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A semi-stochastic model is proposed to analyse the effects of acquired immunity on the transmission
of schistosomiasis in the human host. The basic model’s assumptions are as follows. The human host
is assumed to build up an immune response after elapsing a fixed period of time L from the first
infection. This acquired immunity is assumed to be partially effective and it is never lost. The parasite
infection event is a Poisson process with multiple occurrences, i.e., in each event one or more cercaria
are assumed to invade the host. The model treats deterministically the age distribution of human host.
The model shows a good retrieving capacity of real data from two endemic areas of schistosomiasis:
Touros, Brazil (Schistosoma mansoni ) and Misungwi, Tanzania (Schistosoma haematobium).
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1. Introduction

Schistosomiasis has probably the most complex
biological cycle of all human infections, involving
at least two host species (human and snail),
two free-living transmission stages of the parasite
(cercariae and miracidiae) and distinct environments.

Humans are the principal, definitive host for the
five schistosome species. Adult worms live in the
venous system of intestine (Schistosoma mansoni,
Schistosoma japonicum, Schistomosa mekongi and
Schistomosa intercalatum) or the urinary bladder
(Schistosoma haematobium) (Mahmoud, 1990). As a
result of the sexual reproduction of the parasite in
different human organs, the characteristically shaped
eggs pass through the vesical or intestinal wall in
order to find their way to outside via the host excreta.
In fresh water the eggs hatch and release ciliated,

motile miracidia that soon penetrate into the snail
(the intermediate host). Inside the snail the miracidia
multiply asexually, and in 4–6 weeks hundreds of
thousands of motile, forked-tail cercaria emerge.
These are the forms infective to the human host. For
each species of schistosome and for each geographic
region there is a specific snail as the intermediate
host. Therefore, it is believed that the geographic
distribution of schistosomiasis depends on the
distribution of the specific snails. On encountering
human skin, the cercaria actively penetrate it, causing
a local reaction. In the process of invasion, the
cercaria lose their tails and change into schistoso-
mula, which then migrate to the lungs and liver; in
about 6 weeks they mature to adult worms, mate and
descend, via the venous system, to their final habitat.
The lifespan of adult worms is still a controversy,
ranging from 5–10 years to more than 30 years
(Harris et al., 1984; Vermund et al., 1983).

For mathematical models to be of any use
they must be sufficiently realistic and grounded in
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what is understood of the schistosome biology
(Woolhouse et al., 1991). But, as the life cycle of
schistosomes is extremely complex, it is very difficult
to understand the quantitative contribution of
different components of transmission to the level of
infection in a human population. Therefore, we
restrict our scope to the inclusion of biological detail,
such as the role of acquired immunity on the disease
transmission.

Acquired immunity among humans has important
consequences for the epidemiology of schistosome
infection (Anderson & May, 1985; Crombie &
Anderson, 1985; Woolhouse, 1991; Woolhouse et al.,
1991). The question of whether humans mount an
immune response to schistosomiasis is of basic
biological interest, and is important in the context of
disease control (Fulford et al., 1993). There is
accumulating evidence that the human host develops
a protective immune response to schistosome
infection (Clegg et al., 1970; Hagan, 1987). However,
the immune response to this and other large parasites
differs from that of viruses and bacteria, and appears
to be acquired gradually, concomitant, and may
afford only partial protection against further infec-
tions. In addition, acquired host responses can act to
reduce rates of parasite establishment, fecundity and
survival (Anderson & May, 1991).

The incorporation of acquired immunity in models
dealing with schistosome transmission has been
shown to have some important consequences
(Fulford et al., 1993, 1995; Woolhouse et al., 1991).
There is a lowering of the overall susceptibility of
humans to infection which results in a decreasing of
the age-related prevalence of schistomiasis. An
interesting result, mentioned by Anderson & May
(1991), is that acquired immunity does not affect the
basic reproduction ratio, R0. Models that incorporate
neither the acquired resistance nor the age-dependent
exposure to infection cannot reproduce typical age
intensity or age prevalence patterns. For a recent
review of schistosome infection modelling see
(Woolhouse, 1991, 1992).

