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In general, cellular immune response results in the suppression of mycobacterial
infection, but does not completely eradicate it. This is the reason why the majority

of cases (95%) limits proliferation of the bacilli and produces a long-lasting partial

immunity, and 5% of infected individuals develop early progressive disease that
occurs within 2-5 years of infection. One of the characteristics of Mycobacterium

infection is the replication of the bacteria inside of alveolar macrophages. For

this reason 5% of asymptomatic individuals have late disease, which is caused by
endogenous reactivation as long as several decades after infection. We develop a

simple mathematical model that describes the interaction between Mycobacterium
tuberculosis and cellular immune response. The risk of tuberculosis reactivation

is determined by granulomas formation on one side and cellular immune response

to phagocytize bacteria and to destroy granuloma on other side. The model is
analyzed in the initial phase of mycobacterial infection, and an associated risk of

tuberculosis among tobacco smokers is established.

1. Introduction

Mycobacterium tuberculosis (Mtb) infects one third of the world’s popula-

tion and causes 8 million of new cases of tuberculosis (TB) and approxi-

mately 2 million deaths each year.1 In 2006 new cases of TB were estimated

in 9.2 million, causing nearly 1.6 million deaths.2 TB is the most impor-

tant cause of adult death due to infectious disease after HIV/AIDS (human

immunodeficiency virus/acquired immunodeficiency syndrome). The two

factors essential for its rapid spread are crowded living conditions and a

population with little native resistance. For this reason, TB has become
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concentrated in certain medically underserved populations: the urban poor,

alcoholic, intravenous drug users, the homeless, migrant farmer workers and

prison inmates.3

TB is the prototype of infections that require a cellular immune response

for their control, although abundant antibodies are also produced during

the infection, but they play no apparent role in the defense mechanism.4

In the first few weeks after the exposure, the host has almost no im-

mune defense against Mtb infection, and unrestrained replication proceeds

for weeks, both in the initial focus (alveolar spaces or within alveolar

macrophages) and in lymphohematogeneous metastatic foci. Within 3 to

9 weeks after infection, tissue hypersensitivity becomes manifest, when en-

hanced macrophage mycobactericidal activity (or cellular immunity) ap-

pears. For instance, when both antigen load and degree of tissue hyper-

sensitivity are high, lymphocytes and macrophages are present in a less

organized fashion, and tissue necrosis may be present, which tends to be

incomplete, resulting in a solid or semisolid acellular and amorphous mate-

rial referred to as caseous because of its cheesy consistency. The chemical

environment and oxygen tension in solid caseous material tend to inhibit

microbial multiplication; however, it is inherently unstable, especially in the

lungs, where it tends to liquefy and discharge through the bronchial tree,

producing a tuberculous cavity and providing conditions in which bacterial

population increases.3

TB is a directly transmitted infection that presents two routes for the

evolution to disease due to the immune response: direct progression (the

disease develops soon after infection) or endogenous reactivation (the dis-

ease can develop many years after infection). After primary infection, pro-

gressive TB may develop either as a continuation of primary infection or as

an endogenous reactivation of a latent focus. Factors regarding to the re-

activation are malnutrition and weakening of the immune system. In some

patients, however, disease may also result from exogenous reinfection by a

second strain of Mtb.5 In this paper we propose a simple model taking into

account the interplay between Mtb infection and cellular immune response

in order to explore the mechanisms behind early progression (fast) and late

reactivation (slow) of TB. Here, we analyze the initial phase of the interac-

tion between Mtb and immune response, which is relevant to understanding

different infection outcomes. In a companion paper, we analyze the effects

of granuloma formation from alveolar macrophages and further release of

mycobacteria in bronchial tree by tuberculoids.6

The paper is structured as follows. In section 2 a simple mathematical
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model of primary TB and endogenous reactivation of TB is developed. In

section 3 the direct progression to TB model is analyzed, and numerical

results are given in section 4. Conclusion is presented in section 5.

