zero valued rate of infection (and the risk of CRS), but a decreasing phase in the age 

of the infection. From these figures, the eradication proportion can be estimated situating on the 

range [0.38,0.48]. 

Observe that the eradication proportion obtained by the model (Figure 5) is an over-estimation. 

This range, in comparison with the numerical simulations, given in Figures 6 and 7, provided us 

with higher values for the lower and upper bounds, as expected. Consequently, if we take into 

account both the reverse phenomenon (related to the force of infection) and the paxis crossing 

(related to the correlated variables), then the eradication proportion can be set as the union of 

intervals estimated by them, that is, [0.38,0.48]. 

With respect to the above reversion phenomenon in the force of infection and abruptly decaying 

in the age of the infection, we can find quite similar behaviours when we consider a constant 

contact rate. In this modeling, the force of infection decreases continuously, passes through zero 

and then, assumes negative value. The behaviour of the force of infection affects the age of the 

infection as follows. The positive force of infection corresponds to an increasing phase for the 

age of the infection, and to the negative force of infection, a decreasing phase for the age of the 

infection [ 151. 
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Figure 6. The force of infection (years-’ ) for different proportion vaccinated. 
(a) refers to the age interval [l.O, 2.01, with the thin curves corresponding to three last 
proportion vaccinated multiplied by 5.0x lo*. (b) refers to the age interval [l.O, lO.O], 
with the thin curves corresponding to two last proportion vaccinated multiplied by 
2.0 x log. For both figures, the proportions are p = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 
0.35, 0.4, 0.45, and 0.5 (from top to bottom). 
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Second, the effects of earlier and later vaccination strategy is assessed. The new equilibrium 

force of infection, fixing the age interval a2 - al and delaying the lower age vaccinated al, is 

shown in Figure 8, for: [4.0,5.0] Figure 8a and [14.0,15.0] Figure 8b. 

Figure 8a shows also the reversion phenomenon, but the range of displacement is lower than 

that shown in Figure 6. Quite th e same results are observed if the age interval vaccinated 

[5.0,6.0] is used. However, if the age interval vaccinated [5.5,6.5] is considered, the results are 

quite the same as those shown in Figure 8a, except that the peak of the force of infection shifts 

continuously to the left, without having the reversion phenomenon. This remains valid if the 

vaccination scheme is delayed by increasing the lower age vaccinated, as shown in Figure 8b. In 

this case, the vaccination proportion does not affect the ascendent phase in the force of infection, 

but the descending phase is strongly diminished. Therefore, the estimation of the lower age 

vaccinated, by numerical simulations, is located on the open age interval (5.0,5.5). 

Figure 9 shows the correlated variables of the new age dependent force of infection when fixing 

the age interval vaccinated and delaying the vaccination strategy. 

When a vaccination strategy can eradicate the disease, we observe that the approximate esti- 

mation of the proportion vaccinated to have eradication becomes worse with the increasing of the 

lower age vaccinated. For instance, for ai = 1.0 years, we have around 50% to the over-estimation 

(Figure 5) of the proportion vaccinated to lead to eradication, but the simulation (Figure 9b) 

shows that this proportion is around 40%. When a vaccination strategy does not eradicate the 

disease, then the ratios of the rate of infection and the risk of CRS have same displays (Figure 9b, 

three bottom curves). It is also observed that, if the vaccination is delayed, it is not possible to 

eradicate the disease, but the three correlated variables take values lower than one for all pro- 

portions vaccinated. Figure 9a (three bottom curves) shows the ratio of the age of the infection 

decreasing monotonically. It corresponds to the continuous leftwardly displacement of the peak 

of force of infection. The result related to the age of the infection shows that the well-established 

paradigm, that the average age of the acquisition of the first infection increases with vaccination, 

is not always true. 

We compare the threshold lower age vaccinated ai th obtained by the simulation with the ap- 

proximated values. Observe that the approximated value for uih, provided by the ]] . ]/z-norm is 

lower than that predicted by the simulation, while the result provided by sup-norm is located on 

the range given by the simulation. 

Finally, we remark that the approximated estimation for R,” and yth are over-estimations and 

ai” is under-estimation. These approximated estimations were obtained by a direct application of 

the contracting mapping theorem. Note that these results are relatively close to those provided 

by the simulations (in terms of the reversion phenomenon in the force of infection and the 

abruptly decaying behaviour in the age of the infections). But, we must bear in mind that, in 

any eradication strategy, an extra amount of effort must be considered to take into account the 

factor security. Therefore, the over-estimations of R,O and yth and under-estimation of CL”: are 

interesting and useful results to be considered in a vaccination strategy. 

