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The Loss of Immunity in Directly Transmitted Infections
Modeling: Effects on the Epidemiological Parameters
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When directly transmitted infectious diseases are modeled assuming an everlasting
induced immunity (and constant contact rate), there are well-established formulas
to deal with, which is not true if we include the loss of induced immunity. In
general, the immunity induced by the disease is everlasting. We propose a model
considering the loss of immunity and present methods for the estimation of two
epidemiological parameters: the force of infection and the basic reproduction
ratio. We also analyze the effects of the loss of immunity on these parameters.
Based on these results, we conclude that reinfection can play an important role
in highly vaccinated populations.
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1. INTRODUCTION

Since the observation that the immunity induced by the natural (environment
circulating virus) infection of many directly transmitted infectious diseases may
not be an everlasting protection, because the immunity is boosted by secondary
infections amongst already exposed individuals Markowitz et al. (1990), some ef-
forts have been done to explain its effects on the overall dynamics, e.g.
Rouderfer et al. (1994).

Nowadays, the question of immunity waning cannot be neglected due to the in-
troduction of mass vaccination strategy, roughly two decades ago, against directly
transmitted infections, even though the disease-acquired immunity may appear
to be everlasting. There are two failures concerned with vaccination-induced
immunity. The first, not considered in this paper, is the vaccination failure to
induce the development of the immune response, and the other failure is the ini-
tial development of the vaccine-induced immunity that wanes over time (Mathias
et al., 1989). Due to these failures, the loss of immunity can have a signifi-
cant impact on vaccination programmes (Rouderfer et al., 1994) and, particularly
in rubella infection, a non-negligible problem comes out in a highly vaccinated
population (Massad et al., 1994; Massad et al., 1994), because the number of
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congenital rubella syndrome (CRS) could increase when women lose induced
immunity during their pregnancy.

When we analyze data on the basis of models assuming that the disease-induced
immunity is everlasting, we can apply the classical results to obtain, simultane-
ously, the following two epidemiological parameters. First, the force of infection
can be estimated as the average value of the catalytic approach (Muench, 1959),
which is minus the derivative of the logarithm of the estimated age-specific frac-
tion of susceptible individuals, and secondly, the basic reproduction ratio which
can be derived as the inverse of the estimated fraction of susceptible individuals
(Anderson and May, 1991). Both, age-specific and population-related fractions
of susceptible individuals, can be derived from seroprevalence. However, if the
loss of induced immunity is considered in the model, the catalytic method re-
lated to the force of infection cannot be applied, while the formula for the basic
reproduction ratio remains valid. In other words, when a model with reinfection
is considered, we can estimate one of the two epidemiological parameters and,
then, we derive the other.

We propose a model considering a constant contact rate taking into account
the loss of immunity. We develop it by an age-structured system of partial
differential equations (Dietz, 1975), and analyze it in the natural conditions, that
is, we restrict ourselves to the assessment of the effects of the loss of immunity on
the force of infection and on the basic reproduction ratio, as estimated from data
in the absence of vaccination strategy. By using a deterministic approach, we
are restricted to large-scale patterns. We apply the model to rubella serological
survey screened up from a non-vaccinated community of Caieiras City, Brazil
(Azevedo Neto et al., 1994), to assess both the force of infection and the basic
reproduction ratio for each possibly attributable value for the loss of immunity
parameter (as the true value is unknown).

The above observations underline the importance of this preliminary analysis
introducing a methodology to deal with reinfection. In a further paper, we will
deal with the estimation of the force of infection and the effective vaccination
rate while taking into account the loss of vaccine-induced immunity (Yang et
al., 1996).

2. THE MODEL

We assume that there is a loss of disease-induced immunity. Let us consider a
closed community divided into four groups: X(t,a), H(t,a), Y(t,a) and Z(t,a)
which are, respectively, the age-distributed (a) susceptible, latent, infectious and
immune individuals at time t . These four groups can be described dynamically
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by the following set of partial differential equations,

∂

∂t
X(t,a)+ ∂

∂a
X(t,a) = πZ(t,a)− [µ+ λ(t)]X(t,a)

∂

∂t
H(t,a)+ ∂

∂a
H(t,a) = λ(t)X(t,a)− (µ+ σ)H(t,a)

