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A population model applied to HIV transmission considering
protection and treatment
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AJI epidemiological population model is proposed to assess the impact of protection and/or
treatment strategies applied to HIV infection. Sex-education campaigns are the available
protection strategy, and drug (or association of drugs) administration is the treatment strat-
egy considered. In this model we assumed recruitment and differential mortality rates for
the homosexual population. In addition to the classical threshold contact rate related to the
establishment of the disease, we obtained a threshold input rate.
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1. Introduction

In addition to the biological aspects, to control an epidemic epidemiologists must take into
account social factors that can influence the transmission mechanisms of the disease. Pro-
tection of the population through preventive education (and/or vaccination, if available)
and treatment of infected individuals who are transmitting the disease are important. Esti-
mation of the influence exerted by those factors in the overall transmission of the disease
could help in designing intervention to control an epidemic.

There are many papers describing mathematical models dealing with vaccination as a
control strategy for directly transmitted diseases (Anderson & May, 1991; Azevedo et al.,
1994; Dietz, 1975; Greenhalgh, 1990; Hethcote, 1988; Massad et al., 1995; Yang, 1998).
However, there is still no such protection for HTV/AIDS, a disease with a variety of social
components. Looking into HTV sexual route transmission (Anderson & May, 1991; Yang
et al., 1999), preventive education and treatment are available as controlling strategies.

Greenhalgh (1992a) considered a population model for directly transmitted diseases
with a density dependent death rate and, he proposed (1992b) a vaccination strategy and
analysed its effects. Pugliese (1990) applied population models to describe directly sexu-
ally transmitted diseases, taking into account the probability of infection dependent on the
density of susceptible individuals. Both authors considered a constant input rate but treat-
ment strategies are absent from their models. Mena-Lorca & Hethcote (1992) analysed
a population model with constant mortality and input rates, and Gao & Hethcote (1992)
used logistic functions for both rates. In this paper we propose and analyse a population
model with protection and/or treatment considering a logistic function as an input rate and
constant natural and disease-induced (differential) mortality rates.
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238 H. M. YANG AND W. C. FERREIRA JR

Our model is applied to the acquired immune deficiency syndrome (AIDS) disease in-
duced by the human immunodeficiency virus (HIV) to assess the impact of protection and
treatment strategies in a homosexual population. Without an effective vaccine, the protec-
tion of the population can only be achieved by (Strang & Stimson, 1990) sex-education
campaigns (Anderson etal., 1989; Morton, 1992) aiming to induce a behavioural change.
On the other hand, a therapy for HTV-infected and individuals with AIDS is available
(Longini ex al., 1992), although it only prolongs the infectious period without preventing
progression to the AIDS disease. However, in order to receive treatment, HTV infectious in-
dividuals must be reached, and their acquiescence to participate in the therapy programme
obtained.

Two threshold values related to the epidemics are obtained. The first is the threshold
contact rate concerning establishment of the disease to an endemic level. The other is the
threshold input rate which relates the population survival to the additional mortality in-
duced by the disease. Both threshold values, which are dependent on the protection and
treatment strategies and also on the differential mortality rate, influence the three equilib-
rium states: population extinction, disease-free community, and the endemic situation.

The influences of protection and/or treatment strategies are assessed for desirable effects
on the endemic level with respect to external efforts. The stability and the sensitivity of
equilibrium points are analysed by considering variations in the model parameters, and
dynamical approaches to the equilibrium points are also shown. The analysis of the effort-
benefit relation of intervention is left to a further paper.

2. The model

Our model deals with HIV transmission among homosexual individuals within a popula-
tion. The model takes into account—in addition to the classically considered susceptible,
latent, infectious, and diseased individuals—a new group of protected individuals. Also,
infectious individuals are subdivided into classes of participating and nonparticipating in-
dividuals among the available treatments.

Protected individuals (Hyman & Stanley, 1988) are those reached by a sex-education
campaign resulting in the use of condoms, the identification and full knowledge of cofac-
tors, and a decrease in the number of partners, among others factors. However, this is not
a lifelong protection, because the consciousness of HIV transmission can be lost with the
abandonment of protection practices (Power, 1990).

The treatment assumption, of course, is a drastic simplification of the real situation,
where HTV infectious individuals are found by vigilant HIV testing and case tracing, and
then treated. This procedure delays the manifestation of the AIDS disease. In our approach,
the proportion of treated individuals in the whole infectious group might be taken as the
effectiveness of HTV vigilance.

The population model for HTV transmission based on protection and/or treatment strate-
gies is described by compartmentalization of individuals and by parameters relating their
flow between compartments.

The population is, then, subdivided into six compartments x\, xj, *3, X4, xs, and X(,, rep-
resenting, respectively, the number of susceptible, latent, infectious not-treated, infectious
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POPULATION MODEL APPLIED TO AIDS 239

treated, diseased, and protected individuals. The variable X7, given by

6

is the total population size.
The parameters to be used in the model are defined as follows.

(a) The sex-education campaigns for safe sex (blood-derived HTV infection is not con-
sidered) are represented by the protection rate v which influences distinctive effects
on the different classes.

