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Abstract-Mathematical models dealing with childhood viral infections consider the spread of 
disease according to the law of mass action. This law states that there are random encounters (or 
contacts) among susceptible and infectious individuals. Therefore, mathematical descriptions of the 
transmission of infections are heavily dependent on the assumptions concerning the contact rate. In 
order to develop an age-structured contact rate model, a pattern of contacts among individuals in a 
community is developed by stochastic processes.@ 1999 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

Directly transmitted childhood infections, like rubella and measles, have been used as good 

examples for the application of mathematical models to the study and comprehension of the 
epidemiology of these diseases. For those infections, there are long-term incidence records in 

developed countries from Europe and North America [l-3] largely used by modelers as a refer- 

ence to test their models (4,5], whose assumptions and simplifications proved to be rather good 

approximation to real data. But the picture is quite different when developing countries are 

considered, where the lack of a fully organized health system does not offer the same quality 

on case notification data. The most reliable information derived from these communities are 

seroprevalence surveys, from which the presence of specific antibodies against a given infectious 

agent in an individual is interpreted as a previous infection (61. 

mathematical models, based most conveniently on incidence records or seroprevalence data, 

can be a useful tool to estimate new cases per unit of time (incidence rate) per susceptible 

individuals, the so called force of infection [7]. Directly transmitted childhood infections models 

are formulated basically by taking the force of infection dependent on the contact rate, which is 

related to the pattern of contacts among susceptible and infectious individuals. Therefore, the 

assumptions on the contact rate lead to quite different approaches when one deals with models 181. 

A first assumption, and also the simplest, is to consider a constant contact rate among individ- 

uals over all ages and time. Consequently, the force of infection becomes constant. The resulting 

mathematical model is described by a tim~dependent system of differential equations without 
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age structure. This assumption can generate nonrealistic outputs when modeling childhood dis- 

eases with a strong age dependent pattern. A second and better assumption is, therefore, to 
take into account the age variability in the pattern of contacts. A mathematical model with this 

assumption yields a time- and age-dependent system of differential equations (see [9] who was 

the first author to apply this formalism to epidemiology with constant contact rate), resulting in 

the well-established concept of the age dependent force of infection [7]. 

Two attempts of representing the age-structured contact rate can be found in the litera- 

ture: a matrix with constant elements and a constant value for different age classes. Ander- 

son and May [4] developed the concept they called Who-Acquires-Infection-~5~- Whom matrix 

(WAIFW). Briefly, this is a matrix where the elements of rows and columns are the contact 

rates constants over the discrete age classes of susceptible and infectious individuals. Schenzle [5] 

developed an age-structured contact pattern where constant values on several age intervals are 

assigned and, then, structured the dynamics in a coupled differential equations to estimate the 

contact rate from notified data. Although both methods represent good approaches to modeling 

the dynamics of direct tra~mitted diseases, they are applicable to the description of different 

kind of data collection: the WA~FW method is appropriate to analyze seroprevalence data while 

Schenzle’s method is better applied to incidence records. 

The purpose of this paper, is to develop a model with age-structured contact rate applicable 

whenever seroprevalence data are available. For instance, when the WAIFW method is con- 

sidered, a large unknown matrix with n2 elements is introduced, which gets even larger with 

increased accuracy. In this approach, it is necessary to devise a method of selecting an n x n 

contact matrix. Therefore, our goal is the development of an age-structured pattern of contacts 

based on stochastic processes. By doing this, we are reducing the n2 unknown elements of the 

WAIFW matrix to a fewer number of parameters which are related to the continuous contact rate 

and, consequently, the total number of parameters of the model to be estimated is diminished 

greatly. However, as pointed by Tudor [lo], data on contact rates do not exist, although most 

parameters related to the disease transmission can be estimated directly. 

This fundamentally theoretical paper is divided as follows. In Section 2, the general model 

is presented. In Section 2.1, an age-structured pattern of contacts is developed, which is used 

to obtain the corresponding age-structured model in Section 2.2. In Section 3, we discuss and 

summarize our findings. The epidemiological applications are left to a further paper [ll]. 

2. THE MODEL 

Farrington [12] obtained an age dependent force of infection from cumulative distribution 

function of age at infection. Here, the age dependent force of infection will be obtained from 

a compartmental model taking into account an age-structured contact rate. In order to do 

this, we develop an age-structured pattern of contacts among individuals in Section 2.1, and the 

corresponding age-structured model is considered in Section 2.2. 

The dynamics of directly transmitted infectious diseases models considering age-structured 

contact rates are described by a system of partial differential equations [1.3]. The scope of this 

paper is restricted to the steady state analysis 191. 