2. Model formulation

Following Mtb infection, the bacillus is phagocytosed by an alveolar

macrophage. Once the mycobacteria are internalized by inactivated

macrophages they continue to proliferate by evading intracellular killing

mechanisms. T-cells are activated by recognition and presentation of the

antigenic epitopes of the microorganism, and they release cytokines, which

lead to a state of macrophage activation and granuloma formation that, in

the majority of cases, result in the suppression of mycobacterial prolifera-

tion. The principal defense of the human host against a Mtb infection is the

formation of granulomas, organized collections of activated macrophages,

including epithelioid and multinucleated giant cells, surrounded by lympho-

cytes. This granuloma can sequester and contain the bacteria preventing

active disease, and if the granuloma is maintained, these bacteria may re-

main latent for a person’s lifetime. Secretion of a variety of chemoattractant

cytokines following phagocytosis of the bacilli by the macrophage is critical

not only to the formation of the granuloma but also to its maintenance.7

In over 95% of cases (5% of patients progress to disease within 2-5 years of

infection) this immune response achieves the containment of Mtb but does

not completely eradicate it. This leaves the person infected with bacilli, and

during the period of containment (latent infection) individuals are asymp-

tomatic and noninfectious. Among these individuals, 5% progress to disease

during the remainder of their life. These numbers are dramatically different

in patients who have compromised cell-mediated immune systems.8

Our objective is the development of a simple mathematical model to

describe the evolution of TB,9–10 taking into account the initial immune

response mounted against Mtb infection, which is relevant to understand-

ing different infection outcomes. The progression from latent infection to

active disease is dictated by the balance between the virulent properties

of the organisms and the host defense. In this model, we did not include

every cell potentially involved (NK cells, eosinophils, B cells, giant cells,

etc.) in the immune response. The simple model presented here does not

consider the production of cytokines (the actions of cytokines that down-

and up-regulate the immune response are summarized by the quantity of

Mtb in the local of infection), assuming that the recruitment (migration)
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and proliferation of immune response cells are simply proportional to Mtb

quantity. Also, other cells, as NK cells, eosinophils, B cells and giant cells

are assumed as being part of the macrophage population.

The invading Mtb (designed as B, the concentration of free bacilli at

time t) is phagocytized by an alveolar macrophage (designed as M , the

concentration of inactivated macrophages at time t), resulting in granu-

loma formation (designed as G, the concentration of granulomas at time t).

The interaction of T-cell (designed as L, the concentration of inactivated

lymphocytes at time t) with mycobacterium (antigenic epitopes) results in

activated T-cells (designed as La, the concentration of activated lympho-

cytes at time t), which lead to a state of macrophage activation (designed as

Ma, the concentration of activated macrophages at time t). The inactivated

macrophages that engulfed bacteria (reactive granulomas, G) can be acti-

vated by activated lymphocytes, or destroyed by activated macrophages in

the early phase. When they are destroyed by activated macrophages, they

become unreactive granulomas (designed as Gn, the concentration of unre-

active granulomas at time t). The reactive granulomas become solid caseous

materials (designed as T , the concentration of tuberculoids at time t), and

they stay in the solid phase during a variable period of time, which char-

acterizes the latent infection. The actions of other components of immune

system (as cytokines, which productions are assumed to be proportional to

bacterial load) are captured by the model’s parameters.7

The infecting mycobacteria are under unrestrained replications because

the host has almost no immune defense against them, which is described by

the parameter α (dimension time−1), the intrinsic growth rate. However,

the constraint with the nutrients and alveolar spaces restrict their multi-

plication, with the carrying capacity given by k (dimension [B], where [•]
is the concentration, that is, number/volume). The per-capita growth rate

of bacteria is then α (1−B/k), and µB (dimension time−1) is designed to

the per-capita natural mortality (unviable or those captured and destroyed

by surrounding tissues) rate of bacteria. The rates at which free bacteria

are phagocytized by inactivated (to form granulomas) and activated (to be

destroyed by lysis) macrophages are, respectively, βB and δB (dimensions

[M ]
−1
/time). The inactivated macrophages and lymphocytes are produced

at constant rates λM (dimension [M ] /time) and λL (dimension [L] /time),

and suffer per-capita mortality rates of µM and µL (dimensions time−1),

respectively. The rates of activation of macrophages and lymphocytes are

εM (dimension [L]
−1
/time) and εL (dimension [M ]

−1
/time, which encom-

passes the action of antigen presenting dendritic cells considered here being
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proportional to the activated lymphocytes), and the rates of recruitment

of activated macrophages (from activated monocytes) and proliferation of

lymphocytes are γM and γL (dimensions [B]
−1
/time), respectively. The

rates of recruitment of inactivated macrophages (from inactivated mono-

cytes) and naive lymphocytes to the local of infection are rM (dimension

[B]
−1
/time) and rL (dimension [L] [M ]

−1
[B]
−1
/time), respectively.

Inactivated macrophages engulf approximately n−1 (dimension of n is

[M ] / [B]) bacilli and become granulomas. In the early phase, granulomas

can be activated by activated lymphocytes and also destroyed by activated

macrophages. The activation occurs at a per-capita rate εG (dimension

[L]
−1
/time), and the dwelling bacteria in the reactive granulomas are de-

stroyed at a rate δ∗ (dimension [M ]
−1
/time, that is, [G] = [M ]), becoming

unreactive granuloma. The reactive and unreactive granulomas are under

µG (dimension time−1) per-capita mortality rate. The reactive granulo-

mas become tuberculoids (solid caseous material) at a rate θ (dimension

time−1), which are liquefied at a rate φ (dimension time−1), and discharge

on average f (dimension [B] / [M ], that is, [T ] = [M ]) bacteria in the

bronchial tree. The tuberculoids are under µT (dimension time−1) per-

capita mortality rate, and they are destroyed and release bacteria when the

environment becomes suitable.