(b) There is a loss of protection described by

f (v) = ?oe-f|l>, (2)

where fo ' s the maximum protection loss rate, f 1 (dimension of time) is such that
the exponential decay indicates an increasing average period of permanence in the
protected group as a result of an education campaign.

(c) Effective HTV vigilance detects a proportion p of infectious individuals. The average
period of AIDS disease manifestation can be set as

Y~1(P)={ (3)
[ \{p>0,

where yo~' is the natural infectious period and y*"1 is the delayed infectious period.
This infectious period is followed by a period of HTV incubation a~x.

(d) The force of infection X (Anderson & May, 1991) takes the form

_ oe\(v)xz + e2(v)x4 + e3(v)x5
A. — p , \fr)

where fi is the contact rate and the £,- (v) (i = 1, 2, 3) are the effectiveness of contacts
of susceptible individuals with infectious not-treated, infectious treated, and diseased
individuals, respectively. The dynamics of sexually transmitted diseases are strongly
affected by education campaigns, because of changes in partnership relations (social
and behavioural (Morton, 1992)) resulting from acquired protective habits. There-
fore, the effectiveness of contact could be described as a function of the protection
rate given by

Ei(v) = {£i-efjt-£tv + ef, (5)

decreasing from e, to e°, where e* is the reluctant factor (dimension of time). An-
derson et al. (1988) gave a different interpretation to the parameters (i and e, calling
them, respectively, the probability of acquiring infection from any one infected part-
ner and the average rate of acquiring partners,

(e) The recruitment rate <p of susceptible individuals will be taken as

<P = <hxT (\ - - ) , (6)

 at U
niversidade E

stadual de C
am

pinas on A
ugust 6, 2015

http://im
am

m
b.oxfordjournals.org/

D
ow

nloaded from
 

http://imammb.oxfordjournals.org/


240 H. M. YANG AND W. C. FERREIRA JR

where 0o is the intrinsic input rate and n is the saturation level of the homosexual
population,

(f) Finally, (J. and a are the natural and differential mortality rates.

The dynamics of HTV infection based on the above descriptions can be represented by a
system of differential equations

x = F[x,0],

where the dynamic variable space is

and the parameter space is

(7)

(8)

(9)

The components of F[x, 9] are given by

—n

Fi-a(l - p)X2 - (fi + yo) X3,

+ y*x4 - (/i + a) x5,

(10)

with the total population following

j 7 =00*7(1 - —j - -ax5, (11)

from relation (1).
In the next section the analysis of the stability of the equilibrium values is performed.

3. Steady-state analysis

We first present the three equilibrium values of system (10), and the stability analysis will
be given later on.

(1) The population is made extinct by the disease; i.e.,

x ' ^ j t , = 0 : for/ = 1,2,

We observe that this is always possible.

,7}. (12)
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POPULATION MODEL APPLIED TO AIDS

(2) The population is disease free; i.e.,

x2=

ri = I 1 — — I n

r , = 0 fori = 2 , 3,4,5,

~0O,

We observe that this is meaningful if and only if 0o > \i.
(3) The disease is at an endemic level in the population; i.e.,

x\ =

- g K p)
I-ftp)

- g ( v , p)

X4 =
- g ( v , p)

[ 0 0 -

a 1 " f(p)

+
" w ,g(v, P) [00 - 0O*(V. P)l 7"

where the auxiliary functions ftp) and g(v, p) are

aa l"vt)(l - p ) Y*

(v, p) =

241

(13)

<">

(15)
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242 H. M. YANG AND W. C. FERREIRA JR

with the threshold contact rate P'h(v, p) given by

P'h(v,p) =

ii _1_ ii _1_ r(\,

(16)
and the threshold value for the intrinsic input rate <p'o

h(v, p) is given by

\ (17)

Since f(p) < 1 is always true, x3 is meaningful if and only if <po > <p'o
h(v, p) and

R > 1 (from the 1 — g(v, p) factor), where the reproduction ratio R is defined as

R = — - — . (18)
g(v, p)

Note also that (p'o
h(v, p) ^ fi, with equality holding if a = 0. The basic reproduction

ratio is Ro = l/g(P, 0) (Anderson & May, 1991).

The stability of the equilibrium points (12), (13), and (14) is analysed in Appendix A.
In the next section we present some simulations which will further illustrate these results.

4. Numerical simulations

In this section we take values for the model parameters considering a moderately at-risk
homosexual population. The disease-related parameters are a = 0.7 years"1, a = 2.0
years"1, yo = 0.102 years"1 (Hessol et al., 1990; Longini etal., 1989), and y* = 0.079
years"1 (according to Longini et al. (1992) treatment increases the delayed infectious pe-
riod by about 30%). The behavioural parameters are f) = 20.0 years"1, ei = 0.05 (Ander-
son et al. (1988) used $E = 0.5 years"1), considering arbitrary values e\ = 0.0001 and
e* = 4.0 years (50% reduction over a one-year time interval (Anderson et al., 1989); i.e.,
ve* ~ 0.7). Assuming that the infectious individuals in treatment and diseased individuals
are positively affected by the protection strategy, we consider ei = 0.005, e\ = 0.0001,
el = 10.0 years, £3 = 0.001, ê  = 0.0001, and £3 = 20.0 years. The parameters for
the induced protection are ?0 = 0.5 and £1 = 5.0 years (supposing that when v = 1.0
years"1 the protection loss is near zero) and the populational parameters are /x = 0.015
years"1, <po = 0.12 years"1, and n = 10000. All these values are assumed to be fixed,
unless otherwise specified. The protection rate v and the proportion p of treated infectious
individuals are the parameters being investigated.