Let a closed community be subdivided into four groups: X(a), H(a), Y(a), and Z(a) which 

are, respectively, the susceptible, the infected but not infectious (exposed), the infectious and the 

immune individuals, distributed according to age a. The steady state portrait is given by the set 

of differential equations 

$x(o) = - [X(a) + v(o) + PI X(a), 
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$Yb) = QH(U) - (Y + P) Y(u), 

$W = v(o)X(o) + yY(o) - PZ(U), 

(1) (cont.) 

where V(U) is the vaccination rate, a-l and y-l are, respectively, the average incubation and 

recovery periods, p is the natural mortality rate, 

L 

A(u) = 
I 

j3 (a,~‘) Y (a’) da’ (2) 
0 

is the force of infection with /3 (a, a’) being the age-structured contact rate among susceptible and 

infectious individuals, and L is the upper limit for the duration of human life. Here a constant 

mortality rate for all ages is used to describe the age distribution of developing countries [8], but 

the age distribution of developed countries is easily approximated by setting zero to the mortality 

rate up to the life expectancy and infinite thereafter [12]. 

Let us consider that all new-borns be susceptible, since the effect of maternally derived anti- 

bodies is not considered. ‘Additionally, the loss of immunity [14] is not taken into account. Under 

these simplifications, system (1) is, then, submitted to the following initial conditions 

X(O) = Xb, 
H(0) = 0, 

Y(0) = 0, (3) 

Z(0) = 0, 

where X,, is the new-born rate. 

The solutions for the first three equations of system (l), using the initial conditions given 

by (3), are 

X(u) = Xbe+““+“(“)+j’W1 I 
a 

H(a) = &&-(P++ ,“C-N(C)X(<)&-A(C) d<, 

0 

a 

y-(a) = &e-(‘“+7)a s &-=‘b& s ’ ,+N(C)X(&&(‘) dc, 

0 0 

where A(C) and N(C) are given by 

c 

A(C) = / X (t) 4 
0 
t 

N(C) = 1 v(t) dt. 

0 

Substituting the resulting Y(u) into equation (2), and changing the upper limits of the integra- 

tions, we obtain the following integral equation for the force of infection 

L L L 

X(U) = I p (U, u’) xbe- (P+7b’du s ae(Y-")SB (a’ - s) ds s e’-‘C-N(C)X(C)e-a(C)f9 (s - C) d<, (4) 

0 0 0 
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where 8(z) is the step or Heaviside function. An advantage in changing the upper limits of 
the integrations relies on letting L to be sufficiently high, and then, neglecting the expressions 
depending on L. 

Equation (4) for the force of infection can be rewritten, by interchanging the integrations, as 

L 

A(u) = I B’(a, <)X(<)e-nco &, 

0 

where the kernel @(a, 4) is given by 

L L 

~‘(a, C) =: e-N(C)Xp I e-a(s-C)e~s ds I /J (u, u’) t~-(fi+“)~’ da'. 

c s 

(6) 

Equation (5) is a Hammerstein equation 1151. 
As can be seen, the force of infection, given by the definition (21, is proportional to the number 

of infectious individuals. Nevertheless, to produce new infections there must have encounters of 
infectious individuals with susceptible individuals and, then, the infectious agent must pass to the 
latters from these encounters. Hence, the first feature of the contact rate is related to the pattern 
of contacts, i.e., the possible encounter of susceptible individuals with infectious individuals. The 
other is the transmissibility (~f~ivity) of the infectious agent during this contact. Based on 
these two features, we can construct an age-structured contact rate /3(u, a’) and, then, the kernel, 
given by equation (6), can be specified. 

2.1. An Age-Structured Pattern of Contacts 

To develop a pattern of contacts, two basic assumptions are considered throughout this sub- 
section. One is related to the fact that susceptible and infectious individuals are homogeneously 
mixed in the community, and the other, to the random encounters among all in~vidua~ in the 
community. 

By the term pattern of contacts we mean the contacts among susceptible and infectious indi- 
viduals which can lead to a new infection. Since there is no kind of available data on contact 
rate specified by age, it is not possible to obtain kind of statistical estimate. Therefore, there 
is not a completely specified (known) contact rate to be applicable directly in a model. On the 
other hand, however, the counts of contacts made by individuals of different ages can be achieved 
by considering the demographic distribution of the population and the social rules which char- 
acterize the relations among individuals. By doing this, it is possible to retrieve indirectly the 
information about the contact patterns by considering an appropriate model. For this reason, 
we would like to express a pattern of contacts in a community by the mean of probability theory 
which takes into account the effective contact among individuals. 

