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A semi-stochastic model for schistosomiasis was developed based on the immune response
built up by human host after elapsing a fixed period of time L from the first infection, and
on the parasite infection with multiple occurrences.

Both acquired immunity and multiple parasite infections reproduced a great endemic
stability for the disease and a high value for the basic reproduction ratio.
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1. Introduction

In a previous paper (Yang et al., 1997), we
developed a semi-stochastic model taking into
account the acquired immunity and the multiple
entrance of cercaria per infective event. When
the model is fitted to the data, it matches the age
prevalence data well but can only capture the
general trends for the egg output and dispersion
of this output.

However, we would like to stress that the
goodness of fit by itself should not be considered
sufficient for accessing to model adequacy. For
instance, the model by Holford & Hardy (1976),
which encompasses the age-dependent frequency
contact with infested water, fits the prevalence
extremely well with four parameters, but it fails
in two aspects: to explain the observed strong
stability, as in May’s model (see below), and
underestimates more than May’s model the basic

reproduction ratio (Yang, 1985). Holford &
Hardy explained the descendent phase of the
prevalence curve due to the reduction in the
water contact rate with age (Chandiwana &
Woolhouse, 1991; Dalton & Pole, 1978). This is
not entirely supported by experimental evidence
(Barbour, 1985; Wilkins, 1977). The latter work
compared the egg outputs by males and females
and found essentially no difference, although the
two groups have different water contact rates.
Therefore, the model should explain the ob-
served stability of the steady state.

First, we transport the following steady-state
findings from Yang et al. (1997). The forces of
infection ls and lc for the non-immune and
immune individuals, respectively, were assumed
to be related by

lc = f(z)ls, (1)

where z is the time interval counted from the first
infection and f(z) represents the effect of
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immunity and for the purposes of this paper we
consider

f(z)=6 1;
fQ 1

for 0E zQL
for zeL.

(2)

The other result is the average number of adult
worms per person in a community m, given by

m=v $ ls

mw + mh
−01−

lc

ls1
×

l2
s e− mhL

(ls + mh) (mw + mh)1, (3)

where mw and mh are, respectively, the harbored
worm by host and the human host mortality
rates, L is the time period elapsed to build up the
immunity, and v is the average parasite entrance
per infective event.

Equation (3) for the average number of worms
per person in a community itself is not a
complete schistosomiasis model. In fact, ls and lc

are unrelated up to this moment to the snail
population. Hence, we need the proportion of
snails that are infected and shedding cercaria to
close the vital cycle, and then, to perform the
analysis of the stability of the steady state. In
order to do this we shall use May’s model (May,
1977) for the snail population. Briefly, May’s
model treats deterministically a constant size
snail population and considers that the snails
begin to release cercaria (shedding snails) after a
period of time t from the first infection (called
latent snails, those already infected but not
releasing cercaria yet) (Sturrock & Webbe, 1971).

In this paper we address the problem: is
acquired immunity capable of explaining the
stability of the steady state? We conclude that we
can improve on this with our model.

2. Epidemiological Implications of Acquired
Immunity

In this section we analyse the main epidemio-
logical implications of the acquired immunity on
a schistosomiasis transmission model. As we

shall see, a model without immunity is almost
incapable of explaining the stability of the
disease, a point already stressed by Barbour
(1978, 1982). To perform the stability analysis,
we use the result of May’s model (May, 1977) for
snails. From this model, the proportion of
shedding snails, z, in equilibrium, is given by

z=0 m0s
ase− m'st

+
1
z*1−1, (4)

where as is the snail transmission rate, m's is the
mortality rate of latent snails, m0s is the mortality
rate of the shedding snails, i.e. the infected snails
(latents) that had survived the incubation period
t and are eliminating cercaria, and z* is the
maximum attainable value for the proportion of
shedding snails which is

z*=
e− u'st

m0s
m's

−0m0s
m's

−11 e− m'st

. (5)

May’s model is a modification of Macdonald’s
(1965) model encompassing the above differen-
tial mortality rates and the incubation period t.

The average number of adult worms per
person in a community, eqn (3), and the average
proportion of shedding snails, eqn (4), give the
stationary scenario of the epidemic. It is usual to
express these average values in terms of two
dimensionless transmission parameters T1 and T2

(Bradley & May, 1978) and the basic reproduc-
tion ratio R0. The latter can also be expressed in
terms of T1 and T2. For completeness we define
the two dimensionless transmission parameters
T1 and T2, which were used by Nåsell & Hirsch
(1973) and May (1977).