The dynamics of the interaction between Mtb and immune system is

described by the following system of equations

d
dtB = α

(
1− B

k

)
B − µBB − βBMB − δBMaB + fh (t− t1)h (t2 − t)φT

d
dtM = λM − µMM − εMMLa − nβBMB + rMLaB
d
dtMa = εMMLa − µMMa + γMMaB + εGGLa
d
dtL = λL − µLL− εLLMa + rLLaB
d
dtLa = εLLMa − µLLa + γLLaB
d
dtG = nβBMB − εGGLa − µGG− θG− δ∗GMa
d
dtT = θG− µTT − h (t− t1)h (t2 − t)φT
d
dtGn = δ∗GMa − µGGn,

(1)

where the Heaviside or step function h (z) is such that h (z) = 0, if z <

0, and h (z) = 1, if z ≥ 0. We are assuming that at t = t1 occurred

changes in the immune system of the host (as immunosuppression) and/or

physiological conditions become worse, which conditions persist up to t2,

with 0 ≤ t1 < t2.

In order to deal with an insightful system and obtain some analytical

results, we perform the following simplifications. Firstly, we disregard the

activation of early stage of granulomas (εG = 0), and the equation for
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granulomas G can be written as d
dtG = nβBMB − µGG − θG − δ∗GMa.

Now, let us join the macrophage sub-populations in one class, that is,

C = M + Ma. By summing up the second and third equations of (1),

we obtain d
dtC = λM − µMC + (γM + rM )MaB − nβBMB. As a conse-

quence of introducing new variable C, the fourth and fifth equations be-

come decoupled from the system, and the equation for C does not depend

on the lymphocytes population that activates macrophages and suppresses

the factor (εM ) of transferring macrophages from naive to activated status.

In order to introduce the action of cell mediated immune response, let us

suppose that the quotient between M and Ma provides indirectly the action

of activated lymphocytes, that is, the quantity q, defined by

q =
Ma

M +Ma
=
Ma

C
,

measures how the cell mediated response is strongly acting to eliminate

the infection. The parameter q takes into account the activation (εL)

and recruitment (rL and γL) of lymphocytes, and also the activation of

macrophages (εM ). Hence, we have Ma = qC and M = (1− q)C, with

0 ≤ q ≤ 1. Finally, the last equation can be dropped out from the system.

Therefore, substituting β = (1− q)βB , ε = qδB , λ = λM , µC = µM ,

γ = q (γM + rM ) and δ = qδ∗, we achieve the simplified system of equations
d
dtB = α

(
1− B

k

)
B − µBB − (β + ε)CB + fh (t− t1)h (t2 − t)φT

d
dtC = λ− µCC + (γ − nβ)CB
d
dtG = nβCB − (µG + θ)G− δCG
d
dtT = θG− µTT − h (t− t1)h (t2 − t)φT.

(2)

The parameters λ and µC are new representations of, respectively, λM and

µM defined above. We recall that the class C is compounded by all cells of

the immune system and is generically referred to as macrophages.

The parameters ε, γ, δ and β encompass the action of cytokines and

dendritic cells that mediate the immune response (q increases, increasing

Ma). The strength of the immune response can be assessed by the capacity

of the lymphocytes activation, q. Increasing the immune response (q), the

formation of granulomas (β) is decreased linearly from βB (the maximum

engulfment resulting when all macrophages are inactivated) up to zero,

while the destruction of them (δ), engulfment and lysis of bacteria (ε) and

the recruitment of activated macrophages (γ) increase linearly from zero

up to, respectively, δ∗, δB and (γM + rM ), which are the limiting capacity

of lymphocytes induction (there are not inactivated macrophages).
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The system of equations (2) is analyzed as autonomous (direct progres-

sion to TB) and non-autonomous (endogenous reactivation of TB, which is

left to a future work6) dynamical systems. We determine the equilibrium

points Q = (B̄, C̄, Ḡ, T̄ ) and perform the stability analysis.

3. Direct progression to TB Model

In 5% of cases, the patients progress to disease within 2-5 years of infection.

Let us analyze the absence of endogenous reactivation, that is, we let t1 →
∞ in the system of equations (2), and obtain{

d
dtB = α

(
1− B

k

)
B − µBB − (β + ε)CB

d
dtC = λ− µCC + (γ − nβ)CB,

(3)

and two decoupled equations for granulomas and tuberculoids d
dtG =

nβCB − (µG + θ)G − δCG and d
dtT = θG − µTT . These equations have

as equilibrium values

Ḡ = nβC̄B̄
µG+θ+δC̄

and T̄ = θ
µT

nβC̄B̄
µG+θ+δC̄

, (4)

where B̄ and C̄ are equilibrium values of Mtb and macrophages.

In the direct progression to TB, the analysis of the model is very simple:

It is enough to analyze the system (3) with only two equations for B and C.