Let us consider a probability function, denoted by P,(a, a’), which relates all sufficiently close 
contacts made among susceptible (with age between a and a + da) and infectious (with age 
between ut and a’ + da’) individuals. We will develop this effective probability function which 
describes the pattern of contacts by stochastic processes considerations. In this paper, we will 
deal with a very simple hypothesis about the pattern of contacts. First, we develop a probability 
density which relates the closely (potentially infective) contacts made by individuals, disregarding 
their health status, taking into account the demographic distribution. Thereafter, we develop 
a probability density which describes the infective contact made by infectious and susceptible 
individuals regarding to the social rules. 

First, the probability of closely contacts among all individuals in the community irrespective 
of their health status, called n(a), is treated. This probability can be obt~ned in two steps. 
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Let us consider the random variable Z as the age of occurring closely contacts of an individual 

with others (it is assumed that the contacts made during the birth, a = 0, can be disregarded). 

Suppose that the probability of contacts among individuals are independent of their age, and 

also, independent of the density of the individuals at a given age. Then, the distribution of the 

random variable 2 follows an exponential distribution, memma, where m is the general contact 

rate (dimension of time-’ ). Therefore, the probability of k closely contacts during the semiopen 

age interval (O,a] is given by 

Pk (a) = 
eema (ma)” 

k! ’ 
withk=0,1,2 ,..., 

which is the Poisson probability distribution. 

The Poisson distribution, given by equation (7), was obtained by taking into account the demo- 

graphic distribution. For this reason, if one individual has much more possibility of contact with 

others, as in urban areas, then the general contact rate must assume higher values. Conversely, 

if rural areas are dealt with, then the general contact rate must take lower values. On the other 

hand, the demographic distribution is related to how the individuals are occupying the space. 

This geo-distribution of the individuals shows that individuals who are living closely.has higher 

number of contacts during a fixed period of time than the individuals who are living dispersed. 

In another words, if we consider the number of contacts made by individuals, instead of fixing 

the period of observation time, then a small period of time is spent to occur a fixed number of 

contacts for a highly concentrated population than overdispersed population. Calling this period 

of time as the togetherness period bz (dimension of time), then it is reasonable to relate inversely 

this parameter with the general contact rate, that is, m = l/bp. The contact rate m (with respect 

to age) is, then, related to period b2 (with respect to time), because during this time interval, 

we must have an increasing in age given by the same period of time considered. By doing this, 

the togetherness parameter lets the contacts among individuals of different communities be ap- 

propriately described by the same Poisson process by shrinking (or expanding) the scale of the 

aging process. 

However, the number of closely contacts is not enough to describe the potentially infective 

event. Note that some infectious diseases, like influenza, require much less number of closely 

contacts to infect a susceptible individual than others, like measles. For this reason, let us consider 

the period of time elapsed among closely contacts made by individuals. The probability density 

of Abl+l, the age elapsed from the birth until the occurrence of the (bl + l)th closely contact, with 

bl 2 0, can be calculated. The distribution of A bl+l > a follows the same probability distribution 

as the random variable 21 + . . . + &+I, where Zj+i - Zj is the period of time elapsed between 

closely contacts. This distribution can be obtained by [16] 

P (Abl+l > a) = P [k < bl + l] = kpk (a), 
i=o 

which is calculated using Poisson probability distribution, given by equation (7), with mean a/b2. 

Then J&+1 has the probability density 

which is the so called gamma probability density [17]. 

The probability distribution (8) was obtained assuming the Poisson process with bl closely 

contacts until age a. Let us now relate this parameter with the average number of closely 

contacts needed to generate, successfully, a new infection, if an individual of the community 
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enters in contact with infectious individual. Then, the distribution (9) can be slightly modified 

as 
h 

7r(a) 7 

where I’(z) is the gamma function, to related the contacts occurring in the community taking 

into account the demographic distribution. The distribution (10) assumes an average number br 

(not necessarily integer) of closely contacts occurred during an age interval (0, a]. 

Second, the probability density of contacts among susceptible and infectious individuals, 

<(a, a’), is considered. This probability density is determined by assuming a Poisson distribution 

and is based on the social rules. 

Let us considered an infective event, that is, a susceptible individual of age a contacting, after an 

average of br closely contacts, an infectious individual of age a’. We define the random variables Z 
and 2’ being related to ages a and a’, respectively, when the encounter have occurred. Observe 

that the probability of contact between susceptible individual of age a and infectious individual of 

age a’ must equal the probability of contact between susceptible individual of age a’ and infectious 

individual of age a, from the symmetry of mixing processes. For this reason, we assume that 

both random variables refer to a Poisson process with same distribution parameter, resulting in 

the exponential distribution b3emb@, where bz is the infective contact rate (dimension of time-l). 