We present a simple model incorporating acquired
immunity against schistosomiasis (Yang, 1990). This
acquired immunity is partially protective: we consider
that after the first infection there is a fixed length of
time L after which the rate of infection is dramatically
reduced (Butterworth, 1994; Gryseels, 1994; Terry,
1994). An infection can be initiated by one or more
cercaria with a given probability.

We analyse the steady state model, its ability to fit
real data, and the stability of the endemic disease
level. The following, briefly described, main epidemi-
ological data are the linkage between the biological

cycle of schistosomiasis and the quantifying of the
schistosomiasis transmission.

The most used epidemiological data to describe the
schistosomiasis is the so-called age prevalence curve
P(a), that is, the proportion of individuals shedding
viable eggs in feces (or urine) plotted against age. The
essential shape of age prevalence data is a build up in
the early years, peaking around 10–20 years of age,
dropping thereafter, and stabilizing at some endemic
level (Bradley & McCullough, 1973; Hairston, 1965).
The second most used data is the age-dependent egg
output curve, with aspects similar to the prevalence
curve, but the peaking is slightly earlier (Costa et al.
1985). From these data, assuming that each worm
produces a certain number of eggs, it can be derived
the age-dependent, mean number of worms harbored
by the human population, m(a). The third kind of
data is the age-dependent variance in the egg output
among the human population. This kind of data is
difficult to obtain but is very important to what
follows. This variance divided by mean egg output is
the well-known age-dependent dispersion curve d(a),
and typically assumes high values at lower ages,
dropping quickly to a minimum value around 10–15
years, raising thereafter to stabilize at a certain level
(Bradley & McCullough, 1973).

It is necessary to explain the latter two types of
data. There are various ways in which mean egg
output are reported in the literature (Banáñez et al.,
1994): the simple arithmetic, the Williams’ (logarithm
transformed) mean (Williams, 1937) and the square
root transformed mean. In the data by Bradley &
McCullough (1973), to be used later, only the
arithmetic mean and the Williams’ mean are used. We
shall call the Williams’ mean as the log-transformed
data. Since the egg output (and its dispersion) is
acquired to measure worm burden (and its dis-
persion), the question arises as to which mean is better
to evaluate the worm burden. Since the egg output
varies greatly with random factors that cannot be
included in a simple model we believe that the
log-transformed data, by smoothing the data and
normalizing it, is the more appropriate. A justification
for this can be found in the classical paper by
Williams (1973). Therefore, in this paper we will use
only the log-transformed data.

This paper is organized as follows. Section 2
describes the model which is fitted to the data
in Section 3 and discussed upon in Section 4. Here
we conclude one of the main points of this paper,
asking if acquired immunity plus multiple entrances
of cercariae per infecting event can reproduce
the over-dispersion of the worms as observed in the
field.
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2. The Model

In this paper we construct a semi-stochastic model
which is fitted to the prevalence curve. Since the role
of immunity in controlling reinfection is not entirely
known (Fulford et al., 1993), we have to construct a
model assuming its existence. The model proposed is
based on the following assumptions:

(1) the human host builds up an immune response
after elapsing a fixed period of time L from the
first infection at age A. This immunity is
partially effective, that is, protection against
further infections is not fully avoided but
controlled to some extent, and everlasting, that
is, in the absence of the adult worm the
immunity processes do not fade away;

(2) the infection event is assumed to be Poisson
process of rate l with multiple occurrences (Cox
& Miller, 1992), i.e., in each infection one or
more cercaria are assumed to invade the host
per infective event. Considering that the
probability of the inocula b(i) is binomially
distributed, and there is a maximum number of
invading viable cercaria r, then we have
Sr

i=1 b(i )=1 where b(i ) is the shorthand
notation for the Bi(i, 0.5). It also reflects the fact
that not all invading cercaria per event maturate
to adult form but only viable cercaria. Hence,
the acquisition of worms by humans is treated
stochastically regarded to the immune status:

