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Abstract

This paper discusses the employment of non-parametric non-linear prediction algo-

rithms to investigate non-linear dynamics in the rhythmic brain activity of rats. Three

algorithms (Sugihara±May Simplex, K-neighbour and Casdagli's) were tested yielding

similar prediction results which ± when subject to a suitable bootstrap based t-tests ±

revealed that the theta waves recorded in rat brains cannot have their intrinsic non-

linearity dismissed at a signi®cance of 0.05. Ó 1999 Published by Elsevier Science Inc.

All rights reserved.
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1. Introduction

Our research group has been engaged in the investigation of the mutual
dynamical relations between several cortical and subcortical structures in the
central nervous system of rats with focus on rhythmic brain activity, specially
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theta waves, that commonly emerge during oneiric episodes ± believed by some
as the equivalent of human dreams. By far, the most widely accepted ap-
proaches rely on linear methods [1,2] which are assumed true at least on a ®rst
approximation basis; this popularity justi®ed by the clearer statistical issues
involved in their estimation. The fact, however, that the neuron, the very unit
of brain processing itself, has widely recognized non-linear behaviour leads to
natural concerns about approaches involving linear approximations in the
context of neural signal analysis.

As such, this paper describes our inquiry into objective methods for quan-
tifying the departure from linearity in our observed signals. There are several
ways to infer the degree of non-linearity of a given time series: some are based
on higher order spectral analysis [3], others employ non-linear approximating
functions [4] and yet others look into the qualitative dynamics of the data [5]. A
close review of the literature soon convinced us that none of these former
methods was completely satisfactory as all of them require fairly long obser-
vations for reliable estimation, particularly in noise contaminated contexts, a
scenario hardly ever compatible with neuroelectric signals which, apart from
added noise, can only be considered stationary over relatively short time spans.

A seemingly viable alternative appeared in Theiler's work [6] who proposed
the use of `bootstrap' as a means of overcoming the limitations due to small
samples [7]. The approach's cornerstone is that any measure of dynamical non-
linearity computed from an observed signal must be signi®cantly altered
whenever the signal data is `linearized', i.e. when related ± also called `surro-
gate' ± time series are randomly generated on the basis of preserving the
original signal's second order statistics (spectrum).

Adequate use of Theiler's approach calls for the de®nition of some ®gure of
merit capable of discriminating non-linearity. We elected predictability
through non-parametric non-linear methods as our ®gure of merit. This choice
was dictated by the method's dispensation of estimating model speci®c pa-
rameters. In addition, non-parametric non-linear prediction methods provide
some idea of the dimensionality required when future parametric models come
to be considered upon con®rmation of evidence for an underlying non-linear
dynamics.

There are many non-parametric non-linear prediction methods, so that from
the beginning it was somewhat unclear whether any one such method would be
preferable to others in some sense. Thus, in part, this paper also seeks to in-
vestigate and possibly suggest the most appropriate method for testing non-
linearity.

Section 2 contains a description of the type of signal used together with a
brief review of the prediction methods compared herein: Sugihara±May Sim-
plex Method [8], K-neighbour [9] and Casdagli's method [10]. The section ends
with a description of the non-linearity test procedures. Our results are sum-
marized in Section 3 and more fully discussed in Section 4.

288 M.Y. Alvarenga et al. / Mathematical Biosciences 157 (1999) 287±302



2. Material and methods

2.1. The signals

Theta waves in rodents constituted the raw material in our analysis. This
type of signal is roughly characterized by an oscillatory pattern with some
superposed noise (Fig. 1). Our time series ± local ®eld potentials records ±
sampled at 256 Hz were obtained during desynchronized sleep from visual
cortex, thalamus and hippocampal ®elds through multiple bipolar microelec-
trodes implanted chronically in rats.

Each N-point time series x�k�, N � 2000 or 3000, (see Table 1) was repre-
sented by the vector

x � �x�1�; . . . ; x�N��T � xp

xt

� �
partitioned for analysis into two other vectors of equal length xp e xt called
respectively the prediction set and the test set.

Table 1 contains a summary of the time series used in this analysis.