∂

∂t
Y(t,a)+ ∂

∂a
Y(t,a) = σH(t,a)− (µ+ γ )Y(t,a)

∂

∂t
Z(t,a)+ ∂

∂a
Z(t,a) = γY(t,a)− (µ+ π)Z(t,a),

(1)

where

λ(t) =
L∫

0

β ′Y(t,a)da (2)

is the natural (in the absence of vaccination strategy) force of infection, µ is
the natural mortality rate, σ−1 and γ−1 are, respectively, the average incubation
and recovery periods, β ′ is the constant contact rate per individual (see Yang
et al. (Yang, 1997) for the case of an age-specific contact rate) and π is the
immunity-loss rate. Finally, L (in average, µ−1) is the human life expectancy of a
community. Neither maternally derived antibodies nor disease-induced mortality
are considered.

System (1) has the following equation for the total number of individuals,

∂

∂t
N(t,a)+ ∂

∂a
N(t,a) = −µN(t,a), (3)

where N(t,a) = X(t,a) + H(t,a) + Y(t,a) + Z(t,a). If we assume that the
mortality is balanced by the natality, then the birth rate at the population level
should be given by N∗ = µN, where N is the constant population size.

System (1) is a well-posed problem with the following initial and boundary
conditions. The boundary conditions are

X(t, 0) = N∗

H(t, 0) = Y(t, 0) = Z(t, 0) = 0
X(t, L) = 0
H(t, L) = Y(t, L) = Z(t, L) = 0

(4)

since we are not considering the maternally derived antibodies or the loss of
immunity. The initial conditions are generically stated as

X(0,a) = X0(a)
H(0,a) = H0(a)
Y(0,a) = Y0(a)
Z(0,a) = Z0(a),

(5)
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because we do not know how the disease was introduced into the community,
but play an important rule when the vaccination strategy is considered.

Observe that the model uses age as a bookkeeping variable, which helps to
estimate, in the steady state, the force of infection from age-specific data. But,
none of the life history of contact or infectivity/susceptibility parameters is taken
to be age-dependent. So, purely within the model, age is irrelevant.

The model incorporating the reinfection is treated as follows. In subsection 2.1
we present the results obtained disregarding the age dependency. This frame-
work, where the basic reproduction ratio (R0) and the force of infection (λ) are
calculated from the estimated fraction of susceptible individuals based on a sero-
prevalence data, is called an R0 approach. Section 2.2 develops the age-dependent
framework in the steady state. In this case, besides the R0 approach, we have
the λ approach, which estimates the force of infection from seroprevalence data.

2.1. The age-independent results.In this section we outline the age-independent
results considering a constant population size. Equations (1) and (3) can be inte-
grated over all ages (0 ≤ a ≤ L , in practice letting L →∞) using the boundary
conditions (4). Then, the dynamics of directly transmitted infections is, according
to the model, described by



d

dt
x(t) = µ+ πz(t)− [βy(t)+ µ]x(t)

d

dt
h(t) = βy(t)x(t)− (σ + µ)h(t)

d

dt
y(t) = σh(t)− (γ + µ)y(t)

d

dt
z(t) = γ y(t)− (π + µ)z(t),

(6)

where x(t) = ∫∞0 X(t,a)da/N, and h(t), y(t) and z(t) defined similarly as x(t),
are the average fractions of individuals in each class. The force of infection,
from definition (2), is given by λ(t) = βy(t), where the transmission coefficient
β = β ′N is the total contact rate.

When case notification data are available, then we can use system (6) to esti-
mate the force of infection by applying the non-linear regression method (Bates
and Watts, 1988), as Raimundo et al. (1996) did to estimate the transmission
coefficients of HIV and tuberculosis infections. But we confine ourselves to the
steady state analysis.