The effects of the protection strategy on the protection loss rate £(v) and the effectiveness
of contact of susceptible individuals with infectious but not-treated individuals £\(v) are
shown in Fig. 1. The exponential decay mimics a kind of Weber-Fechner law (Stevens,
1970) which states that a psychological effect is proportional to the relative increase of the
stimulus.
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POPULATION MODEL APPLIED TO AIDS 243

0.05

0.2 0.4 0.6 0.8
protection rate (I/years)

FIG. 1. (—) The protection loss rate ({(u) x (10 years)"1) and (—) the effectiveness of contact (ei(v)) of
susceptible individuals with infectious but not-treated individuals as a function of the protection rate v.

In the next subsections, the steady-state analysis provides us with threshold conditions
to assess different controlling strategies, this is followed by a dynamics analysis of state
variables, and finally, a sensitivity analysis of the parameters is performed.

4.1 Steady-state analysis

We obtained three equilibrium values (12), (13), and (14) dependent on the reproduction
ratio (18) and on the threshold value for the intrinsic input rate (17), in order to evaluate
the effectiveness of the intervention.

In Fig. 2 the relationship between the threshold contact rate (16) and the treatment pa-
rameter p (with v = 0) and between v (with p = 0) is shown.

The range of the threshold values are: 2.35 years"1 < P'h(0, p) < 18.53 years"1 for
pure treatment, and 2.35 years ' ^ P (v, 0) < 6355.75 years"1 for pure protection.
Figure 2 shows that the pure-treatment strategy is not sufficient to eradicate the disease if
the estimated contact rate 0 is higher than 18.53 years"1. This can be seen more easily in
Fig. 3.

In Fig. 3 the relationship between the reproduction ratio (18) and the treatment pa-
rameter p (with v = 0) and between v (with p = 0) is shown. We use fi = 20.0
years"1. The range of variation of these values are: 8.51 ^ R(0, p) ^ 1.08 and
8.51 ^ R(v, 0) > 0.0031. The eradication of the disease can be achieved by a pure-
protection strategy whenever v is higher than v* = 0.271 years"1, while a pure-treatment
strategy can never eradicate the disease.

This value of the critical protection rate can be evaluated from the transcendental equa-
tion

R(v*,p) = (19)
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0 0.2 0.4 0.6 0.8 1

proportion treated & protection rate (I/years)

FIG. 2. The threshold contact rate /)'* as a function of: (—) p (v = 0), and (—) w (x0.005, p = 0).

0.2 0.4 0.6 0.8 1

proportion treated & protection rate (I/years)

FIG. 3. The reproduction ratio R, setting /) = 20.0 years"', as a function of: (—) p (v = 0), and (—) v (p = 0).

setting p = 0. The range of the critical value with both strategies is 0.271 years ' ^ v* ^
0.0064 years"1, as shown in Fig. 4. The joint strategy shows a decreasing critical value as
the proportion of infectious individuals increases.

In Fig. 5 the relationship between the threshold intrinsic input rate given by (17), and
the treatment parameter p (with v = 0) and between v (with p = 0) is shown. The range
of variations are: 0.088 years"1 ^ <t>'0

h(0, p) ^ 0.020 years"1, and 0.088 years"1 ^
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0.30-,

245

0.25-
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a
o•a ^
£ I 0.15

g 0.20

|
0.10

0.05

0.00
0.00 0.20 0.40 0.60 0.80 1.00

proportion treated

FIG. 4. The critical protection rate v* as a function of the proportion of infectious individuals in treatment, p

0.1 n

0.08-

3-0.06-1
•a s

J ~ 0.04 -I
S

•8
0.02-

0 0.2 0.4 0.6 0.8 1
proportion treated & protection rate (I/years)

FIG. 5. The threshold intrinsic input rate <fr'o
h, setting 0 = 20.0 years"1, as a function of: p (—) (v — 0). and

(—) v {p = 0).

<p'0
h(v,0) ̂  \L = 0.015 years"1. When v > v* (and p = 0), then R < 1 so g(v, p) > 1

and <p'0
h(v,0) < \i. Therefore, in this situation we expect the population to die out if

<po < ix and for it to tend to the disease-free equilibrium if <po > H-
The relationship between the equilibrium values (given by their fractions X,) as a func-

tion of the treatment parameter p (v = 0) and between v (with p = 0) is shown in Fig.
6(a) and (b), respectively.