The parameter T1 is the overall transmission
from human to snail which encompasses all the
probabilistic events occurring in the environ-
ment. It is given by

T1 =

1
2
hEP1Nh

m0s
(6)

where hE is the number of eggs shed by each
couple of schistosomes per unit of time; P1 is the
probability of a released egg to develop to
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miracidia and to infect a snail and Nh is the total
population of human host. As we are not
concerned about the mating between male and
female worms, given by mating function f(m)
(May, 1977), for this reason we set a half for the
probability of mating when there is m average
adult worms per person. This constant mating
function also describes hermaphroditic
helminthiasis modelling (Nåsell, 1985).

The second parameter T2 is the overall
transmission from snail to human which
encompasses all the probabilistic events occur-
ring in the environment. It is given by

T2 =
hCP2Ns

mw
(7)

where hC is the number of cercaria released by an
infected snail per unit of time; P2 is the
probability of a cercariae to infect a human host
and Ns is the total population of snails.

Therefore, the stationary picture can be seen in
terms of the transmission parameters T1 and T2.
Hence, the parasite transmission rate among
non-immune individuals (ls), the parasite trans-
mission rate among immune individuals (lc) and
the snail transmission rate (as) must be defined in
terms of these parameters. The snail trans-
mission rate can be defined as

as = m0s mT1 (8)

and the parasite transmission rate among
non-immune individuals as

ls =(mw + mh) zT2 (9)

Both rates are dependent on the environment
through T1 and T2. The two transmission rates
come from the migration rates in the stochastic
model by Nåsell & Hirsch (1973) set to be
proportional to the expected values of shedding
snails and mated worms. Finally, the parasite
transmission rate among immune individuals
will be defined separately according to our
assumptions regarding to it (obviously ls is
always dependent on the environment):

(1) lc is dependent on the environment, that
is, it is proportional to both the proportion of

shedding snails and the dimensionless trans-
mission parameters (Subsection 2.1);

(2) lc is independent on the environment, but
is determined only by immunity, that is, it is not
proportional to both the proportion of shedding
snails and the dimensionless transmission par-
ameters (Subsection 2.2).

Next, we analyse the stability of the epidemio-
logical parameters to the variations of T1 and T2,
which are expected to vary widely from region to
region. We show that a much greater variation
in T1 and T2 is allowed in a model with acquired
immunity than in Macdonald’s and May’s
models.

Let us first consider a model without immunity
(May, 1977), that is, we present the May’s model
findings. From the average number of adult
worms per person given by May’s model
(m= ls/mw) and from eqn (4), using the
definitions (8) and (9), we can rewrite the
proportion of shedding snails as

z(R0)= z* 01−
1
R01, (10)

where R0 is the basic reproduction ratio,

R0 = e− m'stT1T2, (11)

and T1 and T2 are the two dimensionless
transmission parameters, which were defined
above.

In our model, the average number of adult
worms per person is given by (3) and the
proportion of shedding snails is given by (4) as
May’s model. Using definitions (8) for the snail
transmission rate and (9) for the parasite
transmission rate among non-immune individ-
uals, we can rewrite the average number of adult
worms per person and the proportion of
shedding snails at equilibrium in terms of one of
the transmission parameters, say T2, and of the
reproduction ratio R. Since the parasite trans-
mission rate among immune individuals lc will
be defined in following subsections according to
cases (1) and (2) above, meanwhile we can
express m and z as functions of generic
parameters M1 and M2 related to the expressions
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concerned to lc. Hence, after some algebraic
manipulations, we obtained

where the reproduction ratio R is

R=ve− m'st
M2

d
T1T2 (14)

and the relative life expectancy between worms
and humans is

d=
Lw

Lh
(15)

with the life expectancy of humans and worms
being Lh =(mh)−1 and Lw =(mw + mh)−1, respect-
ively.

2.1.  1: lc    

In this case, we set the parasite transmission
rate among immune individuals, substituting f(z)
in eqn (1) by b, as

lc = bls (16)

with, of course, 0E bQ 1. As ls depends on the
environment, then the relation (16) reflects the
fact that the environment also affects the
transmission of parasite among individuals who
had built up the immune response.