System (6) has two equilibrium points. The trivial or disease-free equilibrium
point is given by x = 1 and h = y = z = 0. The non-trivial or endemic level
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equilibrium point is

x = 1
R0

h = µ(µ+σ)(µ+γ )2(µ+π)(R0−1)
βσ [(µ+σ)(µ+γ )(µ+π)−σγπ ]

y = µ(µ+σ)(µ+γ )(µ+π)(R0−1)
β[(µ+σ)(µ+γ )(µ+π)−σγπ]

z = µγ (µ+σ)(µ+γ )(µ+π)(R0−1)
β(µ+π)[(µ+σ)(µ+γ )(µ+π)−σγπ] ,

(7)

where the basic reproduction ratio R0 is

R0 = β

β th
, (8)

with β th being the threshold contact rate defined by

β th = (µ+ σ)(µ+ γ )
σ

. (9)

Hence, as expected, R0 is clearly independent of the immunity-loss rate.
Liu et al. (1987) provided the stability analysis of the dynamics system (6) by

means of the characteristic equation. Briefly, they stated that the trivial equi-
librium point is stable if R0 ≤ 1, and the non-trivial equilibrium point is stable
if R0 > 1. Therefore, at R0 = 1 there is bifurcation from the trivial to the
non-trivial equilibrium point, and, in this situation, the parasitic specie is capa-
ble of invading, and establishing itself within, a host population (Anderson and
May, 1991; Diekmann et al., 1991).

Observe that, once the fraction x could be estimated, the basic reproduction
ratio can be calculated as its inverse; and, from the latter value, the force of
infection (λ = βy) can be obtained from the third equation of (7), when R0 > 1,
through

λ = µ R0 − 1

1− σγπ

(µ+σ)(µ+γ )(µ+π)
. (10)

We observe that the force of infection depends on the immunity-loss parameter
π . This methodology, where the fraction x is estimated, and from which R0 and
λ are derived, is called the R0 approach.

The major effect of the loss of immunity is to contribute substantially to the
increase in the size of the group of susceptible individuals (Rouderfer et al., 1994).
Then, in proportion to the increasing values assumed by the immunity-loss rate,
we must have a low-valued basic reproduction ratio, as can be seen from the
first relation of (7). Contrarily, the force of infection must assume high value,
according to expression (10).
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2.2. A methodology to deal with reinfection.In this section we analyze the
endemic level equilibrium point in the steady state taking into account the age
structure in the population.

Equations (1) and (3) are combined to yield the system of equations for the
fractions of age-structured individuals in the steady state

d

da
x(a) = πz(a)− λx(a)

d

da
h(a) = λx(a)− σh(a)

d

da
y(a) = σh(a)− γ y(a)

d

da
z(a) = γ y(a)− πz(a),

(11)

where the age distributed fractions of individuals in each class are x(a) =
X(a)/N(a) and h(a), y(a) and z(a) are defined similarly as x(a). Note that
the age-distributed population is given by N(a) = N∗e−µa. As the seropreva-
lence curve is related to the transmission of the infectious disease irrespective
of the vital dynamics, the above definition of the fractions of individuals is dif-
ferent from that used in the preceding section. To obtain the above system of
differential equations, we have used the relation, for instance for X(a),

d

da
x(a) = 1

N(a)

d

da
X(a)+ µx(a), (12)

with equation (3) in the steady state.
By applying the conditions x(0) = 1 and h(0) = y(0) = z(0) = 0 to system

(11), and solving it (see the appendix), we obtain the description of the endemic
level in a community (Anderson and May, 1991) by the integral equations

x(a) = e−λa +
a∫

0
B(a− s)x(s)ds

h(a) = e−σa
a∫

0
eσsλx(s)ds

y(a) = e−γa
a∫

0
eγ sσe−στ

τ∫
0

eσsλx(s)dsdτ

z(a) = e−πa
a∫

0
eπa′γe−γa′

a′∫
0

eγ sσe−στ
τ∫

0
eσsλx(s)dsdτda′,

(13)
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where B(a− s), given by

B(a− s) = λσγπ

{
e−σ(a−s)
(σ−λ)(σ−π)− e−γ (a−s)

(γ−λ)(γ−π)
γ−σ +

e−π(a−s)
(γ−π)(σ−π)− e−λ(a−s)

(γ−λ)(σ−λ)
λ−π

}
, (14)

is the kernel of the integral equations. The first equation is a non-homogeneous
Volterra equation. Note that the kernel (14), being a combination of decaying
exponential functions, is quadratically integrable (L2 function) and the equation
for x(a) in (13) can be shown to be a contraction (e.g., Coutinho et al. (1993)).
Then, there exists one and only one solution for x(a) (Griffel, 1981; Tricomi,
1985). Hence, from the solution of x(a) we can obtain age-specific fractions of
h(a), y(a) and z(a).