The equilibrium point Q =
(
B̄, C̄, Ḡ, T̄

)
is composed by B̄ and C̄ obtained

from equation (3), and Ḡ and T̄ using equation (4). These latter values

always exist whenever B̄ and C̄ are feasible, which is the reason for not

considering Ḡ and T̄ in all analyses. Hence, we determine the equilibrium

point P =
(
B̄, C̄

)
, which is a subset of the equilibrium Q, and assess its

stability. The local stability of the equilibrium point P =
(
B̄, C̄

)
is assessed

by the eigenvalues of Jacobian matrix

J =

[
(α− µB)− 2α

k B̄ − (β + ε) C̄ − (β + ε) B̄

(γ − nβ) C̄ −µC + (γ − nβ) B̄

]
.

The eigenvalues are roots of the second order polynomial

Λ(φ) = φ2 + b1φ+ b0, (5)

where the coefficients are{
b1 = µC − (α− µB)− (γ − nβ) B̄ + 2α

k B̄ + (β + ε) C̄

b0 =
[
(α− µB)− 2α

k B̄ − (β + ε) C̄
] [
−µC + (γ − nβ) B̄

]
+ (γ − nβ) (β + ε) C̄B̄.

(6)

According to the Routh-Hurwitz criteria for second degree polynomial, Λ(φ)

has negative real part if b1 > 0 and b0 > 0.11 The system of equations (3)
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does not present closed orbits. Calling d
dtB = F (B,C) and d

dtC = G(B,C),

and using a function A(B,C) = 1/ (BC), we have

∂

∂B
[A(B,C)F (B,C)] +

∂

∂C
[A(B,C)G(B,C)] = − α

kC
− λ

BC2
,

which is not identically zero and does not change sign in Ω ={
(B,C) ∈ R2 | B > 0;C > 0

}
. Hence, according to Dulac’s criterion,12

there are not closed orbits in this region.

First, the trivial equilibrium point of the system of equations (3) is

P0 = (0, C0), where

C0 =
λ

µC
(7)

is the macrophage population at equilibrium, because they are produced

constantly by bone marrow to replenish those removed. To assess the local

stability of the trivial equilibrium point P0 = (0, C0), we calculate the

eigenvalues of the characteristic polynomial (5) with the coefficients (6)

given by b1 = µC − (α− α0) and b0 = −µC (α− α0). They are φ1 = −µC
and φ2 = α− α0, with α0 being given by

α0 = µB + (β + ε)
λ

µC
, (8)

which is the threshold of the intrinsic growth rate of mycobacterium α.

Hence P0 is locally asymptotically stable (LAS) when α < α0 (stable node),

when α = α0, stable along C = C0, and otherwise, saddle point.

The trivial equilibrium P0 is LAS when α < α0, regardless the relative

values between γ and nβ. Let us analyze the global stability. Let us define

a Lyapunov function in V : R2
+ → R given by V = B, whose orbital

derivative is

V̇ =
{
α− µB − (β + ε)C − α

k
B
}
B, (9)

or, adding and subtracting C0,

V̇ =

{
α−

[
µB + (β + ε)

λ

µC

]
− (β + ε) (C − C0)− α

k
B

}
B. (10)

The global stability is analyzed according to the relative values between γ

and nβ (see below).

The average number of secondary bacteria produced by one invading

Mtb is defined as

R0 ≡
α

α0
=

α

µB + (β + ε) λ
µC

, (11)
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showing that if R0 > 1, mycobacteria can be settled at an infective level,

because the trivial equilibrium P0 is unstable for α > α0. Note that (α0)
−1

is the average period of surviving time of free bacteria, which is decreased

by the remotion of bacteria by granuloma formation and phagocytosis pro-

moted by activated macrophages, both depending on the concentration of

macrophages. Hence, R0 is the average number of bacteria replicated from

one invading bacterium. Being the free mycobacteria decreased by granu-

loma formation (β) and when phagocytized by activated macrophages (ε),

mycobacterium must increase the ability to fit and to proliferate rapidly

(α must surpass the critical value α0) in order to overcome those opposing

factors, which increases with increasing amount of macrophages (λ/µC).

When β = ε = 0, we have the situation in which mycobacteria replicate

unrestrained because the immune system is not acting. The non-interacting

system (3) has the equilibrium point Pnon = (B0, C0), where B0, given by

B0 =
k

α
(α− µB) , (12)

is the maximum free bacilli (B̄ ≤ B0). Notice that Pnon is stable when

α < µB .

Now, the non-trivial equilibrium point of the system of equations (3),

P ∗ =
(
B̄, C̄

)
, has the coordinates given by

C̄ =
λ

µC − (γ − nβ) B̄
(13)

and B̄, which is the positive solution of the second order polynomial f
(
B̄
)

given by

f
(
B̄
)

= a2B̄
2 + a1B̄ + a0, (14)

with coefficients a2 = α
k (γ − nβ), a1 = −

[
α
kµC + (α− µB) (γ − nβ)

]
and

a0 = µC (α− α0); and discriminant ∆f =
[
α
kµC − (α− µB) (γ − nβ)

]2
+

4αk (γ − nβ) (β + ε)λ. Depending on the values assigned to the model’s

parameters, the polynomial f
(
B̄
)

has up to two positive roots (see below).