We used equilibrium fractions X, = 0.118, X2 = 0.042, X3 = 0.735, X5 = 0.105,
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0.2

(b)

0.4 0.6
protection rate (I/years)

0.8

FlG. 6. The equilibrium proportions Xj = XJ/XJ (i = 1-6) (whose curves are labelled by their respective
numbers): (a) as a function of p (v = 0), and (b) as a function of v (p = 0). For p = 20.0 years"'.

and X4 = Xe = 0.0 when p = 0 and v = 0, as given in Table 1. Figure 6(a) shows
the effect of the pure-treatment strategy. It can be noted that both susceptible individuals
(X\) and infectious individuals receiving treatment (X4) increase as p increases up to about
80%. Afterwards X4 decreases as X\ increases rapidly, revealing that the treatment strategy
becomes distinctively effective for higher values of p. The treatment does not prevent the
development of the AIDS disease or the advent of new infections (X2 and X5 decrease
slowly with p). Therefore, the overall transmission of HIV is strongly affected only when
the treatment proportion is near unity. Figure 6(b) shows the eradication of the disease
in the presence of the pure-protection strategy. Note that we have cfo > fi, then above
the critical value v* almost all individuals are protected (X&) by the education campaign
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TABLE 1

The equilibrium proportions X; = Xj/x-j (i = 1 , . . . . 6)
given by equations (13) and (14) for cases a-e, with

their respective threshold values

p
V

pth
.th

*0

xx

x2x3
x4

*6

a

0
0

2.351
0.088

0.118
0.042
0.735
0
0.105
0

2636

b

0.25
0.15

8.963
0.058

0.280
0.026
0.328
0.136
0.062
0.168

5141

Case
c

0.50
0.25

31.82
0.015

0.388
0
0
0
0
0.612

8750

d

1.0
0

18.53
0.020

0.927
0.003
0
0.063
0.007
0

8341

e

0
0.3

26.23
0.015

0.297
0
0
0
0
0.703

8750

in the presence of a low proportion of individuals at-risk. Consequently, we have a herd
immunization due to the absence of HFV-infected persons.

The pure-treatment strategy, which is strongly dependent on public-health surveillance,
has limited efficiency even when almost all MTV-infected individuals are found and are
convinced they should follow the treatment. On the other hand, the protection strategy can
lead to the eradication of the disease if an appropriate and feasible sex-education campaign
takes place in the homosexual community.

Next we consider testing the model using some values for the parameters p and v. Due
to the absence of estimated data, we take those values representing a wide variation. In
Table 1 we present the equilibrium and threshold values for five cases. In the following
subsections, the analysis will concern Table 1.

4.2 Dynamics analysis

Equation (10) can be solved numerically using the fourth-order adaptive stepsize controlled
Runge-Kutta method (Press et al., 1989). The assumed initial values are Xi(0) = 0.6,
X2(0) = 0.2, X3(0) = X5(0) = 0.1, X4(0) = X6(0) = 0.0. In order to solve equation
(10) with these initial conditions we set ^ (0 ) = 1000.

Figure 7 shows the numerical simulation for the five cases in Table 1. We will comment
on each case separately.

Figure 7(a) shows a population without any kind of intervention (case a); i.e., x$(t) = 0
and X(,(t) = 0. The basic reproduction ratio RQ (= /?(0,0)) is 8.51. In this case the contact
rate at threshold (2.35 years"1) is much lower than its actual value (20.0 years"1), while
the intrinsic input rate at threshold (0.088 years"') is lower than, but near, its actual value
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0.80 n

25.00

20.00

(b)

40.00 60.00
time (years)

80.00 100.00

FlG. 7. Numerical simulation of the system dynamics in the cases: (a) p = 0 and v = 0, (b) p = 0.25 and
v = 0.15

(0.12 years ' ) . So we have a high prevalence in a small-sized population. It should be
observed that when the infectious individuals are not treated (x^) the equilibrium quickly
attains its asymptote. Since the population size is very low (Table 1) a stochastic approach
should be used. However, Fig. 7(a) can still be used as an insight into how the disease
progresses.

Figure 7(b) shows a population under treatment and protection strategies (case b) that
do not eradicate the disease. The reproduction ratio is 2.23, and so the disease is still at
an endemic level. The susceptible (x\) and latent fo) individuals are diminished to about
one-half and one-eighth of their initial values. At equilibrium all individuals with HTV
comprise about 65% of the population. The asymptotes are reached after a long time (100
years).
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0.60

10.00

(c)

20.00 30.00
time (years)

40.00 50.00

0.8
J3
a

i 0.6-

0.4-

02-

(d)

20 30
time (years)

FIG. 7. (c) p = 0.50 and v = 0.25, (d) p = 1.0 and v = 0

Figure 7(c) shows a population under treatment and protection strategies (case c) which
lead to the eradication of the disease. The reproduction ratio is 0.63, and we must have
;t2(oo) = *3(oo) = .14(00) = X5(oo) = 0. The numbers of infectious individuals (̂ 3
and X4) increase rapidly in the first moments followed by a slow decrease. The protected
individuals (x(,) prevail in the equilibrium, which is attained after a relatively long period
of time.