The solution of the first equation of (13), with the kernel (14), depends on
two unknown parameters: the age-distributed fraction of susceptible individuals
x(a) and the force of infection λ. Nevertheless, we can estimate x(a) from the
seroprevalence curve, S+(a), by the relation

x0(a) = 1− S+(a). (15)

This result comes from the fact that the age-specific fraction of susceptible in-
dividuals plus all other fractions of individual classes, summarized by S+(a),
is unity, by considering that the presence of specific antibodies against a given
infectious agent in an individual is interpreted as a previous infection (Azevedo
Neto et al., 1994). On the other hand, we can calculate the fraction of susceptible
individuals χ as

χ = 〈x0(a)〉 ≡

∞∫
0

x0(a)N∗e−µada

∞∫
0

N∗e−µada
= µ

∞∫
0

[
1− S+(a)

]
e−µada, (16)

where 〈·〉 is assigned for the average value regardless of age.
Since x0(a) and χ are derivable from the seroprevalence data, in the age-

structured population analysis we have both R0 and λ approaches.
First, let us consider the R0 approach. In this approach we are relating the pa-

rameters of the model with the estimated χ . To obtain the fraction of susceptible
individuals of the model, we multiply both members of the first equation of (13)
by N(a) and integrate over all ages, to obtain

〈x(a)〉 = µ(µ+ σ)(µ+ γ )(µ+ π)
(µ+ λ)(µ+ σ)(µ+ γ )(µ+ π)− λσγπ . (17)

Observe that if λ = 0, then 〈x(a)〉 = 1 and all other individual classes must have
null values.
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The relation (17) can be rewritten, when we substitute 〈x(a)〉 by the estimated
χ , as

λ = µ χ−1 − 1

1− σγπ

(µ+σ)(µ+γ )(µ+π)
, (18)

which is a well-behaved function in the non-negative range of variations of the
force of infection, because the fraction of susceptible individuals assumes, at
most, a value equal to unity. Comparing this expression with (10), we note that
both are the same if

R0 = χ−1, (19)

which is the first expression of (7). From this expression we note that the effective
reproduction ratio is unity in the equilibrium, i.e., R = R0χ = 1 (see Anderson
and May (1991)).

In this approach, for fixed χ and, consequently, also for fixed R0, we note
that for each value attributed to the immunity-loss rate there is a corresponding
value for the force of infection. Therefore, for each pair (π ,λ) we can generate the
corresponding age-specific fraction of susceptible individuals by the first equation
of (13). From the uniqueness of the solution for x(a), we can apply the iterative
algorithm (Tricomi, 1985) to solve the integral equation for x(a). Hence,

xj+1(a) = e−λa +
a∫

0

B(a− s)xj (s)ds, with j = 0, 1, 2, . . . , (20)

converges to the unique solution, where xj (a) and xj+1(a) are the j th and ( j +
1)th iterations of x(a), and the initial value ( j = 0) is provided by x(a) = x0(a).

Secondly, let us consider the λ approach. This approach corresponds to calcu-
lating the force of infection from the estimated age-specific fraction of susceptible
individuals x0(a) based on a seroprevalence curve. In this case, we fix x0(a) and
for each value attributed to π we calculate λ.

For each pair (x0(a),π ) we can evaluate the force of infection by applying the
convergence in the mean theory (Griffel, 1981). This convergence is set as

∞∫
0

|x(a, λn)− x0(a)|2 da→ 0, with n = 1, 2, . . . , (21)

where λn is the nth iteration of λ, with x(a, λn) being the age-specific fraction
of susceptible individuals of the model, and is assessed by Brent’s minimization
method (Press et al., 1989). For each nth step value of λ in Brent’s method, we
must evaluate the iterated equation (20) to provide the age-specific fraction of
susceptible individuals of the model.

Once the force of infection is evaluated, the basic reproduction ratio can be
obtained as the inverse of 〈x(a)〉, which is calculated from (17).
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It is worth showing the extreme situations. In the case of the everlasting
disease-induced immunity, we obtain, by setting π = 0 in the above findings,

B(a− s) = 0

λ = µ(R0 − 1)

〈x(a)〉 = µ

µ+ λ.