When lc depends on the environment, the
expressions M1 and M2 take the forms

M1 =1−(1− b) e− mhL (17)

and
M2 = d (18)

whereas R is here defined as the basic
reproduction ratio R0 as (from M2 = d)

R0 =ve− m'stT1T2 (19)

This value of R0 is identical to that obtained in
May’s model, eqn (11), when multiple entries of
cercaria are allowed. This result is in agreement
with Anderson & May’s (1991) statement that
immunity does not affect R0.

Let us observe now how this model fits to the
field data. From data described by Sturrock, for
Biomphalaria glabrata (1972) and for Bulinus
(Physopsis) nasutus productus (1967) snails, using
m's =10.8 years−1, m0s =21.6 years−1 and
t=0.083 years, we first estimate the snail
transmission rate. The result was as =0.921
years−1 (Yang, 1990). Those values of m's , m0s and
t will be applied to fit the model to
epidemiological data from Touros region (Biom-
phalaria glabrata) and from Misungwi region
(Bulinus truncatus). The resulted estimation of z*
is about 0.25 for both regions. The steady-state
value for z was arbitrarily set at 0.1.

By doing this, the results of the model with lc

depending on the environment show clear
advantages over the model by May (1977): this
can be seen observing the stability region,
dependent on the two dimensionless trans-
mission parameters, obtained from eqns (12) and
(13) with relations (17), (18) and (19). In Fig. 1,
we illustrate some of our findings.

m(R,T2)=
vM2T2z*

2(d+T2z*) 6T2z* 0M1

M2
−

1
dR1−02

R
−11

+X$T2z*0M1

M2
−

1
dR1−02

R
−11%

2

+4
d+T2z*

dR 01−
1
R17 (12)

and

z (R,T2)=02M1

M2
T21

−1

6T2z*0M1

M2
−

1
dR1−1

+X$T2z*0M1

M2
−1dR1−1%

2

+4
M1T2z*

M2 01−
1
R17 (13)
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F. 1. Stability region for the model 1: lc depends on the
environment, for r=1 (thin curves, with region demarcated
by ///) and 21 (thick curves, with region demarcated by :).

region, for r=1 and 21, respectively. The point
at which the curve mr crosses the curve zr

represents the values of T1 and T2 at which the
model shows best fit to the data. The region
bounded by the intersection among mr, zr and Rr

curves represents how much T1 and T2 can vary
before reaching the threshold lines Rr. In Fig. 2
we illustrated the same set of curves for the
model by May.

Although R0 is not affected by acquired
immunity, the range of T1 and T2, for which the
existence of disease is possible, is greatly
enlarged.

From Figs 1 and 2, we can observe that the
influence of multiple entrance is to increase the
region of the parameters T1 and T2 where the
disease can exist, since the threshold lines move
to the origin of the axis with increasing r. As
noted before, the basic reproduction ratio is not
influenced by immunity in this model. On the
other hand, for values of T1 lower than 1, we
observe that acquired immunity influences
strongly the stability of the disease and the range
of variation in T2 is greatly enlarged in this
model, as compared with May’s. This is a highly
desirable feature in models dealing with schisto-
somiasis because, in fact, T1 and T2 are expected
to vary greatly from region to region in an
uncorrelated fashion for the same epidemiologi-
cal pattern.

2.2.  2: lc     



In this case the relation (1) is not obeyed, and
b' is a bounded constant that does not dependent
on z and T2. Here we set the parasite
transmission rate among immune individuals as

lc =(mw + mh) b' (20)

where the new parameter b',

0E b'E b'max,

could be chosen as a function of the time period
elapsed to build up the immunity and the
number of parasite entrance per infective event,
or as a constant to be fitted to data, and the
supremum of transmission rate among immune
individuals obeys

lim
b'04 b'max

lc = ls. (21)

The figure shows two sets of curves for m
[from Table II of Yang et al. (1997)], z=0.1,
and the thresholds (R0 =1, which we took, for
practical purposes, as the threshold; see,
however, Nåsell, 1993 for stochastic threshold
values). The m-curves correspond to the best fit
for the average number of adult worms per
person m=0.819 and 3.327, for Misungwi

F. 2. Stability region for the model proposed by May,
for r=1 (thin curves, with region demarcated by ///) and
21 (thick curves, with region demarcated by :).
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Note that if ls =0, both m and z are zero even
when lc $ 0. The significance of this will be
discussed later.