(2i) the probability of a person with age between a
and a+ da being infected by i worms, given that
the individual is non-immune but has k worms
is

Prob.[w(a+ da,A)

= k+ i=w(a, A)= k]= lsb(i )da+ o(da), (1)

where ls stands for the Poisson process rate for
non-immune individuals, o(da) denotes a
function tending to zero more rapidly than da,
and w(a, A) (Appendix A) is a random variable
that describes the distribution of the number of
adult worms with AE aQA+L;

(2ii) the probability of a person with age between a
and a+ da being infected by i worms, while the
individual has k worms is

Prob.[w(a+ da, A)

= k+ i=w(a, A)= k]= lcb(i )da+ o(da), (2)

where lc stands for the Poisson process rate for
immune individuals with age aeA+L, i.e.,
the individuals that had their first worm L time
periods before.

The Poisson process rates that appear in
eqns (1) and (2), hereafter called as the forces of
infection, are assumed to be related by

lc = f(z)ls (3)

where z is the time interval counted from the
first infection and f(z) represents the effect of
immunity and for the purposes of this paper we
consider

f(z)=6 1;
fQ 1;

for 0E zQL
for zeL;

(4)

(3) adult worms inside the host die with a constant
rate mw ; and

(4) the human population is treated deterministi-
cally with a constant death rate mh .

The acquired immunity, a special kind of immunity
assumed in the model, as can be noted from
assumptions (2), (2i) and (2ii), is less stringent than
the concomitant immunity consideration model
(Nåsell, 1977; Yang, 1985). For this reason, we are
modelling schistosomiasis transmission applicable to
hyper-endemic areas. In schistosomiasis highly
endemic areas, the acquired immunity assumption,
which describes the immune response against
infection by virus and bacteria very well, leads to a
reasonable modelling. It is due to the two biological
details: the high frequency of contact with the parasite
(during the elapsing period, L, individuals are in a
regular contact with parasite to build up the
immunity) and the slow (some years) decaying of the
antibodies (immune individuals who have discharged
their harbored parasites attain their previous immu-
nity condition quickly when in persistent contact with
the parasites). Nevertheless, the picture is quite
different when the above two features are not verified,
i.e. in schistosomiasis lower endemic areas, where the
acquired immunity leads to an unrealistic modelling.

The above assumptions can be set as a system of
forward difference differential equations that de-
scribes the dynamics of the schistosomiasis trans-
mission [see Yang et al. (1995) for mathematical
details]. We call this a semi-stochastic model, because
the distribution of worms among the human
population is treated stochastically and the determin-
istic treatment is used for the demographic structure
(age distribution) of human population.

From the model in the steady state, we can yield the
following semi-stochastic functions. The first function
relates the probability generating function (pgf ) for
the number of worms distributed among non-immune
individuals with age between a and a+ da (Appendix
A), which is given by
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(5)

The other function relates the pgf for the number of worms distributed among the immune individuals with
age between a and a+ da, and is given by
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In both eqns (5) and (6), S0 is the newborn rate. These
functions tell us that all the individuals that have had
the first infection at age A will become immune after
a period of time L.

Using eqns (5) and (6) for the distributions of
worms among individuals with age between a and
a+ da, and eqn (27) from Appendix A, we derive the
age prevalence curve P(a), the age-dependent, mean
worm burden per individual m(a), and the age-depen-
dent dispersion of worms per individual d(a). These
three expressions take into account only the random
distribution of the worms among the human
population with age between a and a+ da.