Hence, the probability density of contacts among susceptible and infectious individuals, called 

[(a, a’), is described by the random variable Y = 2 - Z’, which follows the Laplace probability 

density [16], 

< (a, a’) = $e-b3la_a’I, 

with the properties: mean value a’ (or a, because both vary) and standard deviation fi/ba. From 

the fact that the susceptible individuals reached the age a after bl contacts, hence, the distribution 

density (10) is conditioned to those made by susceptible individuals among all contacts. 

In the former case, it was developed the pattern of contacts among all individuals in the 

community irrespective of their health status. Now, the probability distribution given by equa- 

tion (10) describes the preferential route of infection, that is, the contacts among susceptible 

and infectious individuals follow a privilege encounter, i.e., at same age a = a’, C(a, a’) assumes 

the highest value. This interpretation was corroborated by the observation that the introduction 

of one primary case generated several localized epidemics [18], that is, the primary case was a 

nurse who infected the children in the baby nursery, and those infectious children, in turn, in- 

fected other children of the same age in their home and neighbors. This kind of rule of social 

obligations (children at school, for instance) may be obeyed by young and adult individuals [19]. 

Finally, we will join the above two distributions to obtain the effective probability function 

Pc(ar a’). Observe that r(a) is the (bl + l)th closely contact occurring at age a, and <(a, a’) is the 

probability of this aged individual contacting an infectious individual with age a’. However, r(a) 

does not consider the health status. To be potentially infective, the contact among all individuals 
must be done between susceptible and infective individuals. Suppose that a fraction x(a) of n(a) 

is regarded to the contacts made by the susceptible individuals. Hence, the effective probability 

function can be written as 

PC (a, a’) = 4o)x(o)C (a, a’), (11) 

where r(u)x(a) represents the contacts made by an susceptible individual. 

The unknown fraction x(u) in the effective probability function Pc(u, a’) can be determined as 

follows. Note that the total number of contacts of susceptible individuals of age a with infectious 

individuals of age a’ must equal the total number of contacts of susceptible individuals of age a’ 
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with infectious individuals of age a. This conservation of contacts can be achieved if we have 

L L 

II C (a, a’) n(a)x(a) da da’ = 1. 

a’=0 a=0 
(12) 

Observe that Jooo n(a) da = 1 and J-“, <(a, a’) da’ = 1. H owever, we are dealing with variable 

which is a nonnegative age. Hence, if we let L + co, which is reasonable due to the quick 

decaying of both probability densities, then the Laplace distribution (10) must be normalized 

as Jo” [(a, a’) da’ = 1. The above expression follows if x(a) = 2/ (2 - embsa). This expression, 

being the contacts made by susceptible individuals, is a decreasing function of age as expected. 

Summarizing the above results, the pattern of contacts in a community can be described by 

the probability function 

PC (a, a’) = fl(a)e-bala-a’l, (13) 

where the function fr(a) (dimension of timee2) is 

b3 
“(‘) = b$ (bl + 1) 

(a/b2)ble-(albz) 
2 _ &sa 

Hence, the infection propagates following probabilistic events, that is, a new infection can occur 

according to the pattern of contacts of susceptible individuals with age between a and a + da and 

infectious individuals with age between a’ and a’ + da according to the probability function (13). 

2.2. An Age-Structured Model 

Up to now an age-structured pattern of contacts was described by the mean of probability 

function. Another aspect to be considered is the transmissibility of the infectious agent [20]. 

When there are contacts, the occurrence of a new infection will depend on the transmissibility of 

the virus from infectious to susceptible individuals. The contact rate must capture both features. 

Assuming that the effective age-structured contact rate is proportional to the effective prob- 

ability function (pattern of contacts), and setting the infectivity of the virus as the constant of 

proportionality, then the contact rate takes the form 

P (a, a’) = Pofi(a)e- 
bsla-a’1 

7 (15) 

where the period of exposure PO (dimension of time) encompasses the infectivity of virus. This pe- 

riod is the average period of time that a virus circulates in the.environs until reaches a susceptible 

individual. 