When lc does not depend on the environment,
the expressions M1 and M2 take the forms

M1 =1−e− mhL (22)

and

M2 = d+ b'e− mhL, (23)

whereas R is here defined as the net reproduction
ratio R* as

R*=ve− m'st(1+8)T1T2, (24)

where 8 is the immunity contribution to the net
reproduction ratio given by

8=
b'e− mhL

d
. (25)

This value of R* is different from that obtained
in the May’s model even if considering multiple
entries of cercaria. Equation (24) demonstrates
how acquired immunity affects the reproduction
ratio for schistosomiasis. The expression for R*
is a composition of the environment (R0) and the
acquired immunity (Rim) contributions. It is
better seen from the particular form that the
expression M2 takes for the two models, (18) for
model 1 and (23) for model 2: both expressions
depend on the relative life expectancy of the
parasites and the humans, while the latter also
depends on the immunity parameters.

The definition for the basic reproduction ratio
is the average number of female offspring
produced throughout the lifetime of a mature
female parasite, which themselves achieve repro-
ductive maturity in the absence of density-depen-
dent constraints (Anderson & May, 1991). Based
on this definition, model 1 produces the very well
understood basic reproduction ratio. But in
model 2 we have dependencies on the immunity
parameters and, therefore, we called it as net
reproduction ratio (R*=R0 +Rim). In the ab-
sence of immunity, the average number of female
offspring during Lw appears in the basic
reproduction ratio R0. But, when the immunity is
built up, it implies decreasing in the average
number of adult worms and, hence, the egg
production is increased by the density-dependent

F. 3. Stability region for the model 2: lc does not
depend on the environment, for r=1 (thin curves, with
region demarcated by ///) and 21 (thick curves, with region
demarcated by :).

constraints, which appears in the immunity
constrained reproduction ratio Rim.

In model 1 the two parasite transmission rates
(ls and lc) are affected by the environment due
to T2. So the overall disease transmission is
affected only by the environment. But in model
2 only one of the transmission rates (ls) is
dependent on T2 and the other (lc) is
independent of this transmission parameter but
dependent only on the immunity parameters.
Then the overall disease transmission is con-
trolled by both the environment and the human
acquired immunity.

The fitting to the data was performed as
before. The values of b' obtained from both
studied areas are very similar (Yang et al., 1997).
This is probably due to the fact that both areas
are highly endemic, so b' is close to b'max.

By doing this the results of the model with lc

independent of the environment show clear
advantages over our first model (model 1) in
which immunity is considered to depend also on
the environment: now, R* resulted in values (see
Discussion) much higher than those resulting
from May’s model for any set of T1 and T2. This
is in sharp contrast with the previous model of
immunity, and in disagreement with Anderson &
May (1991). Furthermore, the range of T1 and
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T2, for which the existence of disease is possible,
is even more enlarged. This can be seen from
eqns (12) and (13) with relations (22), (23) and
(24). Figure 3 illustrates some of our findings.

Figure 3 shows two sets of curves for m [from
Table II of Yang et al. (1997)], z=0.1 and the
threshold, calculated by setting R*=1. The
m-curves correspond to the best fit for the
average number of adult worms per person, for
Misungwi region, for r=1 and 21. The point at
which the curve mr crosses the curve zr represents
the values of T1 and T2 which the model fits best
to the data. The region represents how much T1

and T2 can vary before reaching the threshold
lines Rr. We have set arbitrarily z=0.1.
Nevertheless, if we set the proportion of
shedding snails at lower (higher) than the fixed
value, then the upper frontier of stability region
moves inward (outward) to the origin of the axis,
diminishing (increasing) the region.

From Fig. 3 we can note that the multiple
entrance influences are the same as the findings
of model 1, except that the net reproduction ratio
is influenced by immunity. However, one should
note that, from relations (9) and (20), it is

generated a curve, m* (shown in Fig. 4), on
which ls = lc (21), and below which ls Q lc. The
point at which the curve m11(=m'11) crosses the
curve z11 (or z'11) represents the values of T1 and
T2 which the model fits best to the data. The
region represents how much T1 and T2 can vary
before reaching the threshold lines R11 (or R'11).
The assumption of the independence (depen-
dence) of lc on the environments is represented
by primed (unprimed) legend.