The age prevalence curve is given by

The age-dependent, mean worm burden per
individual is given by

m(a)=g
G

G

F

f

v̄
ls
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(1− e−mwa); for aQL

v̄
ls

mw
f1(a, a−L); for aeL,

(8)

where

v̄= s
r

i=1

ib(i ) (9)

is the mean number of parasite entering per contact
with infested water, and the function f1(a, a−L)
is

f1(a, a−L)=
lc

ls
+01−
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ls1
× $ ls

ls − mw
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mw

ls − mw
e−ls (a−L)%− e−mwa. (10)

From eqn (8) we can calculate the average number of
adult worms per person in a community (Appendix
A), m̄, as
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The age-dependent dispersion of worms per individual is given by

d(a)=g
G

G

G

G

F

f

1+
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2v̄
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1+

f2(L, a−L)+01−
lc

ls1f3(L, a−L)

v̄
ls

mw
f1(a, a−L)

− v̄
ls

mw
f1(a, a−L); for aQL, (12)

where

sb = s
r

i=1

i(i−1)b(i ) (13)

is the second moment of the parasite entering per
contact with infested water and the functions
f2(L, a−L) and f3(L, a−L) are

f2(L, a−L)=$0v̄
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mw1
2
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and
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2
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The dispersion of worms per person in a community,
from eqn (12), takes the form
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−01−
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(16)
where f4 and f5(L) are
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ls
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s
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Up to this point we developed the acquired immune
model in the definitive host. In next section we deal
with fitting the data.

3. Fitting the Data

In this section we are concerned with the fitting the
age prevalence curve of schistosomiasis, with the aim
of estimating the force of infection in the human
population. We will use the maximum likelihood
estimation method (Appendix B) to fit the age
prevalence curve, eqn (7), to two distinct highly
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T 1(a)
The four parameters fitted from the prevalence data (Schistosoma mansoni) of Touros, Brazil
r ls (years−1) mw (years−1) lc (years−1) L(years) l(10 df )

1 0.1222 0.010 0.0922 0.025 0.0492 0.013 8.002 0.10 −1493.63
11 0.0972 0.012 0.2052 0.029 0.0472 0.009 3.9052 0.174 −1490.93
21 0.0922 0.011 0.2412 0.029 0.0452 0.008 3.5132 0.190 −1490.19
35 0.0942 0.000 0.2862 0.000 0.0462 0.000 3.3072 0.000 −1490.03

T 1(b)
The four parameters fitted from the prevalence data (Schistosoma haematobium) of region of

Misungwi, Tanzania
r ls (years−1) mw (years−1) lc (years−1) L(years) l(34 df )

1 0.2242 0.010 0.0872 0.010 0.0482 0.007 10.6452 0.033 −2531.25
11 0.1752 0.007 0.1782 0.012 0.0452 0.004 9.2472 0.030 −2520.01
21 0.1682 0.007 0.2122 0.013 0.0432 0.004 8.7702 0.030 −2517.58
35 0.1702 0.000 0.2502 0.000 0.0452 0.000 8.5162 0.000 −2516.65

endemic areas, namely Touros district, Brazil (Matta
et al., 1977) and the region of Misungwi, Tanzania
(Bradley & McCullough, 1973). In the first region,
schistosomiasis is due only to S. mansoni, while in the
second, it is due only to S. haematobium. The
logarithm of likelihood, disregarding a constant term,

is l= s
n

i=1

4npi ln[P(ai )]+ nni ln[1−P(ai )]5, (19)

where n is the number of age intervals; npi and nni are
the number of individuals with and without parasite
eggs, respectively, in each age interval ai .

Tables 1(a) and (b) show the estimated model’s
parameters for each maximum number of invading
cercaria per event r: the rates ls , mw and lc , the
elapsing time L and the logarithm of likelihood of the
fitting l for the prevalence data from Touros and
Misungwi, respectively. The human mortality rate mh

was obtained from actuarial data, and its value was
found to be 0.015 years−1. From Tables 1(a) and (b)
we can observe that the values of the force of infection
lc , when considering their standard deviation, are the
same for the two areas considered, and for all values
of r. Assuming that the parameters are normally
distributed, the confidence intervals can be easily
derived from the standard deviation given in the
Tables 1(a) and (b).