Inspecting the non-trivial equilibrium point, we must have C̄ > 0 in

order to be biologically viable. The non-trivial equilibrium point P ∗ of the

system of equations (3) is analyzed taking into account the relative values

between γ and nβ. For γ > nβ, the condition C̄ > 0 is satisfied, from (13),

when B̄ < Bmax, where

Bmax =
µC

γ − nβ
. (15)
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In this case, for B̄ < Bmax, we have C̄ ≥ C0, with C̄ → ∞ when B̄ →
Bmax. Hence, Bmax is the upper bound of bacteria concentration under the

constraint of immune response. Notice that the polynomial f
(
B̄
)

assumes

negative value at Bmax, that is, f (Bmax) = − (β + ε)λ. When the immune

response deals appropriately with the mycobacterial infection, we have the

situation γ > nβ. The strong immune response is due to the combination of

enhanced destruction of free bacilli and granulomas (ε and δ), high capacity

of proliferation and recruitment of immune cells (γ), and decreased capacity

of granuloma formation (β).

On the other hand, when γ < nβ, from equation (13), we have C̄ > 0 for

all values of B̄ > 0, because Bmax < 0, from equation (15). Additionally,

comparing with equation (7), we have C̄ ≤ C0. We call as weak immune

response when the granuloma formation (β) occurs more intensively than

the proliferation of activated macrophages (γ), which may be due to high

inoculation rate and/or delay in the immune system mounting appropri-

ate response, or even due to immunedepression. The granuloma formation

sequesters the macrophages, which diminishes the capacity of the immune

response by lowering the amount of the defense cells. The phagocytized

bacilli however proliferate inside the granuloma, which is unstable, espe-

cially in the lungs. For this reason when it reaches the lungs, it tends

to liquefy and discharges bacteria through the bronchial tree, producing a

tuberculous cavity and providing conditions in which bacterial population

increases, the so called endogenous reactivation.6

To assess the local stability of the equilibrium point P ∗, let us rewrite

the coefficients of the characteristic polynomial (5) in terms of B̄, by sub-

stituting C̄ using equation (13), as

b1 = g1(B̄)
h(B̄)

and b0 = g0(B̄)
h(B̄)

, (16)

where the auxiliary functions g1(B̄), g0(B̄) and h(B̄) are

g1(B̄) = b12B̄
2 + b11B̄ + b10, (17)

with coef-

ficients b12 = − (γ − nβ)
[
α
k − (γ − nβ)

]
, b11 = µC

[
α
k − 2 (γ − nβ)

]
and

b10 = µ2
C , and positive discriminant ∆g1 =

(
µC

α
k

)2
; the second function is

g0(B̄) = b02B̄
2 + b01B̄ + b00, (18)

with coefficients b02 = (α− µB) (γ − nβ)
2
, b01 = −2µC (γ − nβ) (α− α0)

and b00 = µ2
C (α− α0), and discriminant given by ∆g0 =
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−4 [µC (γ − nβ)]
2

(β + ε) λ
µC

(α− α0); and the common denominator of b1
and b0 is given by

h(B̄) = µC − (γ − nβ) B̄ = (γ − nβ)
(
Bmax − B̄

)
. (19)

Therefore, if b1 > 0 and b0 > 0, then the equilibrium P ∗ is locally asymptot-

ically stable. Nevertheless, the signals of b1 and b0 are defined by functions

g1(B̄), g0(B̄) and h(B̄).

Let us assess the equilibrium point P =
(
B̄, C̄

)
and the corresponding

stability taking into account the relative values between γ and nβ.

3.1. Case γ > nβ – Strong immune response

A strong immune response represents rapid proliferation and recruitment of

macrophages in comparison with granuloma formation. Even in this situa-

tion, if the invading bacteria encounter favorable conditions (α > α0), the

infection can be maintained in the host, and the level of infection increases

up to a limiting value (due to the carrying capacity k) as α increases. Since

α0 does not depend on γ, if the concentration of bacteria is settle at an

infective level (the non-trivial equilibrium P ∗, due to α > α0), the rapid

proliferation and recruitment of macrophages can only decrease the level

of infecting population. The same conclusion remains valid with respect to

the destruction of reactive granulomas by activated macrophages (δ).

When the immune system mounts a strong response against Mtb

(γ > nβ), the invading bacteria are eliminated independently of the ini-

tial inoculation if α ≤ α0, α0 given by equation (8). To show this feature,

we prove that P0 is globally stable using the derivative of the Lyapunov

function given in equation (10). When γ > nβ, the invariant (biologically

feasible) region is given by

Ω> =
{

(B,C) ∈ R2 | B ≤ B0;C ≥ C0

}
,

where C0 and B0 are given by equations (7) and (12). Notice that V̇ < 0

for α ≤ α0, and V̇ = 0 if B = 0. By inspecting the system of equations (3),

we observe that the maximum invariant set is the trivial equilibrium point

P0 = (0, C0). Hence, by the La-Salle Lyapunov Theorem,12 P0 is globally

stable for α ≤ α0. When α > α0, P0 is unstable.