4. DISCUSSION 

An advantage of the approach presented here is its capacity of representing a community 

pattern of contacts linked to the natural force of infection through the population’s seroprevalence 

data. The method proposed in this paper takes into account the force of infection to estimate all 

the model’s parameters (of the pattern of contacts and transmission coefficient), and consequently, 

describes a refined age distribution of the infection, which greatly differs from constant contact 

rate models. 

A kind of pattern of contacts was developed here. We used probabilistic event, considering 

demographic and social obligations, to construct a probability function to describe the contacts 

made among individuals. However, the infective contact was restricted to the Laplace distri- 
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Figure 8. The force of infection (years -‘) for different proportion vaccinated. 

(a) refers to the age interval [4.0,5.0] and p = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 

0.35, 0.45, and 0.5 (from top to bottom). The thin curves corresponding to two 

last proportion vaccinated multiplied by 4.0 x log. (b) refers to the age interval 
[14.0,15.0) and p = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 (from top to 

bottom). 
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Figure 9. The ratios of the correlated variables as a function of the proportion 

vaccinated, fixing a2 - ar = 1.0 year and varying al. (a) refers to the age of the 
infection. (b) refers to the rate of infection (thick curves) and to the risk of CFLS (thin 
curves), and both are coincident when there is not eradication. For both figures, 

the vaccinated age intervals are: [1.0,2.0], [3.0,4.0], [5.0,6.0], [7.0,8.0], [8.0,9.0], 
(9.0.10.0], and [ll.O, 12.0) (from top to bottom, in region of small p). 
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bution. This restriction resulted, when dealing with contraction mapping theorem, that the 

11 . )Ir-norm was not applicable. But 11 . 11 - 2 norm and sup-norm provided valuable approximated 

estimations. 

The pattern of contacts is a very important feature to take into account when designing vacci- 

nation strategies. However, the results shown in Table 3 can lead to misleading conclusions: the 

introduction of heterogeneity in the contact among individuals diminishes the eradication effort. 

The constant contact rate model, with an estimation for the basic reproduction ratio higher than 

the value in this model, leads to disease eradication irrespective of the age interval chosen to be 

vaccinated [7]. Even though the basic reproduction ratio has lower estimate than that provided 

by the constant contact rate model [15], the age-structured contact rate model shows that the 

eradication effort is not facilitated. This is due, as can be observed from the above simulations, 

to the fact that the eradication condition is attained only if an appropriate age interval could be 

chosen. Also, the constant contact rate modeling is only a crude approximation of the reality. 

The main theoretical results were obtained from contraction mapping theorem. The approxi- 

mated estimations from theoretical considerations were compared with the numerical results for 

the force of infection and its correlated variables. The comparisons were based on the classical 

constant contact rate modeling: the reversion phenomenon in age-structured model was linked 

with the negative force of infection in the constant contact rate modeling. The results are in 

a close relation. Moreover, the contraction mapping theorem gives us an easy way to estimate 

approximately the important epidemiological parameters R,O, vth, and aih 

Finally, the vaccination rate on an age interval can be seen as an alternative to a pulse vacci- 
nation. From this kind of vaccination, we note that the vaccination on a broad age interval, like 

[l.O, 10.01, can be used to describe the mass vaccination [8]. On the other hand, the early vacci- 

nation, like the age interval [l.O, 2.01, corresponds to the vaccination schedule in the U.S.A., and 

the delayed vaccination, like the age interval [14.0,15.0], to that in course in Great Britain [lfj]. 

Also, this kind of vaccination rate showed that the increase in the average age of the acquisition 

of the first infection is not always true. Nevertheless, the approximated estimations provided 

in this paper can be a useful tool to epidemiologists when these values are taken into account 

carefully, since they can be understood as the true values added with security term. 

APPENDIX 

NUMERICAL METHODS 

The numerical solutions of the following mathematical expressions were transposed to Fortran 
codes and commands. 