Figs 1(a) and (b) show the age prevalence curves
fitted to epidemiological data from Touros and
Misungwi areas, respectively. It can be noted from the
figures that the fittings to the prevalence curves do not
vary greatly with the maximum number of invading
cercaria, r. In other words, asymptotic curve is
rapidly reached. This is expected because the
prevalence curve is only a measure of the proportion

of infected population, not a measure of worm
burden. It is remarkable that this behavior of the
prevalence curve is observed even when the preva-
lence is very low, reaching a peak of only 5% (Dias
et al., 1989).

The sets of parameters of our model fitted from the
prevalence data can now be used to calculate the
average number of adult worms per person, eqn (11),
and the dispersion of worms per person, eqn (16), for
the two areas. These values are shown in Table 2.
Even though the maximum number of invading
cercaria per event, r, does not improve the maximum
likelihood estimation of the prevalence curve, we can
observe from Table 2 that high values of r produce
high values of d� . Therefore, higher values of r
produces a more negative binomially distributed form
(Bundy et al., 1992). It can also be observed that both
worm burden and dispersion show a strong sensitivity
to this parameter. The results for the Misungwi
present more dispersion than the results for Touros.

The above sets of the fitted parameters can also be
used to generate indirectly the age-dependent mean
worm burden per individual from eqn (8), and the
age-dependent dispersion of worms per individual
from eqn (12). For this we assume that the observed
number of eggs released by infected person with age
between a and a+ da, e(a), is proportional to m(a),
that is,

e(a)= kmm(a) (20)

and the observed egg dispersion is proportional to
d(a), i.e.,

de (a)=
10s2(a) − 1
10e(a) − 1

= kdd(a), (21)
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F. 1. (a) Age-prevalence curves fitted to data (S. mansoni ) from
Touros, Brazil. The curves show the fit for r=1 (thin curve) and
21 (thick curve). (b) Age-prevalence curves fitted to data (S.
haematobium) from region of Misungwi, Tanzania. The curves
show the fit for r=1 (thin curve) and 21 (thick curve).

T 2
The average number of adult worms per person and the
dispersion per person of Touros, Brazil, and region of

Misungwi, Tanzania
Touros, Brazil Misungwi, Tanzania

r m̄ d� m̄ d�

1 0.602 1.580 0.819 5.412
4 0.937 3.645 1.283 8.916
8 1.287 5.081 1.816 12.627

11 1.538 6.202 2.168 15.058
16 1.924 8.198 2.744 19.550
21 2.300 10.508 3.274 24.174
35 3.274 16.240 4.679 35.443

(Press et al., 1989). By doing this we ignore possible
density dependence and inflammatory reactions on
the host that could compromise the egg releasing with
the age of the person. It should be mentioned that, for
the Touros region, there is no data to be compared
with the fitting. Again we emphasize that the mean
value commonly used in parasitological literature is
the arithmetic mean. However, when data are
originally over-dispersed (d�1, Table 2) as in our
case, it is more appropriate, as mentioned before and
also according to Basáñez et al. (1994), to apply the
log-transformation that normalizes the distribution of
the counts. In Table 3 we show the estimated
constants for the region of Misungwi, Tanzania.

Fig. 2 shows the age-dependent mean egg output,
e(a)= kmm(a), for the region of Misungwi.

It can be noted that the peak of egg output (or the
mean worm burden) shifts leftward in comparison
with the prevalence curve. This shift is enhanced with
increasing number of invading cercaria per event. The
shift to the left is commonly reported in the literature
(Costa et al., 1985). The best fitting was obtained with
a maximum of seven [x2

m (104)=0.399] invading
cercaria per event. The fitted value km reflects the
mean egg laid per female in 10 ml of urine per day.

Finally, Fig. 3 shows the age-dependent dispersion,
de (a)= kdd(a), for the region of Misungwi. In spite of
its simplified assumptions, it is interesting that the
model reproduces the patterns (the fitting is poor)with s2(a) being the variance of egg output. For the

log-transformed data we used the geometric mean
(Stuart & Ord, 1987) as the anti-logarithm of
Williams’ mean minus one. We can estimate km and
kd as follows.