With respect to the non-trivial equilibrium point, positive solution of

polynomial f
(
B̄
)
, equation (14), we have two possibilities, according to

the relative position between α and α0, where α0 is given by equation (8).

On the other hand, the stability is achieved analyzing the signals of the
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functions g1(B̄), g0(B̄) and h(B̄). It is easy to show that the signals of

g1(B̄) and h(B̄) are positive for B̄ < Bmax (not shown here), the range

of biologically feasible, resulting in b1 > 0. Hence, the stability of the

equilibrium P ∗ which is biologically feasible is provided by the signal of b0.

Case 1 – α < α0. Equilibrium: We have one positive solution designed

by Bp, and other is negative, Bn. However, the positive root is such that

B̄ = Bp > Bmax, by the reason that a2 > 0 and f (Bmax) < 0, which results

in C̄ < 0 (biologically unfeasible). Hence, in this range we have only the

trivial equilibrium point P0, which is globally stable.

Stability : To show that P ∗ =
(
B̄, C̄

)
is unstable, we split the interval

in two sub-intervals.

Case 1.a – α < µB . The function g0(B̄), with b02 < 0, has two

positive roots B∗01 and B∗02, and, due to the fact that g0(Bmax) > 0, we

have B∗01 < Bmax < B∗02, and consequently, g0(B̄) > 0, for Bmax < B̄ <

B∗02. Additionally, we have h(B̄) < 0 for B̄ > Bmax. Then, b0 < 0,

for Bmax < B̄ < B∗02, and the equilibrium P̄ with coordinate Bp, since

Bp < B∗02, is unstable. Let us show that Bp is greater than Bmax and

smaller than B∗02, when α < µB . If we show that g0(Bp) > 0, than we

guarantee that Bp < B∗02. Let us define B∗ = (γ − nβ)Bp > 0. Then

g0(B∗) can be written as

g0(B∗) = (B∗ − µC) (µB − α)

[
− (B∗ − µC) +

(β + ε)λ

µB − α

]
+ (β + ε)λB∗,

or, using B∗ − µC = −Φ +
√

Φ2 + Ψ/ (2α/k) > 0, where Φ = α
kµC +

(µB − α) (γ − nβ) and Ψ = 4αk (γ − nβ) (β + ε)λ are positive values, then

g0(B∗), changing only the terms between brackets, can be written as

g0(B∗) =
k (B∗ − µC) (µB − α)

2α

[
Φ + Ω−

√
Φ2 + Ψ

]
+ (β + ε)λB∗,

where Ω = 2α(β+ε)λ
k(µB−α) . Since α < µB , we have g0(B∗) > 0 if Φ +

Ω −
√

Φ2 + Ψ > 0. This inequality is true whenever A = (Φ + Ω)
2 −(√

Φ2 + Ψ
)2
> 0, where

A = 4 (β + ε)λ

[
α

k (µB − α)

]2

[(β + ε)λ+ µC (µB − α)] .

Being A > 0, we have g0(Bp) > 0, and we conclude that Bmax < Bp < B∗02.

Case 1.b – µB < α < α0. The function g0(B̄), with b02 > 0, has

one negative solution B∗0n and a positive, B∗0p, and due to the fact that

g0(Bmax) > 0, we have B∗0p < Bmax. Hence, g0(B̄) > 0, for B̄ > Bmax,
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and b0 < 0, due to h(B̄) < 0 in this interval. The non-trivial equilibrium,

biologically unfeasible, is unstable.

Case 2 – α > α0. Equilibrium: We have two positive solutions designed

by B−p and B+
p for, respectively, small and big roots. However, the positive

roots are such that B−p < Bmax < B+
p , by the reason that a2 > 0 and

f (Bmax) < 0. However, for B̄ = B+
p > Bmax, we have C̄ < 0, which is

not biologically feasible. Hence, we have a unique non-trivial equilibrium

value given by B̄ = B−p , besides the trivial equilibrium point P0, which is

unstable.

Stability : Notice that the function g0(B̄), with b02 > 0 and b00 > 0,

does not have real roots, due to ∆b0 < 0, resulting in g0(B̄) > 0, for all B̄.

Additionally, being h(B̄) > 0, for B̄ < Bmax, and otherwise, h(B̄) < 0, the

biologically feasible equilibrium point (B−p < Bmax) is LAS, while the big

root B+
p > Bmax is unstable.

According to the model, what mimics strong immune response is the

increase in the number of macrophages in comparison with the level found

before the infection, that is, C̄ ≥ C0. This result comes out due to the

proliferation of activated and recruitment of naive macrophages surpassing

the capacity of granuloma formation by the naive macrophages, showing

that the immune system responds very well to deal with the invading Mtb.