2.2. Non-linear non-parametric prediction methods

Non-linear non-parametric methods rest on the notion that the topological
features of the dynamics of a given system may be adequately captured by re-
constructing a phase-space representation of a related time series under ob-
servation [11,12]. Thus, prior to non-linear forecasting, regardless of the method
employed, one must construct a data structure ± the so-called attractor ± de-
noted Rs;m�xp� made up of vectors describing phase-space points of the form

x�t� � �x�t�; x�t ÿ s�; x�t ÿ 2s�; . . . ; x�t ÿ �mÿ 1�s��T ; �1�
where s is the so called embedding lag, i.e. the delay between points in the x�k�
series and m ± the embedding dimension [12]. Use of xp emphasizes the exclusive
use of the prediction set in attractor reconstruction.

Fig. 1. Example of hippocampal local ®eld potential record used here for non-linearity analysis.
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Using this same data structure, it is possible to produce an one-step-ahead
forecast

x̂�h� � P�~xt�h�;Rr;m�xp��;
where P is a suitable algorithm (functional) acting on

~xt�h� � �xt�hÿ 1�; xt�hÿ 1ÿ s�; xt�hÿ 1ÿ 2s�; . . . ; xt�hÿ 1ÿ �mÿ 1�s��T :
Essentially di�erent prediction algorithms are represented by distinct P

functionals. The ®rst one such method is the Simplex Algorithm [8] which used
Rr;m�xp� information directly. The other two methods considered in this paper:
K-neighbour Algorithm and Casdagli's Algorithm require an additional pa-
rameter K to specify the number of closest neighbouring phase-space points
used in their forecast.

To apply these procedures one must ®rst determine suitable values for s and
m (and K) prior to e�ective prediction which essentially amounts to an opti-
mization problem involving each series under analysis and an appropriate `loss'
function re¯ecting predictability.

Table 1

Distribution of the optimal parameters used in setting the non-linear non-parametric prediction

algorithms

Record # Brain area ** m0 s0 K0

1 CA1 8 9 20

2 CA3 8 9 20

3 CA1 10 9 20

4 CA3 10 9 40

5 CA1 8 10 20

6 CA1 11 9 50

7 CA3 6 9 20

8 * CA1 8 9 20

9 * CA3 8 9 20

10 CA3 5 10 50

11 CA1 8 10 20

12 CA2 8 9 20

13 CA3 12 10 20

14 SUB 8 9 70

15 CA3 8 10 20

16 SUB 8 9 70

17 CA3 11 9 20

18 CA3 8 9 50

19 VPL 8 9 20

20 A18 10 10 40

* N� 3000 for the Records 8 and 9, and N� 2000 for all other Records were used.

** CA1, CA2, CA3 and subiculum (SUB) are hippocampal regions; VPL±ventral posterolateral

nucleus of thalamus; and A18 corresponds to visual cortex.
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An estimate of the cross-correlation function between the predicted function
and the test set (also known as Kravtsov's degree of predictability [13]),

q�xt; x̂��k�; �2�
proved to be a very useful `loss' function. Here x̂ denotes the vector
�x̂�1�; . . . ; x̂�N=2��T .

In order to choose the best embedding dimension, a discrete one-dimen-
sional parameter search on increasing m was performed using the Simplex
Method for s chosen ± following Theiler [14] ± as approximately the time of the
®rst zero crossing in the estimated autocorrelation of xp. For the previously
determined optimum embedding dimension m0, the optimum value of K was
found for each of the other two methods by a similar one-dimensional pa-
rameter search as described in [15]. Both optimizations were concerned with
determining the ®rst occurrence of local maxima for the average of (2) for
k � 1; 2; . . . ; 64. This prediction lag span was chosen because k � 64 corre-
sponds to at least two cycles of oscillatory activity.

Remark 1. The choice of maximizing predictability for k � 1 as in [15] was
dismissed because it systematically lead to m0 � 3 which failed to yield the best
overall performance for longer prediction lags (see, e.g., Fig. 2).

2.3. The non-linearity tests

Since for optimum s0;m0 (and K0) Eq. (2) is a good indicator of a non-linear
method's prediction accuracy, its value was used in testing whether the signal is
signi®cantly non-linear when compared to the prediction of i � 1; . . . ;Ns

`surrogate' time series,

x�i�s �S�x�;
built randomly from the original time series, each surrogate preserving the
second order statistics of the original series.