(22)

The latter two formulas of (22) and the expression (9) are the same obtained by
Anderson and May (1991) and Coutinho et al. (1993). In this case, the force of
infection can be related to the age-specific fraction of susceptible individuals by

λ =
〈
− d

da
ln[x0(a)]

〉
. (23)

This form of evaluating the force of infection is the so-called catalytic approach
(Muench, 1959), which comes from the first equation of (11) with π = 0, and is
not valid when reinfection is considered.

At the other extreme is the case where the disease does not induce immunity.
This can be obtained by letting π →∞ in the above findings, resulting in:

B(a− s) = σγπ
{

1
γ−σ

[
−e−σ(a−s)

σ−λ + e−γ (a−s)

γ−λ
]
+ e−λ(a−s)

(γ−λ)(σ−λ)
}

λ = µ (R0 − 1)

[
1

1− γ

βth

]
〈x(a)〉 = µ

µ+λ

[
1

1− γ

βth

(
λ

µ+λ
)
]
.

(24)

Comparing (22) and (24) we observe that, for the same estimated R0, the force
of infection and the fraction of susceptible individuals have the lowest (highest)
values for π = 0 (π →∞).

Up to now we have not used the relation between the force of infection and
the contact rate, λ = βy. To do this, we solve (11) in terms of y(a), instead
of x(a). Therefore, we obtain in terms of the age-specific fraction of infectious
individuals, the expression

y(a) = λσ

[
e−γa
γ−λ − e−σa

σ−λ
γ−σ + e−λa

(γ−λ)(σ−λ)

]
+

a∫
0

B(a− s)y(s)ds, (25)

where the kernel is the same defined by (14).
Multiplying both members of equation (25) by N(a) and integrating over all

ages, we obtain, for the natural force of infection, the formula (10) with β/β th
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in place of R0. The previous relation (19) was obtained by comparison of the
force of infection provided by (18) with that furnished by the age-independent
result (10). But, when dealing with the age-specific fraction of infectious individ-
uals, the identification of the basic reproduction ratio follows immediately due
to definition (8).

In the next section we present some simulations to clarify both approaches.

3. NUMERICAL RESULTS

In this section we apply the above two approaches to rubella infection (Azevedo
Neto et al., 1994) considering the reinfection. For this purpose we set σ = 52.0
years−1 and γ = 39.0 years−1 (Anderson and May, 1991), µ = 0.017 years−1

from actuarial data, and π is made to vary on the range [0.0,0.2]. This range of
variations of π corresponds to an average immunity period varying from 5.0 years
to infinity (∞).

First, we present the situation where the average fraction of susceptible indi-
viduals is estimated and, consequently, the basic reproduction ratio is considered
as the primary parameter. The R0 approach disregards the age-structured fea-
tures of the population and can be used on the case notification records. In this
approach, the fraction of susceptible individuals χ is fixed. For a community in
Brazil (Azevedo Neto et al., 1994), we estimated χ = 0.124 and we calculated
R0 = 8.097, from (19).

The effect of immunity-loss rate π on the force of infection λ can be analyzed
using (10). In Fig. 1 we show the dependency of the force of infection on the loss
of immunity parameter, which are varied from π = 0 to π = 0.2 years−1. We
note that the force of infection has its lowest value at π = 0 (λ = 0.121, both in
years−1), and increases proportionally to π , assuming the highest value at π = 0.2
(λ = 1.526, both in years−1). When π increases, the fixed χ can be explained
by an increase in the force of infection, i.e., due to the infection of individuals
that never have had the infection plus the contribution of the reinfection of the
susceptible individuals originated from immune individuals who have lost their
immunity.

In Fig. 2 we show the age-specific fraction of susceptible individuals consider-
ing three fixed forces of infection corresponding to the immunity-loss rate π = 0,
π = 0.1 (λ = 0.827) and π = 0.2 (in years−1). The curves are obtained by the
iterative method, according to equation (20). We also show the calculated x0(a)
from estimated S+(a). We observe that x0(a), calculated from estimated S+(a),
presents an increasing trend for higher ages. It can be explained either by the
loss of immunity or by the sampling effect (Azevedo Neto et al., 1994). We
noted that the age-specific fraction of susceptible individuals of the model can
not explain the reversed sigmoidal shape of the observed one. This shape can be
better attained if we consider an age-specific contact rate (Yang, 1997).