In this section, we can calculate the kernel, given by equation (6), by considering the effective 

age-structured contact rate, given by equation (15), developed in the preceding section. The first 

integration results in 

L 

s ,d (a, a’) e-(p+Y)a’da’ = Pofi(a) 
ebe-(p+~+h)s 

p++++s 
e (S - a) 

e-bsae-(fi+y-Ws 
+ 

p+y-bs ’ 
neglecting the exponentials depending on the upper limit of integration (L). The next integration, 

that is, the previous solution multiplied by e-“(s-C)e~s and integrated to s from C to L, depends 

on the relative position between C and a. If < > a then we have 

L L 

I e-“(s-C)e~s ds 
I 

,B (a, a’) e- (Pf-fk da’ = pofi (a) 1 ,-+-C),V eb3;;;‘:%“s ds, 

c S c 
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and if < < a then we have 

L L L 

J e -“(s-c)eYs ds J p (a, a’) e--(j‘+y)a’ da’ = Pofl(a) J ,-+-C),rs 
,@sae-(p+y+bs)s 

I*++++3 
ds 

c s a 

a + ,-44),rs J 
+ae++r-hb 2b3e-b+Y)a 

P+Y-b3 
c 

+ (p +y)2 - (b3)2 

Therefore, the resulting kernel is a CZ [0, L] function (two times continuously differentiable), given 

by 

B’(a, <) = /3B(a, <)emNcC), (16) 

where 

P = POxb (17) 

is the transmission coefficient, a dimensionless parameter. The quasikernel B(a, C) is given by 

B(a,C) = h(a) [f2(a, CMC - a> + f3(a, CMa - 01, (18) 

where the auxiliary functions fz(a, C) and fa(a, C) are given by 

f2(a7 0 = 
ge-/de-h(C-a) 

(CL + Y + b3) (P + 0 + b3) 
(19) 

and 

,,-A,-W-C) 

[(p + al2 - bi - (u - y) (2~ + y + u)] e-“(a-C) 
- 

[(P + 4” - b;] 

(20) 

This kernel is called quasikernel due to the fact that the terms ,B and eTN(C) were extracted 

from B’(a, <). Observe, again, that the exponentials depending on the upper bound of the 

integration (L) do not appear in the functions (19) and (20) because they are negligible compared 

to the other values. Also, we have &(a, a) = f3(a, a), as required. 

The Hammerstein equation (5) in terms of the quasikernel (18) can be rewritten as 

A(a) = p L B(a, C)e-N(C)X(C)e-“(C) d(. J 
0 

(21) 
This equation provides with analysis of situations with and without vaccination strategy. When 

there is not vaccination strategy, then /?B(a, C) is the kernel. 

The integral equation (21) describes the steady state of directly transmitted infections in 

different communities. Each childhood disease has its own incubation u and recovery y rates, 

and period of exposure PO. Different communities can be described by their own population 

size given by new-borns rate xb and pattern of contacts given by average number of effective 

contacts bl, togetherness period b2 and infective contact rate b3. Therefore, this model shows a 

wide range of applications, whenever the unknown parameters could be estimated. 
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3. DISCUSSION 

The application of mathematical models is increasingly proving its usefulness as a tool for the 

understanding of epidemiological problems particularly those related to control and/or eradica- 

tion strategies of infectious diseases. 

With the intention of creating a wide applicable method, an age-structured contact rate model 

was developed for the directly transmitted infections. This approach considering stochastic con- 

siderations for the age-structured pattern of contacts resulted in a model with only a few param- 

eters. This approach, like the method of Anderson and May [4], is applicable to seroprevalence 

data. When considerations due to Tudor [lo] are taken into account, then the present approach 

is an improvement of the WAIFW method since it uses only four parameters (of gamma and 

Laplace distributions plus virus transmissibility). 

Observe that an age-structured pattern of contacts was developed taking into account the 

demographic distribution and social rules. From the former we obtained a probability which 

describes the contacts among all individuals irrespective of their health status. Also, a prob- 

ability which describes the contacts among susceptible and infectious individuals was obtained 

by considering assumptions of symmetry. This distribution showed that there is a preferential 

infective contact when the susceptible and infectious individuals have same age, which describes 
roughly the social obligations. The effective distribution of contacts was completely determined 

considering assumption of conservation of contacts. 

In this paper, we presented only theoretical development of an age-structured model. We 

would like to stress that Greenhalgh [21] and Inaba [22] provided a useful tool to analyze age- 

structured modeling, but they failed to give a practical example due to lack of an age-structured 

contact rate. Indeed, in [21], although presented an analysis tool of an age-structured contact 

model, Greenhalgh considered a constant contact rate application. For this reason, in a further 

paper [ll], a model considering the age-structured pattern of contacts developed here is analyzed 

regarded to the epidemiological parameters, which are the force of infection and its correlated 

variables. A preliminary analysis was already done by Coutinho et al. [23]. 
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