The rationale of this constraint is that linear models of a time series, whether
parametric or not, are completely de®ned by the series second order statistics.
In practice, S was implemented as an operator consisting of the computation
of the Discrete Time Fourier Transform X �f � �F�x�, followed by phase
randomization performed remembering that X �f � is in general a complex
number

X �f � � A�f ��cos u�f � � i sinu�f ��;

where A�f � � jX �f �j is the sole provider of second order statistics information.
Surrogates di�er only through having new phases u0�f � chosen randomly from
an uniform distribution under the constraint that u0�f � � u0�ÿf � so that the
resulting spectrum
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X 0�f � � A�f ��cosu0�f � � i sin u0�f �� �3�
leads to each surrogate x�i�s time series upon anti-transformation Fÿ1X 0�f � for
each randomly chosen u0�f �, the generation of each surrogate requiring N=2
independent uniformly distributed random numbers between �0; 2p� [16].

In constructing surrogates, one often recommends data rescaling prior to
phase randomization [16]. This step `gaussianizes' the data's ®rst order statis-
tics to allow distinguishing static and memoryless non-linearities from dynamic
ones. In this study, both unscaled and scaled surrogates were used and com-
pared.

Once generated, each surrogate was partitioned in two x�i�s � �x�i�p x
�i�
t �T and

underwent the same non-linear prediction procedure:

x̂�i��h� � P�~x�i�t ;Rs0;m0
�x�i�p �� �4�

with the associate ®gure of merit q�x�i�t ; x̂
�i�� �k� to whose value we associated

Fisher's classical transformation of the correlation coe�cient [17]:

z�x�i�t ; x̂
�i�� �k� � 1

2
ln

1� q�x�i�t ; x̂
�i�� �k�

1ÿ q�x�i�t ; x̂
�i�� �k�

" #
�5�

that lead to the following sample distribution moments

lNs
�k� � 1

Ns

XNs

i�1

z�x�i�t ; x̂
�i�� �k�

and

S2
Ns
�k� � 1

Ns

XNs

i�1

�z�x�i�t ; x̂
�i���k� ÿ lNs

�k��2

against which to test

z�k� � 1

2
ln

1� q�k�
1ÿ q�k�
� �

for the original series through an one sided t-test

tNsÿ1�k� �
z�k� ÿ lNs

�k�
sNs �k�����

Ns
p

;

where

q�k� :� q�xt; x̂h��k� �
P

i
�xt�i� ÿ lt��x̂�i� k� ÿ l̂h��������������������������������������������������������P

i
�xt�i� ÿ lt�2

P
i
�x̂�i� ÿ l̂h�2

r
in which lt and l̂ are respectively the means of xt and x̂.
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This t-test to be considered meaningful in rejecting the hypothesis of non-
linearity at the a level via

tNsÿ1�k� > tNsÿ1;a

requires that the population distribution of the surrogate z�x�i�t ; x̂
�i���k� to be

approximately normal. In our approach, normality of z�x�i�t ; x̂
�i���k� was tested

via the Kolmogorov±Smirnov (KS) procedure at a signi®cance of 0.05 for each
lag k with Ns � 100.

For the sake of comparison we also computed Theiler's DS�k� `signi®cance'
measure [6]:

S�k� � jlH ÿ lDj
rH

; �6�

where, in our case, lH � lNs
�k�; lD � z�k� and rH � sNs

�k� followed by the
accompanying error bar:

DS�k� �
���������������������������
��1� 2S2�k��

Ns

s
�7�

where (7) is deemed signi®cant for S > 10 and requires no presumption as to
the underlying distribution of z�x�i�t ; x̂

�i���k�.

Remark 2. Use of the same value s0 as for the original series in (4) was dictated
by S0s lack of e�ect on the auto-correlation properties that were used in
estimating s for the original time series. Also the embedding dimension was
borrowed from its estimate from the original series as the method's rationale of
bootstrapping lies in looking for the attractor structure disruptions caused by
phase randomization in (3).