The eqns (20) and (21) are used to fit data from
Bradley & McCullough (1973) and McCullough &
Bradley (1973), who counted the egg output per 10 ml
of urine and the corresponding standard deviation in
the region of Misungwi, Tanzania. From these data,
the constants km , eggs per 10 ml of urine per worm,
and kd were estimated using the least square method

T 3
The estimated constant of proportionalities: data from

Misungwi, Tanzania
r km x2

m (104) kd x2
d

1 16.93 0.477 0.810 7.922
4 10.69 0.403 0.414 7.161
8 7.531 0.401 0.267 6.742

11 6.240 0.407 0.212 6.601
16 4.900 0.416 0.159 6.471
21 4.050 0.424 0.127 6.394
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F. 2. Age-dependent mean egg output curves fitted to
log-transformed data from region of Misungwi, Tanzania. The
curves show the fit for r=1 (thin curve) and 21 (thick curve).

T 4
Fitting data from Touros, Brazil, considering different

L’s for r=1 fixed
ls (years−1) mw (years−1) lc (years−1) L(years) l(10 df )

0.119 0.054 0.028 0.875 −1494.0
0.114 0.054 0.027 1.811 −1493.8
0.112 0.057 0.027 3.118 −1493.8
0.122 0.082 0.044 5.402 −1493.6*
0.121 0.091 0.048 7.202 −1493.7
0.122 0.097 0.052 9.280 −1493.9
0.125 0.104 0.056 10.632 −1494.2

Although the model is structured with only five
parameters, it fits real data with some accuracy. Of
the five parameters, one may at first sight think that
mw and L are constants and independent on the
endemic level, whilst ls , lc , and r vary from region to
region. However, all the five are likely to covariate.
The importance of this will be discussed below.

Finally, it should be mentioned that a recent paper
by Barbour & Kafetzaki (1993) has attempted to
explain the dispersion of worms by invoking
concomitant immunity and multiple entrance of
parasites.

4. Discussion

A few comments about the above results are now
required.

First, the field data available to us were fitted. The
result is a wide range of the four parameters of the
model and the maximum number of cercaria entering
per event, with almost no variation in the likelihood
of the fitting. Therefore, the sets of parameters shown
above should be taken as relatives, since they
covariate. This indetermination can be reduced if we
consider the prevalence curve for early ages (i.e.,
before the development of the immune response). As
can be seen in eqns (7) and (8), this phase of the curves
depends only on r, ls , and mw . In the case of Misungwi
region the best fit for m(a) is obtained with r=7. If
this is to be taken as baseline value, it implies that the
worms have an average life-span of 6.6 years, which
is compatible with current epidemiological beliefs [5].
The range of the average worm lifespan for S.
mansoni is 3.5(r=35)−10.9(r=1) years [Table 1(a)]
and for S. haematobium is 4.0(r=35)−11.5(r=1)
years [Table 1(b)] (Fulford et al., 1995).

Second, the values of lc are remarkably similar for
both areas. This, on the one hand, should be expected
if acquired immunity would operate by reducing the
value of the force of infection to a maximum value,
which happened in both regions. On the other hand,

observed in real data. This shows the necessity either
of more parameters to fit both prevalence and mean
worm burden curves or of fitting the two curves at the
same time. The reason is that, in macroparasite
infection, the prevalence alone is not a good
epidemiological measure, but it requires the intensity
of infection (Bundy et al., 1992). The maximum
number of invading cercaria per event can be used as
an extra parameter between the prevalence and the
intensity of infection.

F. 3. Age-dependent dispersion of egg output curves fitted to
log-transformed data from region of Misungwi, Tanzania. The
curves show the fit for r=1 (thin curve) and 21 (thick curve).
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one should expect that lc would be determined by a
competition with mw which clearly varies. However,
note that the value of r, the maximum number of
worms allowed in each infective event, also varies,
thus ‘‘washing out’’ this competition.