In this approach we have fixed the basic reproduction ratio. For this reason, let
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Figure 1. The force of infection λ (years−1) as a function of the loss of immunity
parameter on the range π = 0–0.2 years−1. We fixed χ = 0.124.
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Figure 2. The four age-specific fractions of susceptible individuals x(a): the estimated
x0(a) (thick curve), and for three immunity-loss rates, π = 0, 0.1, 0.2 years−1 (the
closest curve to the vertical axis). We fixed χ = 0.124.
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Figure 3. The basic reproduction ratio R0 as a function of the loss of immunity parameter
on the range π = 0–0.2 years−1. We fixed χ = 0.124 (and λ = 0.121 years−1).

us consider a hypothetical situation. Suppose several infectious diseases related
with different values for the disease-induced immunity-loss rate, but they have
the same value for the natural force of infection λ. We set this value as the
correspondent to the everlasting immunity, or λ = 0.121 years−1. Once λ is
fixed, we can evaluate 〈x〉 from expression (17) and then R0, from (19), for
different values assumed by π . In Fig. 3 we show, for this hypothetical situation,
the dependency of R0 as a function of π , from π = 0 to π = 0.2 years−1.
We observe that, as π decreases, R0 increases while the fraction of susceptible
individuals decreases. The basic reproduction ratio varies from 1.56 (π = 0.2)
to 8.10 (π = 0).

In R0 approach, by estimating χ , both R0 and λ are uniquely determined.
Hence, we evoked different infectious disease to explain the same seroprevalence
curve to show a hypothetical dependency of R0 on π . In the next approach, this
consideration is not necessary.

The second approach is by calculating λ from the fixed x0(a) for the same
community in Brazil (Azevedo Neto et al., 1994), for different values of π .
Once λ is calculated for each value of π , we can evaluate 〈x(a)〉, R0 and x(a)
of the correspondent model. In λ approach, the force of infection is calculated
by the convergence in the mean method, according to expression (21).

In Fig. 4 we show the calculated λ and χ (≡ 〈x(a)〉) as a function of π . We note
that both the force of infection and the fraction of susceptible individuals have
their lowest values at π = 0 (λ = 0.116, both in years−1, and χ = 0.13), and
increase monotonically as π increases, assuming the highest values at π = 0.2
(λ = 0.274, both in years−1, and χ = 0.44). We observe that as π increases, the
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Figure 4. The force of infection λ (years−1) and χ as a function of the loss of immunity
parameter on the range π = 0–0.2 years−1. We fixed x0(a).

force of infection correlates positively, but not linearly as the preceding approach,
with the fraction of susceptible individuals.

In Fig. 5 we show the age-specific fraction of susceptible individuals consider-
ing three fixed forces of infection corresponding to the immunity loss rate π = 0,
π = 0.1 (λ = 0.206) and π = 0.2 (in years−1). The curves are obtained by the
iterative method, according to equation (20). We observe that the age-specific
fractions of susceptible individuals of the model decay more slowly than in the
previous approach (see Fig. 2).

In λ approach, there is a natural relation between the basic reproduction ratio
and the immunity-loss rate. For each π fixed, we estimate λ by the convergence
in the mean and, then, R0 is obtained as χ−1. The result is shown in Fig. 6.
We observe that the basic reproduction ratio R0 increases as π decreases, which
varies from 2.27 (π = 0.2) to 7.80 (π = 0). Note that this range of variation
is contained on that found in the previous approach. Here we are explaining a
fixed x0(a) when the immunity-loss rate is varied. In Fig. 3 we fixed χ and
λ, and then analyzed the effect of π on R0. In both situations R0 increases as
π decreases, which agrees with the macroparasite infection, where the acquired
immunity provides a much higher estimation for R0 than that without immunity
(Yang and Coutinho, 1998; Yang et al., 1997).