Remark 3. It may be interesting to note that we also performed an analogous t-
test for the untransformed q�x�i�t ; x̂

�i���k� variable obtaining results similar to the
ones described in the next section. Fisher's transformation did not improve much
on the already approximately normal surrogate q variables.

3. Results

Following the optimization procedure brie¯y exempli®ed in Fig. 2, we ob-
tained m0; s0 and K0 summarized in Table 1 whose modes were given by m0 �
8; s0 � 9 and K0 � 20. In all methods, similar performance was obtained
(Fig. 3), with Casdagli's method standing as the worst performer for our data.
Since the K-neighbour algorithm consistently achieved slightly better predic-
tion, specially for larger k, only this method's results are presented in the
forthcoming illustrations.
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In none of the Kolmogorov±Smirnov tests, illustrated in one example in
Fig. 4(A) and (B) (respectively for unscaled and scaled surrogates), was it
possible to reject normality for the z�x�i�t ; x̂

�i���k� distributions, lending credence
to the corresponding t-tests, illustrated graphically in Fig. 5(A) and (B), with
help of a con®dence interval

lNs
�k� � tNsÿ1;a

SNs
�k�����
N
p

s

�8�

built around the means respectively of unscaled and scaled surrogate distri-
butions, both with similar behaviour. In all of the time series analyzed, only
one series presented evidence for partial non-linearity hypothesis rejection
(Fig. 6(A) and (B)) involving large prediction lags �k > 28�.

A comparison through Theiler's method furnished S values around 2 that
also help reject the linear hypothesis with the proviso of a normal surrogate
distribution for most series as in Fig. 7(A) (using the scaled surrogates tested
previously in Fig. 5(B)). Much smaller values for S (Fig. 7(B)) were attained
for the series that had its non-linearity rejected in Fig. 6 by the t-test.

Fig. 2. Results of the determination of the most appropriate embedding dimension m0 using the

Simplex Method. The overall most appropriate dimension m0 � 8��� was obtained. Other pre-

diction results are also displayed for m � 3���; m � 6�M� and m � 10���.
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4. Discussion

With regard to our aim of gauging possible di�erences among prediction
methods, our results (Fig. 3) indicate that the methods addressed here are es-
sentially equivalent in so far as their discriminating ability for detecting the
presence of non-linearity. Obviously, thanks to the lower computational
complexity (O�N 2� compared to more than O�N 3� for the Simplex Method and
O�N 4� for Casdagli's method 2), the K-neighbour should be the method of
choice, moreover so because, it gave slightly superior performance. Interest-
ingly, the most elaborate method (Casdagli's) provided the least reliable pre-
dictions in the range 1 6 k 6 64 (see Fig. 8 for a typical example). This can be

2 These computational complexity ®gures refer speci®cally to our implementations of the methods

in MATLAB (MathWorks, Inc, USA).

Fig. 3. Displays a comparison between the prediction of the three methods of non-parametric non-

linear prediction considered in this paper exempli®ed through Record 1 in Table 1

�m0 � 8; s0 � 9 and K0 � 20�. The best performance was attained by the K-neighbour's method

�M� whereas the worst overall performer was Casdagli's method ��� with the Simplex Method in

between ���.
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understood thanks to the method's design to be optimal for k � 1, and to the
very poor condition number (on the order of 1500) of the matrices involved in
its computation.

Fig. 4. Depicts the typical results of the Kolmogorov±Smirnov (KS) test for the z�x�i�t ; x̂
�i���k � 1�

exempli®ed for Record 1 in Table 1 �m0 � 8; s0 � 9 and K0 � 20�, where the hypothesis of nor-

mality cannot be rejected at a signi®cance of 0.05. The KS test for normality could not be rejected

for any of the Records considered. KS tests (not shown) were also applied to q�x�i�t ; x̂
�i���k� leading

also to the inability to reject their normality at the same level.
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Fig. 5. Plots the series predictability criterion, z�k�; ��� after Fisher's transformation (5) against the

mean of Ns � 100 for both unscaled (A) and scaled (B) surrogates ���. Also shown are con®dence

intervals in Eq. (8) for the proposed t-test �a � 0:05� which reject the linearity hypothesis for all

prediction lag k values in Record 2 in Table 1 �m0 � 8; s0 � 9 and K0 � 20�. The K-neighbour