Third, the comparison of the values of L for both
regions points out to an unexpectedly different time
taken to build the immune response up for each of
those regions. This is biologically unreasonable.
However, we should stress that the estimation of the
fitting gives a likelihood that is rather insensitive to
great variations in L. Indeed, variations in L by a
factor of 10 gives variations in the likelihood in
the fourth decimal figure. This is illustrated in
Table 4, which shows that, when the data for the
region of Touros, with r=1, are fitted by maximum
likelihood estimation, give us several local extrema
with L that varies between 0.875 and 10.632
years. The range of variations of L shows that the
rate of development of the protective response is
slow, which depends on prolonged and cumulative
exposure to the antigen(s) (Butterworth, 1994), and
that the development of the appropriate immune
response would take years, possibly because high
levels of blocking antibodies would temporarily
inhibit cellular responses against incoming larvae in
children (Gryseels, 1994). Based on the experiments
on the development of concomitant immunity to
schistosome in rhesus monkeys, Terry (1994) sum-
marized that authentic parasite antigens, perhaps by
synthesis and release, may continue to stimulate an
immune response that is effective against fresh
invading schistosomula but not so against the
established, disguised parasites. But Gryseels (1994)
points out that this may not be relevant to humans.
This means that the seemly different values of L are
actually compatible with a rough average of 5 years
for both areas. The value of ls is not sensitive to the
variation of L because it describes the ascendent
phase of the prevalence curve, but the other two rates,
mw and lc , are. Both rates covariate positively with L.
The fourth row (marked by *) provides the best
fitting.

To summarize, we conclude that the model
considering both acquired immunity via the elapsing
time L and the multiple entrance of parasites per
infective event reproduces the age prevalence curve
rather well. Also, using the same fitted parameters to
the prevalence curve, the shape of the age-dependent
mean worm burden per individual and the age-depen-
dent dispersion of worms per individual are roughly
reproduced. Whereas, the model without immunity
(May, 1977) is unable to fit the prevalence curve: it
increases and reaches an asymptote.
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APPENDIX A

Some Mathematical Results

The basic mathematical details were presented
elsewhere (Yang et al., 1995), but some equations are
transported from there to a better understanding.

Let w(a, A) be a random variable that describes the
distribution of the number of adult worms k among
the fraction of the human host population with age
between a and a+ da that got the first infection at age
A. From the consideration that the human host has
deterministic treatment with respect to age, the total
number of worms over all age interval irrespective of
the age of first infection, W(a), is given by

g
G

G

G

G

F

f

Ws (a)=g
a

a−L

w(a, A)dA

Wc (a)=g
a−L

0

w(a, A)dA, (A.1)

where the subscripts s and c stand for human hosts
who are not immune and those who have already
built up the immune reaction, respectively. These
integrals represent count of worms harbored by
individuals with age between a and a+ da.

From assumptions (1–4) in the main text, the
resulting system of semi-stochastic difference differen-
tial equations in terms of the random variable w(a, A)
in the steady state is

d
da

S(a)= (−ls + mh )S(a)

mw (x−1)
1

1x
fs (a, A, x)+

1

1a
fs (a, A, x)

=6ls $s
r

i=1

b(i )xi −1%− mh7fs (a, A, x);

for aQA+L

mw (x−1)
1

1x
fc (a, A, x)+

1

1a
fc (a, A, x)

=6lc$s
r

i=1

b(i )xi −1%− mh7fc (a, A, x);

for aeA+L, (A.2)

where fs (a, A, x) and fc (a, A, x) are the pgf of,
respectively, non-immune and immune individuals,
and S(a) is the age distribution of individuals who
have never got the infection.