A.l. Seroprevalence Fitting 

The seroprevalence data are described by a logistic function, 

sf(a;c) = 
1 

1 + ePPl (VI ’ 

with pol(a, c) = CzO ciai being a polynomial of degree m. The set of parameters c of the above 
function was fitted by the maximum likelihood estimation method. For this, the logarithm of the 
likelihood function, given by 

l(c) = e{diln [s+(ai;c)] + Diln [l - s+(ai;c)]} 
i=l 

is used, where di and Di are the number of serologically positives and negatives in the age ai, 
respectively. The set of parameters maximizes the likelihood function at 

Y(c) = 2 = g [s+t, c) - 1 _ sy[,, c,] gsf(ai;c) = 0, 
2; 2; 

(20) 
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because the inverse of the covariance matrix, neglecting the second derivatives of the logistic 
function in relation to the parameters [17], given by 

c-2(C)= a21(C) _ 7x 4 

dC2 
xi 
i=l [s+(a$,C)]2 + [l - s+(Cz& 

Di } [gs+(oi;c)]2 (21) 

is negatively defined. The estimator C that obeys (20) is the value searched. 
Due to the approximation in the second derivative, the maximum likelihood estimator is ob- 

tained by the Levenberg-Marquardt nonlinear fitting method [17]. This method is the modified 
Newton-Raphson method, where the increments in the new set of parameters are given by 

C&(c) = 
1 

@(c)(l + E), on the diagonal, 

V2(c)1 off the diagonal, 
(22) 

where cr2 and q2 are, respectively, the variance and covariance of matrix (21), and E is an auxiliary 
parameter. The initial guess is provided by the least square estimation method. 

A.2. Estimation of the Model’s Parameters 

Equation (3), with Y = 0, relates the natural force of infection &(a) and the model’s parame- 
ters, through the convergence in the mean (15). As pointed out in the main text, the estimation 
of the four parameters of the model can be done by minimizing the convergence function (15). If 
this function is integrated using the trapezoidal rule with equal age-subintervals, then the non- 
linear least square method can be applied. Therefore, the minimization of the convergence in the 
mean is furnished if, disregarding the constant age-subinterval of integration, the convergence 
sum 

S2(0) = 5 P 1” B(ai, C; ~)Xo(<)e-Aocc~ dS - Ao(u,) 
1 

2 

i=l 

(23) 

is minimized in relation to the set of parameters 0 =[bi b2 b3 PIT, where B(a, C; 0) is the ker- 
nel (4) and M is the number of points the natural age dependent force of infection derived from 
seroprevalence fitting is subdivided. The set of parameters minimizes (23) at 

B(ai, <; B)Xc(<)e-ho(C) d( - Xo(ai) 

I (24) 

XP s oL $B(ui, [; 8)Xo(()e-A0(c) d( = 0, 

because the inverse of the covariance matrix, disregarding the second derivatives of the kernel in 
relation to the parameters, 

L d 

2 

68B(ai,C;B)Xo(C)C-Ao(C) d< 1 (25) 

is positively defined. Again the Levenberg-Marquardt method is applied. The set of parame- 
ters 6 that obeys (24) is the estimated parameters of the model. The analytical expressions for 

$B(u~, C; 8) were omitted. 

A.3. Solution By Iterations 

The integral equation (3), when the vaccination strategy is applied in a community, can be 
solved numerically by the iterative method, that is, 

I 

L 

h(a) = P B(a,C)e-N(C)X,_l(C)e-""-l(C) d(‘, n=o, l,..., (26) 
0 

where x0(u) is the force of infection provided by the model, and the halt condition is 

iJ 

L 

I&l(a) - &4412 
0 1 

l/2 

I &I~ (27) 

Here Etol 5 lO-‘j was used, which decreases with increasing proportion covered by vaccination. 
The numerical integration method used was the extended Simpson’s rule. 
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A.4. Threshold Calculations 

The two integro-transcendental equations given by (11) and (13) are solved to find the threshold 
values. These equations are handled in the following manner. 

(4 

(b) 

The threshold value (11) needs to calculate the integration of the square of the kernel for 
I( . llz-norm and the supremum of the kernel for sup-norm. The square of the kernel has an 
analytical expression which is so extensive and then, was omitted. However, the integra- 
tion can be calculated applying the Gaussian quadratures. The supremum is calculated 
using the Brent maximization method. 

The threshold vaccination rate (13) needs to calculate the integrations SOL \,DB(a, c) 

eWN(C)12 d< for [(.(12-norm and &” IPB(a, c)e- N(C)J d[ for sup-norm. In both norms, the 
roots are calculated using the Brent root finding method. 

In relation to the )I . 11 - 1 norm, the disease can be eradicated if 

sup PB(a, C)eCN(C)I da : 0 I C < L < 1. 

But this condition is never satisfied. Note that, if we set < = 0, then we have s,” jPB(a,O)I da 
= 1.12, and whatever the vaccination rate is, it is always higher than unity. 
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