Figure 7(d) shows the effect of a pure-treatment strategy (case d) over all infectious
individuals, which results in X(,(t) = 0 and ^3(00) = 0. The reproduction ratio is 1.08. We
can observe that ^2(00), X4(oo), and ^5(00) have very low values and all the equilibrium
values are reached after a long time.

Figure 7(e) shows the effects of an efficient pure-protection strategy (case e), with
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0.60

2

e

s
o

•a

0.40

g 0.20

0.00
0.00

(e)

20.00 40.00

time (years)
60.00

FIG. 7. (e)p = 0 and v = 0.3. For 0 = 20.0 years"'.

TABLE 2

The eigenvalues corresponding to cases a-e shown in Table 1. The
symbol i stands for the imaginary part

a

iff] - 2 . 1 9
if2 —0.66+iO. 13
^3 —0.66—iO.13
^4 -0.04
^5 -0.015
^6 -0.52
f-j -0.12

Case
b

-2.14
-0.70
-0.47
-0.07+i0.05
-0.07-i0.05
-0.015
-0.09

c

-0.41
-0.015
-2.01
-0.72
-0.04
-0.09
-0.11

d

-2.11
-0.01
-0.015
-0.72
-0.09
-0.52
-0.12

e

-0.43
-0.015
-2.11
-0.03
-0.72
-0.11
-0.12

xn(t) = 0. The reproduction ratio is 0.76, and the disease is eradicated in a similar way to
casec.

All the above cases were simulated up to f = 1000 years without any relevant changes
after the range of time shown in Fig. 7. The stability and the asymptotic approach of the
equilibrium points can be checked using the eigenvalues shown in Table 2. Cases a and b
present a pair of complex eigenvalues.

4.3 Sensitivity analysis

The sensitivity of the model with respect to its parameters gives the scenario of the possible
outcomes under feasible intervention strategies. The sensitivity of each jr,- with respect to
the model parameters is ranked according to their contributions to its variance. Setting
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TABLE 3
The rank of parameters contributing to the sensitivity analysis for case c. When there are alterations
in the rank, the actual rank is presented in parentheses. Note that the multiplying factor inside the

parentheses applies to the whole column

V

n

to

1.83
1.41
0.52
0.33
0.05
0.03

6) o&xVfi)

0.95 (2)
5.03(1)
0.27
0.17
0.08(6)
0.10(5)

4(xK)S)

0.84(2)
33.4(1)
0.24(5)
0.15(6)
0.75(3)
0.68(4)

^ ( x l O * )

8.29
1.58(3)
2.34(2)
1.50(4)
0.09
0.03

^ ( x ' O 5 )

12.9
3.20(3)
3.63(2)
2.32
0.17
0.07

3.23
1.15
0.91
0.58
0.05
0.02

a relative simultaneous error of 5% for all the parameters, we use equation (B.4) from
Appendix B to perform the sensitivity analysis for the cases shown in Table 1.

In case c the disease is eradicated by protection (p = 0.50) and treatment (v = 0.25
years"1) strategies (with R = 0.63). The sensitivity analysis is shown in Table 3.

We observe that a 5% variation of the parameters may dramatically change the sce-
nario to a moderate-level endemic. This case corresponds to the disease eradication due
to the protection strategy. Therefore, all contributions come from parameters related to
protection (v, fi, and fo) and vital dynamics (n, n, and <£o). The variance of each x-, is
given by the column elements. The parameter v (<fo) occurs most frequently as the largest
(least) contributor to the variation of the dynamic variables. However, for xi and XT, the
largest contributor is n. The most affected dynamic variable is X(, (5.95 x 106), while xj
(6.60 x 105) is the least affected. The parameters not shown in Table 3 are those presenting
no contribution to the variance of dynamic variables.

In case e the disease is eradicated by a pure-protection (v — 0.3 years"1) strategy (with
R = 0.76). Table 4 shows the sensitivity analysis. Similar to case c, the parameters related
to protection are among the most sensitive. Contrary to case c, the rank of the population
carrying capacity of the homosexual population is followed by £i and fo- Still, <po remains
the least sensitive parameter. The most affected dynamic variable is X(> (l .29 x 107), while
JC2 (3.22 x 106) is the least affected. In the absence of treatment, as expected, the vari-
ance of the number of incubated (*2) and diseased (x$) individuals increased, as did x$,
compared to case c.

The strategy without any kind of intervention (case a, with the basic reproduction ratio
Ro = 8.51) is shown in Table 5. In this case, the rank is preserved for almost all the
dynamic variables, except for X4 and x$ where the carrying capacity and the incubating
rate exchange their positions. As expected, in such an endemic situation, the parameters
related to the disease (CT, /J, and a) also contribute to the variance. The parameter <po (£3)
is always the largest (least) contributor to the variance variation of the dynamic variables.
The most affected dynamic variable is x5 (1.42 x 107), while x6 (9.77 x 106) is the least
affected.