The solutions of (A.2) can be integrated over all age
A to yield Fs (a, x) and Fc (a, x), i.e.,

Fs (a, x)=g
a

a−L

fs (a, A, x)dA

Fc (a, x)=g
a−L

0

fc (a, A, x)dA,

(A.3)

where the limits of integration are regarded to (A.1).
These functions, given explicitly by eqns (5) and (6)
in the main text, relate the pgf for the number of
worms and the age distribution of individuals in the
community. For instance, the pgf for the distribution
of worms among non-immune individuals with age
between a and a+ da [eqn (5), the first one], is
expressed as
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pgf1 = els$s
r

i=1

b(i ) s
i

j=1 0ij1(x−1)j 1− e−jmwa

jmw %. (A.4)

The semi-stochastic feature of the functions (A.3)
are better understood when we set x=1. In this case
we are not concerned with the probabilistic distri-
bution of the worms in the human host, and the
human host is distributed according to

Fs (a)=6S0e−mha(1− e−lsa); aQL

S0e−mha[e−ls (a−L) − e−lsa]; aeL

Fc (a)=S0e−mha[1− e−ls (a−L)]; aeL. (A.5)

The functions Fs (a) and Fc (a) describe the age
distribution of non immune and immune individuals,
respectively. The age distribution of individuals that
never have had contact with worms is, from the first
equation of (A.2), given by

F0(a)=S0e−mhae−lsa. (A.6)

Therefore, summing Fs (a), Fc (a) and F0(a), we have
the age distribution of the human population
disregarding worm contacts experience given by

F(a)=S0e−mha. (A.7)

Finally, the average number of adult worms per
person in a community m̄ can be calculated by

m̄=
g

a

0

m(a)F(a)da

g
a

0

F(a)da

, (A.8)

and d� by above formulae replacing m(a) by d(a).

APPENDIX B

Likelihood Estimation Method

The logarithm of likelihood function (19), disre-
garding a constant term, is estimated by likelihood
method. To perform this estimation, the initial guess
must be provided by the least square method. Let pi

be the observed value. Then the sum of squares, which
approximates to the x2 value, is

x2(V)= s
n

i=1

[P(ai , V)− pi ]2 (B.1)

where P(ai , V) is eqn (7) with V=[ls mw lc L]T being
the space of model’s parameters to be fitted, and n is
the number of age intervals considered. The
chi-square function (B.1) minimizes at

y(V)=
1
2

1

1V x2(V)= s
n

i=1

[P(ai , V)− pi ]

×
1

1V P(ai , V)=0 (B.2)

because the inverse of the covariance matrix,
neglecting the second derivatives of the chi-square in
relation to the parameters (Sn

i=1[1/1V P(ai , V)]2�Sn
i=1

[P(ai , V)− pi ]12/1V2 P(ai , V)) given by

S−2 (V)=
1
2

12

1V2 x2(V)0 s
n

i=1 $ 1

1V P(ai , V)%
2

, (B.3)

has positive value. The estimator V
 that obeys
eqn (B.2) is the value searched.

The estimator V
 is used as the initial guess in the
maximum likelihood estimation method with the
logarithm of the likelihood function (19). This
expression maximizes at

y(V)=
1

1V l(V)= s
n

i=1 $ npi

P(ai , V)
−

nni

1−P(ai , V)%
×

1

qV P(ai , V)=0 (B.4)

because the inverse of the covariance matrix,
neglecting the second derivatives of the likelihood
function in relation to the parameters given by

S−2 (V)=−
12

1V2 l(V)

0 s
n

i=1 6 npi

[P(ai , V)]2
+

nni

[1−P(ai , V)]27
×$ 1

1V P(ai , V)%
2

, (B.5)

has negative value. The estimator that obeys (B.4), V
 ,
is the value searched.

Due to the approximation in the second derivative,
both the least square and likelihood estimations are
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obtained by the Levenberg–Marquardt nonlinear
fitting method. This method is the modified
Newton–Raphson method, where the increments in
the new set of parameters are given by

S−2
LM (c)=6s

−2(V)(1+ e), on the diagonal

h−2(V), off the diagonal,

(B.6)

where s2 and h2 are, respectively, the variance and
covariance of matrices (B.3) and (B.4), and e is an
auxiliary parameter (Press et al., 1989).

The parameter L is dependent on the step (or
Heaviside) function u(x), which has the derivative

1

1L
u(L− t)= d(L− t), (B.7)

where d(x) is the Dirac delta function.