Moreover, when the granulomas formed by infected macrophages reach low

density at the steady state, a good prognostic with respect to future reac-

tivation of TB can be done.

The concentration of Mtb at the steady state B̄ corresponds to the small

positive root B−p (lower than Bmax) of the polynomial f
(
B̄
)
, equation (14),

which is LAS for α > α0. Another positive solution B+
p for f

(
B̄
)

is such

that B+
p > Bmax, resulting in biologically unfeasible C̄ < 0. Asymptot-

ically, we have limα→∞B−p = k (limα→∞B+
p = Bmax), for Bmax > k;

otherwise, limα→∞B−p = Bmax (limα→∞B+
p = k).

Summarizing, for γ > nβ, the trivial equilibrium P0 is globally stable

for α ≤ α0, while the non-trivial equilibrium P ∗, with B̄ = B−p , is LAS

for α > α0. Due to the discriminant ∆Λ calculated from characteristic

equation (5) and b1 > 0, P ∗ is either stable node or focus. Therefore,

forward bifurcation occurs at α = α0.

3.2. Case γ < nβ – Weak immune response

A weak immune response is characterized by a slow proliferation and re-

cruitment of macrophages in comparison with granuloma formation.
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When the immune system mounts a weak response against Mtb (γ <

nβ), the invading bacteria are eliminated independently of the initial inoc-

ulation if α ≤ µB . This feature can be shown proving that P0 is globally

stable using the derivative of the Lyapunov function given in equation (9).

When γ < nβ, the invariant (biologically feasible) region is given by

Ω< =
{

(B,C) ∈ R2 | B ≤ B0;C ≤ C0

}
,

where C0 and B0 are given by equations (7) and (12). In this case, we

observe that V̇ < 0 for α ≤ µB , and V̇ = 0 if B = 0. By inspecting the

system of equations (3), we observe that the maximum invariant set is the

trivial equilibrium point P0. Hence, by the La-Salle Lyapunov Theorem,12

P0 is globally stable for α ≤ µB .

With respect to the non-trivial equilibrium point P ∗, we have up to two

points corresponding to the positive roots of the polynomial f
(
B̄
)
, equation

(14). The non-trivial equilibrium values are studied considering µB and α0.

With respect to the local stability, when γ < nβ, we have h(B̄) > 0 for all

values of B̄ > 0. On the other hand, the function g1(B̄) has two negative

values B∗11 = −µC/ (nβ − γ) and B∗12n = −µC/
(
nβ − γ + α

k

)
, besides the

fact that b12 > 0. Hence, we have g1(B̄) > 0, for all values of B̄ > 0. Then,

we have b1 > 0 for all positive B̄, leaving the stability of the equilibrium

points being determined only by the signal of g0(B̄), which provides signal

of b0.

Case 1 – α < µB . Equilibrium: In this case, all coefficients a2, a1 and

a0 of f
(
B̄
)

are negative. Hence, there is not non-trivial equilibrium point.

Stability : The function g0(B̄) has all coefficients b02, b01 and b00 nega-

tives, which implies that g0(B̄) < 0 for all B̄ > 0. Hence, we have b0 < 0.

As we have shown, we do not have positive solutions for α < µB , and we

have shown also that the trivial equilibrium P0 is globally stable in this

range.

Case 2 – µB < α < α0. In this case the interval was split in two

sub-intervals, taking into account ᾱ which is the big positive solution of[
1 +

(
µC

k(nβ−γ)

)2

+ 2µC

k(nβ−γ)

]
α2 − 2

[
µB + µCµB

k(nβ−γ) + 2(β+ε)λ
k(nβ−γ)

]
α+ µ2

B = 0.

(20)

Case 2.a – µB < α < ᾱ. Equilibrium and stability : Idem to case 1.

Case 2.b – ᾱ < α < α0. In this case, we have two possibilities, accord-

ing to k̄ given by

k̄ =
µC

nβ − γ

[
1 +

µCµB
(β + ε)λ

]
. (21)
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Case 2.b.1 – k < k̄. Equilibrium and stability : Idem to case 1.

Case 2.b.2 – k > k̄. Equilibrium: We have two positive solutions for

f
(
B̄
)
, given by equation (14), designed as Bsp and Bgp for, respectively,

small and big roots. At α = ᾱ, we have Bsp = Bgp , and as α increases,

Bgp increases and Bsp decreases, assuming zero value at α = α0. When

the carrying capacity k is higher than its critical value k̄, we have two

non-trivial (and biologically viable) equilibrium points.