The strategy where all the infectious individuals are treated (case d, with p = 1.0 and
R = 1.08) is shown in Table 6. In this case, all contributions come from treatment (p, y*,
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TABLE 4
The rank of parameters contributing to the sensitivity analysis for case e. When there are alterations

in the rank, the actual rank is presented in parentheses

V

fl
Cn
n
fi

00

<?l (xlO6)

6.01
1.95
0.87
0.83
0.06
0.02

ax
2

2(xl06)

0.14(2)
0.05 (5)
0.02 (6)
2.88(1)
0.07(3)
0.06(4)

a}3 (xlO6)

0.14(2)
0.05(5)
0.02(6)
2.93(1)
0.07(3)
0.06(4)

3.04
0.98
0.44
0.06
0.02
0.001

) ^ ( x l O 6 )

4.22
1.37
0.61
0.11
0.023
0.022

4 (xlO6)

8.27
2.68
1.19
0.64
0.07
0.01

TABLE 5
The rank of parameters contributing to the sensitivity analysis for case a. When there are alterations
in the rank, the actual rank is presented in parentheses. The dagger symbol stands for the number

not being multiplied by the factor

a
n
a

YO

P

£3

a2, (xlO6

5.20
3.22
0.67
0.61
0.38
0.21
0.035
0.034
0.28*

') 0,2 (xlO6)

5.49
3.36
0.70
0.64
0.40
0.22
0.042
0.041
0.34*

4(xlO«

5.57
3.41
0.71
0.64
0.41
0.22
0.041
0.040
0.31*

') allxKfi)

5.31
3.23
0.68(4)
0.77(3)
0.50
0.23
0.034
0.033
0.27*

a2, (xlO6)

6.95
4.30
0.89(4)
1.01(3)
0.66
0.30
0.044
0.043
0.35*

a26(xl06)

4.90
3.04
0.63
0.57
0.36
0.20
0.033
0.032
0.26*

£2. and £3) and vital dynamics (n, <po, and (j.) parameters, and parameters related to the
disease (a, fi, and a). The variance of each Xj is given by the sum of the column elements.
The vital dynamics parameters always occur as the great contributors to all the dynamic
variables. The rank is preserved for x\ and X(,. The parameter n (£3) is always the largest
(least) contributor to the variation of the dynamic variables. The most affected dynamic
variable is X3 (1.55 x 1010), while X6 (1.29 x 107) is the least affected. The present case
shows the largest variation in the dynamic variables.

The sensitivity of an endemic situation under the protection (p = 0.25) and treatment
(v =0.15 years"1) strategies (case b, with R = 2.23) is more uniformly dependent on all
the parameters in the model, as shown in Table 7. The parameter n (£3) is always the largest
(least) contributor to the variation of the dynamic variables. The most affected dynamic
variable is x3 (1.08 x 107), while x6 (6.08 x 106) is the least affected.

5. Discussion

The model presented in this paper gives insights into AIDS epidemics among homosexual
communities considering some kinds of protection and/or treatment strategies. The main
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TABLE 6
77K rank of parameters contributing to the sensitivity analysis for case d. When there are alterations
in the rank, the actual rank is presented in parentheses. The dagger symbol stands for the number

not being multiplied by the factor

n
<h

P
a
P

y*
a

*3

a 2 (x l0* )

12.8
0.51
0.25
0.019
0.017
0.012
0.011
0.010
0.006
5.6t

^ ( x l O 6 )

335
13.2
6.43
0.20(6)
0.19(7)
0.56(4)
0.54 (5)
0.11
0.07
263*

i ^ ( x l O 7 )

1455
57.6
28.0
0.67 (6)
0.62 (7)
2.70 (4)
2.59(5)
0.38
0.23
12636*

a 2 ( x l 0 * )

340
13.4
6.53
0.21 (6)
0.19(7)
0.60(4)
0.55(5)
0.12
0.07
266*

^ ( x l O * )

21.8
0.86
0.42
0.020(6)
0.018(7)
0.022 (4)
0.021 (5)
0.010
0.009
10*

a26(xl0*)

12.1
0.48
0.23
0.017
0.016
0.011
0.010
0.009
0.006
5.3*

TABLE 7

The rank of parameters contributing to the sensitivity analysis for case b

n

<h
a

M
P

e*
a

Co
H)
Cl
V

p

Y*

ft
 

ft
O

O
—

O

£ 3
£o

*3

3.0 x 10*
2.6 x 10*
8.5 x 105

1.2 x IO5

1.1 x 105

1.0 x 105

3.7 x IO4

1.5 x IO4

9.5 x 103

6.8 x 103

5.3 x IO3

5.6 x 102

5.2 x IO2

6.3 x IO1

5.5 x IO1

2.9 x IO1

2.8 x 10- '
1.4 x 10- '
8.8 x IO-2

4.4 x 10~2

1.2 x 10~2

4.1 x 10* 4.7 x 10*
3.7 x 10* 4.2 x 10*
1.1 x 10*
1.6 x IO5

2.0 x IO5 :
1.9 x lO 5 :
6.7 x IO4

1.9 x lO 4 :
i.8 x io4 :
8.9 x IO3

9.9 x IO3

9.3 x IO2 i
6.6 x 102

1.2 x 102

7.0 x IO1

5.3 x IO1 <
5.1 x 10- ' .
2.6 x 10"' .
1.6 x 10- '
8.0 x lO-2 <

2.2 x 10"2 :