We observed that, comparing the R0 approach (Figs 1–3, χ fixed) with the λ
approach (Figs 4–6, x0(a) fixed), the former superestimates the epidemiological
values, while the latter underestimates them. Nevertheless, the latter approach
has an advantage: it can be improved by introducing the age-specific contact rate.
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Figure 5. The four age-specific fractions of susceptible individuals x(a): the estimated
x0(a) (thick curve) and for three immunity-loss rates, π = 0, 0.1, 0.2 years−1. We fixed
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4. CONCLUSIONS

We proposed and analyzed an age-structured model to describe directly trans-
mitted infections considering the loss of immunity. We then applied our model
to the rubella serological survey, assuming the existence of the loss of immunity
induced by the disease, to assess the epidemiological parameters by two ap-
proaches. In the R0 approach, which is a straight analysis, the age structure does
not matter. However, in the λ approach a specific methodology must be applied
to estimate the parameters by taking into account the age-specific features.

Observe that in the R0 approach we are estimating the expected number of sec-
ondary cases produced per primary case when the infection enters into an entirely
susceptible population, from which the force of infection is derived. On the other
hand, in the λ-approach we are estimating the probability per unit of time that a
susceptible individual becomes infected, and, then, the basic reproduction ratio
is derived. Comparing the range of variation of the epidemiological parameters,
we conjecture that, for a constant contact rate modeling, the true epidemiological
values may be situated between estimations provided by both approaches.

The upper bound for the basic reproduction ratio is obtained when the induced
immunity is everlasting. If the induced immunity wanes, then the estimation of
the basic reproduction ratio is not only diminished in its value but is also increased
in difficulty. As we have stated above, we observed that when π increases, both
χ and λ increase, while R0 diminishes. If only the basic reproduction ratio
as measuring the controlling effort is taken into account, we can be misled in
our understanding, i.e., increasing the immunity-loss rate can lead to an easier
control. But the age-structured approach means that both the force of infection
(estimated as the inverse of the average age of acquisition of the first infection)
and the basic reproduction ratio must be taken into account.

For instance, observing that higher estimations of the basic reproduction ratio is
related to lower fractions of susceptible individuals, then we must have a higher
proportion of susceptible individuals covered by vaccination in order to attain
eradication (Anderson and May, 1991). On the other hand, higher values assumed
by the force of infection is related to the lowering of the average age of acquisition
of the first infection. This result, in terms of the eradication conditions, means
that the vaccination rate comprised on an age interval must be increased and, also,
the vaccination must be carried out in young individuals (Yang, 1997). Therefore,
the effort of eradication of directly transmitted infections by vaccination strategy
is not an easy task, especially when one takes into account the waning of induced
immunity.
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APPENDIX

The kernel B(a − s), given by (14) in the main text, is calculated as follows. The
solutions of the system of differential equations (11) can be written as



x(a) = e−λa + e−λa
a∫
0

eλsπz(s)ds

h(a) = e−σa
a∫
0

eσsλx(s)ds

y(a) = e−γa
a∫
0

eγ sσh(s)ds

z(a) = e−πa
a∫
0

eπsγ y(s)ds.

(26)

Observe that if we substitute h(a) into the third equation, we have the third equation of
(13), which substituted into the fourth equation, we have z(s) given by the fourth equation
of (13) as a functional of x(a). From the latter we have, after some arrangement in the
limits of the integrations, the first equation of (13), with the kernel given by

B(a− s) = λσγπeσs

a∫
0

a∫
0

a∫
0

e(λ−π)t e(π−γ )ue(γ−σ)vθ(t − u)θ(u− v)θ(v − s)dvdudt,

(27)
where θ(x) is the step or Heaviside function. The calculation of the triple integration
results in (14).

However, if we substitute the first and the fourth equations of (26) into the third
equation of (13), we have the integral equation (25) for the age-specific fraction of
infectious individuals in the main text.

The fraction of susceptible individuals, defined by (17) in the main text, is calculated
from the first equation of (13), that is,

〈x(a)〉 =
∞∫
0

e−(λ+µ)ada+
∞∫
0

e−µa
a∫
0

B(a−s)x(s)dsda

∞∫
0

e−µada
. (28)

But, we have the identity

∞∫
0

e−µa
a∫
0

B(a− s)x(s)dsda =
∞∫
0

x(a)e−µada
∞∫
0

e−µu B(u)du, (29)
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which applied in the previous equation results

〈x(a)〉
[

1−
∞∫
0

e−µu B(u)du

]
= µ

λ+µ . (30)

Observe that
∞∫

0

e−µu B(u)du= σγπλ

(µ+ σ)(µ+ γ )(µ+ π)(µ+ λ) , (31)

which results in (17).
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