Algorithm was used for all predictions.
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Fig. 6. Plots the series predictability criterion, z�k�; ��� after Fisher's transformation (5) against the

mean of Ns � 100 for both unscaled (A) and scaled (B) surrogates ���. Also shown are con®dence

intervals in equation (8) for the proposed t-test �a � 0:05� for Record 16 in Table 1

�m0 � 8; s0 � 9 and K0 � 70�. In this case linearity is only partially rejected for prediction lags k
below 28. The K-neighbour Algorithm was used for all predictions. In all 20 records studied, this

was the only case of inability to reject non-linearity.
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The pattern of slow (less than exponential) decay in predictability of
q�k� (Figs. 2, 3 and 8) is characteristic of deterministic systems with the
possible involvement of strange attractors [8], this alone being suggestive of
inherent dynamical non-linearities. The sharp decrease in q�k� for

Fig. 7. Displays the results of Theiler's S (6) for scaled surrogates of Record 2 (A) and Record 16

(B) in Table 1 �m0 � 8; s0 � 9 and Ns � 100 with K0 � 20 and K0 � 70, respectively).
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1 6 k 6 3, on the other hand, points to the presence of small amounts of
added noise [6].

Another interesting feature concerns the virtual lack of di�erence in the
results for scaled and unscaled surrogates which point to the presence of no
signi®cant static non-linear transformation of an essentially linear dynamics.
Hence di�erences in prediction between the original series and their surrogates
are most likely due to dynamic causes.

As to the degree of non-linearity in our series vis-�a-vis the proposed linearity
hypothesis rejection criterion involving the t-test (appropriate for the ap-
proximately normal character of the surrogate distributions) we must conclude
that one cannot dismiss non-linearity as playing a role in the generating
mechanisms of the time series. To some extent this result may seem con¯icting
with Theiler's proposal that non-linearity is assured only for S on the order of
10 [6]. The reasoning behind Theiler's claim must be taken with some care as it
completely ignores the nature of the underlying distribution of surrogates and
may be understood as based upon distribution independent arguments for
setting probability bounds such as Chebyshev's inequality, wherefrom very
loose con®dence intervals can be inferred anyway. When the approximate
normality of z�x�i�t ; x̂

�i���k� is taken into account, S values around 2 correspond
to normal 0.05-percentiles, lending further support to the t-tests results.

Fig. 8. Shows further comparison of the prediction algorithms emphasizing Casdagli's predictor

large oscillatory behaviour for our data (Record 14 in Table 1: m0 � 8; s0 � 9 and K0 � 70�.
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Some very recent studies have raised concerns over conclusions drawn from
the use of surrogates whose reliability is guaranteed only for some random
processes [18]. In fact, in a recent proposal, Theiler and Prichard [19] suggest a
procedure for experimentally gauging the actual levels of false positives in
Theiler's method. Use of this computationally burdensome re®nement, mainly
involving computing surrogates of surrogates, brought into evidence a sensi-
tivity of many non-linearity testing statistics to outliers which can decrease test
power. Speci®cally it was observed that for some statistics, edge e�ects due to
the Fourier transformations used in surrogate generation can increase the rate
of false positives. Following a concern raised in [20], we investigated the e�ect
of discarding some points (10,50,100) at the edges of our surrogates prior to
prediction. We observed only marginal perturbations on the resulting mean
and variance. Though more research is needed, we speculate over a possibly
reduced sensitivity of Kravtsov's q to these edge e�ects when compared to
other more extensively investigated statistics.

The main import of these observations to our current research [1] will be
that of forcing us upgrade our current methods to study non-linear e�ects in
addition to investigating dynamical relationships between diverse areas of the
brain by linear multivariate time series methods. This may, for instance, allow
us to explain some of the regularities observed in the present study, such as the
roughly constant values of m0 � 8 and s0 (around 9 and 10 samples) for all the
theta wave time series considered. In our mind this observation alone already
suggests some emergent collective non-linear behaviour of these diverse
structures may be at play.
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