.2x 10*

.7x IO5

2.3 x IO5

2.2 x IO5

7.9 x IO4

1.6 x IO4

2.1 x IO4

.2 x IO4

1.3 x IO4

$.4 x IO2

.8x IO3

.3x IO2

.9
5.2 x IO1

5.9 x 10- '
3.0 x IO-1

1.9 x 10~'
).4 x 10"2

2.6 x IO-2

2.9 x 10*
2.6 x 10*
8.3 x IO5

1.2 x IO5

1.1 x IO5

1.0 x IO5

3.6 x IO4

8.2 x IO3

9.6 x IO3

7.8 x IO2

5.4 x IO3

3.9 x IO2

6.0 x IO2

6.2 x IO1

8.8 x IO2

2.9 x IO1

2.7 x 10"'
1.4 x 10"'
8.5 x IO-2

4.3 x IO-2

1.2 x 10~2

4.0 x 10*
3.6 x 10*
1.1 x 10*
1.7 x IO5

1.4 x IO5

1.3 x IO5

4.8 x IO4

4.2 x IO3

1.3 x IO4

1.0 x IO3

7.3 x IO3

5.3 x 102

1.5 x 102

8.3 x IO1

1.3 x lO-2

3.8 x IO1

3.6 x 10"'
1.9 x 10- '
1.1 x 10- '
5.7 x lO-2

1.6 x lO-2

°l
2.6 x 10*
2.3 x 10*
7.5 x IO5

1.0 x IO5

9.5 x IO4

9.1 x IO4

3.3 x IO4

1.3 x IO4

1.7 x IO4

6.0 x IO3

9.8 x IO3

2.6 x IO3

4.6 x IO2

5.6 x IO1

4.8 x IO1

2.6 x IO1

2.5 x 10- '
1.3 x 10- '
7.8 x IO-2

3.9 x lO"2

1.1 x lO-2
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TABLE 8

The actual equilibrium values and their deviations (in parentheses) induced by the
variations in the parameters

Case

• * " >

310 (3220)
113 (3300)
1937 (3322)
0 (3294)
276 (3769)
0 (3126)

1442 (2620)
132 (3093)
1687 (3288)
700 (2598)
318 (3051)
861 (2466)

3392 (2042)
0 (812)
0 (1898)
0 (1176)
0 (1492)
5358 (2440)

7729 (3693)
25 (18873)
0 (124424)
529 (19014)
58 (4819)
0 (3585)

2596 (3119)
0 (1794)
0 (1807)
0 (2129)
0 (2517)
6154 (3586)

goal is to show that a well-chosen mixture of protection and treatment strategies might
offer useful options for health policies.

A sex-education strategy (and/or vaccination, when available) is shown to be much more
efficient than a treatment strategy. We observe that a pure-protection strategy, when cor-
rectly applied, can eradicate the disease, while a pure-treatment strategy, for reasonably
large values of /}, can be only partially successful (Fig. 2). On the other hand, the pro-
tection strategy based on a sex-education campaign has a limited value due to a kind of
social Weber-Fechner effect (Stevens, 1970) and is very difficult to assess. However, the
treatment strategy depends heavily on the HIV vigilant testing and case tracing, which
must be almost total to have some efficacy as a controlling strategy, making it an extremely
expensive procedure.

We describe next in detail some strategy scenarios through the results of a sensitivity
analysis.

In endemic situations (Tables 5-7) we observe the following descending rank trend:
vital dynamics parameters (/z, <po, and n), disease transmission parameters (CT, /3, and a),
controlling parameters (p, v, f (v), and £,- (v)), and the other parameters. The treatment
parameters (p and, y*) are, in general, less sensitive than the protection parameters (v, fo>
and fi). This can also be seen from Fig. 6. The dynamical variables x\ and Xf, are more
sensitive to variations in v, while x$ is more sensitive to variations in p, in a joint strategy,
as expected.

In eradication states due to the joint strategy (Table 3) and the pure-protection strategy
(Table 4), dynamic variables show a nonsensitivity to variations in p and rank alterations
with respect to the v and n parameters. This can be shown from Fig. 3, where we observe
that the minimum reproduction ratio value is always higher than one for the pure-treatment
strategy. Interestingly, treatment strongly influences the saturation level n, which might be
interpreted as a behavioural change induced by social intervention.

Table 8 shows the actual equilibrium values and their deviation (the square root of the
variance) for the cases a-e induced by the relative 5% variation in all parameters. Table 8
shows the very remarkable consequences for the epidemic dynamics resulting from health
policies. For instance, consider the situation where all parameters vary in the worst di-
rection. We observe that cases c and e show relatively small variations in the equilibrium
values and behave quite similarly when compared to the whole picture. In case e the disease
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is controlled solely by the protection strategy, while in case c both strategies are present,
resulting in a more robust health policy. On the other hand, case d, which includes a treat-
ment strategy only (however, it reaches all infectious individuals), shows the appearance
of a highly endemic-level situation.