From this figure we note that the region of
stability for the case where lc is independent on
the environment is larger than the case where lc

is dependent on the environment. However, most
of these points are below the curve m* (when
ls = lc) and, therefore ls Q lc. This is clearly not
a physical phenomenon. In spite of this, it can be
noted from the figure that there is a small
increase in the physical region of stability for the
situation which lc does not depend on the
environment (filled area). Moreover, if we set b'
as a constant, then mw, L and r could be fitted
again in order to avoid this problem. It shows
that the stability region is not well defined, but
movable, depending on the level of immunity.
Alternatively, we could set b' as a function of r
and L. By doing so the curve, on which ls = lc,
is shown in Fig. 4, and it can be pushed down
and made almost parallel to the line R'11 =1.

On the other hand, for values of T1 lower than
1, model 2 shows an even more remarkable
difference when compared with May’s and our
model 1. The overall disease transmission is
much more influenced by immunity and the
range of the variation of T2 is even more enlarged
even if we take into account that values below
the curve on which ls = lc result in a
non-physical situation (as shown in Fig. 4).
Otherwise, for values of T1 higher than 1, the
three models apparently display the same
behavior, that is, the disease is regulated in the
snail population and immunity does not
influence the stability. It should be noted that the
threshold lines are lowered in relation to May’s
and our model 1.

3. Discussion

We developed a semi-stochastic model to
understand the transmission of schistosomiasis

F. 4. Stability region for the two models: lc depends on
the environment (thin curves, with region demarcated by
///) and lc (') does not depend on the environment (thick
curves, with region demarcated by :), for r=11. When
m=m*(ls = lc), the two models have the same curve. The
area (filled region) between m* and R11 curves is a small
enlargement of disease possible region of model 2 in relation
to model 1 for low values of T1.
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in highly endemic areas. One of the main points
of our model is the role of human acquired
immunity in explaining the remarkable stability
of the disease. When T1 is higher than 1 (T2 is
lower than 10) May’s model, and our models 1
and 2 have the same stability, but when T1 is
lower than 1 (T2 is higher than 10) May’s model
and our models 1 and 2 display quite different
behavior.

In fact regions where the environment is not
favorable for the surviving and mobility of
miracidia to find and infect intermediate host, we
have low values for the overall transmission from
human to snail (T1). The disease can be
maintained if this hostile inhabitat is overcome
by an increase in egg output. This is possible by
an increase in the overall transmission from snail
to human (T2). As a consequence, the mean
worm burden of the community increases. In the
absence of immunity in the human host, we must
have hyper-infection to maintain the disease.
But, if the human host mounts an acquired
immunity, which regulates the transmission of
schistosomiasis, we do not need to have this
hyper-infection (models 1 and 2). The hyper-in-
fection is avoided because the acquired immunity
both protects the human host from further
cercaria invasions avoiding the high worm
burden in the community, and over-disperses the
worm harbored by this community [see Table II
in Yang et al. (1997)] explaining why there is a
core of individuals who have a heavy worm
charge whilst the population as a whole has a low
worm burden. The latter consideration makes
reasonable our approximation of half value to
the mating function introduced by May (1977).
Conversely, when T1 has high values (favorable
environment), the acquired immunity does not
matter because in this region the human host is
exposed to low values of T2 and the population
has low worm burden.

Both acquired immunity models 1 and 2
present the same values for the mean worm
burden and dispersion as a function of the fitted
model’s parameters. However, the picture is
different when the stability of the disease is
analysed. When the relation (1) is obeyed (model
1), the acquired immunity would enlarge the
stability region but the environment dependence
in the transmission of schistosomiasis prevents

T 1
The basic (May’s model and model 1) and
net (model 2) reproduction ratios for
Touros, Brazil and region of Misungwi,

Tanzania
May’s Model
& Model 1 Model 2

r Touros & Misungwi Touros Misungwi

1 1.199 4.672 4.469
4 2.997 11.014 10.593
8 5.394 20.976 19.157

11 7.193 28.466 25.780
16 10.189 40.431 36.296
21 13.186 50.721 46.329
31 19.180 78.760 70.883
35 21.578 84.820 78.231

this enlargement of the stability region. On the
other hand, when (1) is not obeyed (model 2),
then in the immune individuals only the acquired
immunity influences the transmission of schisto-
somiasis, and the stability region is enlarged.
Consequently a model with acquired immunity
has the transmission of schistosomiasis better
regulated than a model where only environment
regulates the transmission. When T2 has low
values (the overall transmission from snail to
human is not favorable) the model 1 is better
than the model 2. The reason is due to the low
force of infection (contact with parasite) and
there is not full build up of the immunity, hence
this community, with only partially effective
acquired immunity, suffers the influence of the
environment to regulate the disease. Conversely,
when the cercariae has high efficiency to search
and penetrate the human host (high values of
T2), the acquired immunity is well established
and further invasion of cercaria in humans is
controlled exclusively by this immunity mechan-
ism.