Summarizing the above discussion, we conclude that the protection and treatment strate-
gies are complementary. Consequently, according to the model, the desirable strategy con-
sists of efficient HTV vigilance testing encouraging infectious individuals to participate
in a treatment programme, together with preventive education reaching effectively both
kinds of individuals: at-risk and in-treatment. In this situation, susceptible individuals are
protected by the so-called herd immunization.

The dynamics analysis also shows that the protection strategy is much more efficient
than the treatment strategy, although it must be carefully used since there is a quick return
to the prior endemic situation when this strategy is interrupted.

Finally, the logistic density-dependent recruitment rate was chosen with the aim of at-
taining a realistic nonexploding homosexual population, which would not be the case with
a Malthusian vital dynamics. Lipsitch & Nowak (1995) considered constant and Malthu-
sian recruitment rates to analyse the evolution of HTV virulence. Indeed, they have referred
to, but not considered, a density-dependent saturation in order to obtain analytical results
(Lipsitch etal., 1996). By using a logistic input we could calculate the thresholds and equi-
libria values and follow up the dynamics through its steady state. From Table 1 we observe
that the contact-rate threshold depends strongly on the protection rate rather than on the
treatment proportion.
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Appendix A: Stability analysis

The equilibrium point x l (=0 ) needs a special approach since the force of infection A. is indetermi-
nate. Applying the Gronwall inequality (Grimshaw, 1990) to equation (11), we conclude that X7 -»• 0
as t -*• co if

00 **IL- (A.I)

Therefore, the stability of x1 is guaranteed if (A.I) is obeyed. Otherwise, from the same equation we
have

d . . . 0o 2 > Q

n
(A.2)

if xi ~ 0. Hence the origin is unstable. Thieme (1992) and Greenhalgh & Das (1995) obtained
similar results for related models.

The stability of the other two equilibrium states are analysed through the eigenequation
(Grimshaw, 1990),

V(t) = det [J* - ^17x7] = 0, (A.3)

where I7X7 is the identity matrix, and

9F [x, 6]
( A > 4 )

is the Jacobian matrix calculated at the equilibrium values. If all the eigenvalues i// of an equilibrium
state have negative real parts (Arrowsmith & Place, 1986), then it is stable.

In case of a disease-free population, substituting x2 in equation (A.3) results in the eigenvalues

i>\ = -li.

plus the eigenequation

with

+ a0. (A.5)

a3 = (fi + a) + Ox + YO) + Qi + y *) + (ji + a),

a2= {(

+ [0* + a) + (ji + or)] [(/* + yo) + (ji + y*)]) 1 -
L

a\ =

a0

+(M + yo) [/x + y*] [(M + a) + 0* + a)]} 1 - - r - ^ .
L P\ (v 'P)J

= (M + a)(P- + yo) [M + Y*} (ji + a)\\- / j ,

(A.6)
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where

1

fl>*(i> p) —
O - p) + [{(M + n) + <ji + or)) ̂ (u) + y't3(v)] p)

(Ox + o)(jl + or) + (M + n>) [H + Y'] + [Oi + o) + (M + <»)] [(M + M)) + (M + >•*)]) " + " t / ?

(A.7)

and the threshold contact rate Pth{v, p) is given by (16).
The disease-free population is a stable equilibrium point if

<h > M (A.8)

and the fourth-order algebraic equation of (A.5) obeys the Routh-Hurwitz conditions (Murray, 1989).
The eigenequation (A.5) comes out from the Jacobian matrix JJ given by

o
op 0 - (M + Y*) 0
0 yrj y* - ( / * +

Note that the diagonal elements of —JJ are positive and their off-diagonal elements are nonpositive.
Hence - J J is an A/-matrix (Berman etal., 1989), and, therefore, if and only if OQ > 0, that is,

P<p'h(v,p), (A.9)

then the trivial equilibrium point is stable. Note that the condition (A.9), due to the relations

Ptlx(v> p) < P'/'iv, p),
(A. 10)

flth(v,p)<f}'2
h(V,p),

implies that a, > 0 (j = 1 and 2).
The equilibrium points were evaluated numerically by the Newton-Raphson method and the dy-

namic trajectories were obtained by a fourth-order stepsize-controlled Runge-Kutta method (Press
etal., 1989).

Appendix B: Sensitivity analysis

Using the absolute sensitivity function (Frank, 1978), we have the covariance matrix for the dynamic
variables x

V, = HV0HT, (B.I)

where Vg is the covariance matrix for the 21 parameters of 6 stated in (9) and H is the sensitivity
matrix given by

H = J - ' P , (B.2)

where P is given by
SF[x,0]

P =
36

(/ = 2, 3), (B.3)

and the Jacobian J is given by (A.4), also evaluated only for x2 and x3.
If we consider \Q to be diagonal, with its diagonal elements given by 0% , where j = 1-21, then
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the variances related to the dynamic variables (the diagonal elements of Vx) are given by

21
al = T,hkjal with* = 1.2,.... 7. (B.4)

7 = 1

This expression also gives the contribution of each parameter to the dynamic-variables sensitivity.
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