The other main factor that affects the stability
region is the multiple entrance of parasites in
each contact with infested water. The stability
region, with width practically unchanged, is
shifted downwardly increasing the region where
the disease can exit, when the multiple entrance
parameter is increased. The multiple entrance of
parasites allows much lower values for the
transmission parameters T1 and T2, thus increas-
ing the stability region as described above. The
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multiple entrance also over-disperses the harbor-
ing of parasites in the community.

Finally, we analysed the effect of acquired
immunity and the multiple entrance of parasites
on the basic (net) reproduction ratio. The two
overall transmission parameters were arbitrarily
set from Figs 1, 2 and 3 as T1 0 0.6 and T2 0 12,
and assumed equal for both regions, Touros
(Brazil) and Misungwi (Tanzania). These overall
transmission parameters provide the basic
reproduction ratio for May’s model (single
cercariae penetration per contact with infested
water), R0 =1.199, which is lower than that
predicted by Macdonald’s (1965) model,
R0 =7.2. In Table 1 we show the basic
reproduction ratio for the modified May’s model
and our model 1, given by eqn (19), and net
reproduction ratio for our model 2, given by
eqn (24).

We observe that May’s model and our model
1 have the same value for the basic reproduction
ratio, which increases with increasing of the
maximum number of parasite entrance per
infective contact. This is a consequence of the
fact that in both models the transmission is
regulated by environmental factors. The basic
reproduction ratio is higher than that predicted
by Macdonald’s model only for rq 11. Our
model 2 with acquired immunity also controlling
the transmission presents much higher values
than model 1 for the net reproduction ratio and
differs for both regions. In the region of Touros
the net reproduction ratio is slightly higher than
in Misungwi region. In the former we have S.
mansoni and for the latter, S. haematobium. The
net reproduction ratio is higher than that
predicted by Macdonald’s model for rq 2. Table
1 shows that the immunity constrained reproduc-
tion ratio (Rim) increases faster than the basic
reproduction ratio (R0) when the maximum
number of invading viable cercaria (r) increases.
Hence, both acquired immunity and the multiple
entrance of parasites in each infective event have
to be considered in efforts towards controlling
the disease (Jordan, 1969; Warren, 1973).

We summarize our findings in three points.
(1) For values of T1 higher than 1, the stability

regions for all the three models are similar, but
for values of T1 lower than 1 the model 2 showed
the stability region greatly enlarged. The model

by May and our model 1 have well defined and
fixed stability region. However, our model 2
presents a flexible stability region which implies
an extra source of difficulty to control the
disease.

(2) The effect of allowing multiple parasite
entering although does not influence the
estimation of the prevalence curve parameters, it
acts strongly on the basic (net) reproduction ratio
and on the stability region. In our model we did
not explore totally this heterogeneity when we
fixed the form of the distribution of the number
of worms allowed to enter the host in each
contagious event. The number of invading
cercaria can be assumed to be a constant value
or any form of distribution probability (we used
a binomial distribution). In fact, Barbour &
Kafetzaki (1993) assumed that when a host is
exposed to infection then he (or she) acquires a
number of parasites which has a Poisson
distribution. This assumption is sufficient to
obtain the over-dispersion of the worms in the
host.

(3) The incorporation of the acquired immu-
nity to schistosomiasis transmission modelling
improved in the problems of fitting model’s
parameters (Yang et al., 1997), of explaining the
stability of the disease and of controlling the
disease. But, models without immunity fail to
give a satisfactory answer to the above questions.
For instance, the model developed by Holford &
Hardy (1976) comprising the age structured
frequency of contact with infested water
(age-dependent exposure model) fits very well
the prevalence curve, but their model predicts
quite the same small stability region as the model
by May and underestimates basic reproduction
ratio (Yang, 1985).
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