Stability : The function g0(B̄), with b02 > 0, has one negative solution

B∗0n and a positive root B∗0p, and due to the fact that g0(Bmax) > 0, we

have B∗0p < Bmax. Hence, g0(B̄) < 0, for 0 < B̄ < B∗0p, g0(B̄) > 0, for

B∗0p < B̄ < Bmax, and g0(B̄) > 0, for B̄ > Bmax. In order to prove that the

small positive solution Bsp is unstable, while the big solution Bgp is LAS,

we must show that Bsp < B∗0p < Bgp . Let us define f̄
(
B̄
)

= −f
(
B̄
)
. Being

Bsp and Bgp the positive roots of f̄
(
B̄
)
, if we show that f̄

(
B∗0p

)
< 0, then

Bsp < B∗0p < Bgp . First, using the fact that g0

(
B∗0p

)
= 0, where B∗0p, given

by

B∗0p =
µC

(α− µB) (nβ − γ)

[
(α0 − α) +

√
(α0 − α) (β + ε)

λ

µC

]
,

is positive for nβ > γ and µB < α < α0, we can write f̄
(
B∗0p

)
as f̄

(
B∗0p

)
=

(β+ε)λ
µC(α−µB)B

∗
0pF

(
B∗0p

)
, with

F
(
B∗0p

)
= −

[
(α− µB) (nβ − γ)− µC αk

]
+
[
(α− µB) (nβ − γ) + µC

α
k

]√µC(α0−α)
(β+ε)λ ,

(22)

where the proportionality between F
(
B∗0p

)
and f̄

(
B∗0p

)
is positive for nβ >

γ and µB < α < α0. Hence, whenever F
(
B∗0p

)
< 0, we have f̄

(
B∗0p

)
< 0.

Second, in order to show that F
(
B∗0p

)
< 0, we must show that the absolute

value of the first term in the second member of equation (22) is higher

than the second term, or, the difference between squared values of the

first term and the second term must be positive. From this inequality, we

can obtain an equation G∗ (k∗), given by G∗ (k∗) = µC(α−µB)
(β+ε)λ G (k∗), with

k∗ = (nβ − γ) k, where

G (k∗) = [(α− µB) k∗ − µCα]
2 − 4µCα (α0 − α) k∗,

such that when G (k∗) > 0, we have F
(
B∗0p

)
< 0. The second order

polynomial G (k∗) has two positive solutions, named Gs and Gg, such

that 0 < Gs < G∗ < Gg, where G∗ = µCα
α−µB

, which decreases from

∞ (at α = µB) to k̄∗ = (nβ − γ) k̄ (at α = α0), where k̄ is given

by equation (21). Clearly we have G (k∗) > 0 for k∗ > Gg. When
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α = µB , we have G (k∗) = (µCµB)
2−4µB (β + ε)λk∗, resulting in G

(
k̄∗
)

=

−
[
3 (µCµB)

2
+ 4µCµB (β + ε)λ

]
< 0; hence G (k∗) < 0, for k∗ > k̄∗. On

the other hand, when α = α0, we have G (k∗) =
[

(β+ε)λ
µC

k∗ − µCα0

]2
, re-

sulting in G
(
k̄∗
)

= 0; hence G (k∗) > 0, for k∗ > k̄∗. Therefore, being

G (k∗) a continuous function, there is an α∗, with µB < α∗ < α0, such

that G (k∗) > 0, when k∗ > Gg > k̄∗. Note that G∗ > k̄∗ = (nβ − γ) k̄

for µB < α < α0. Therefore, when α∗ < α < α0 and k∗ > k̄∗, we have

G (k∗) > 0, that is, Bsp < B∗0p < Bgp . Remember that the existence of two

positive solutions requires k > k̄ and µB < ᾱ < α < α0, where ᾱ is given

by the big positive solution of equation (20).

Case 3 – α > α0. Equilibrium: We have one positive solution Bp,

and one negative root, Bn, because a2 < 0 and a0 > 0. Hence, we have

only one biologically feasible solution Bp. In this case we have one non-

trivial equilibrium point. Note that Bp is extension of Bgp as α surpasses

α0, while Bn (negative root) is extension of Bsp, which assumes zero value

at α = α0, or Bsp(α0) = 0. Asymptotically, we have limα→∞Bp = k and

limα→∞Bn = Bmax < 0.

Stability : The function g0(B̄) has all coefficients b02, b01 and b00 positive,

and ∆b0 < 0, resulting in g0(B̄) > 0, for all B̄. Hence, the biologically

feasible equilibrium point Bp is LAS.

What typically mimics weak immune response is C̄ ≤ C0 for all val-

ues of B̄. When the proliferation and recruitment of macrophages is slow

and granuloma formation is relatively rapid, the immune system does not

respond so well to deal with the invading Mtb. Moreover, granulomas

formed by infected macrophages reach considerable density at the steady

state, which can facilitate a future reactivation of TB. Another interesting

feature occurs when the carrying capacity is increased: If the initial inocu-

lation of Mtb is high, then the infection can be settle at a persistent level

even so the bacterium has low capacity to replicate (α < α0).

Summarizing, for γ < nβ, we have two possibilities. For lower carrying

capacity, k < k̄, k̄ given by equation (21), we have forward bifurcation like

the previous case (strong immune response, γ > nβ): the trivial equilibrium

P0 is LAS for α ≤ α0, while the non-trivial equilibrium P ∗, with B̄ = Bp,

is LAS for α > α0. Bifurcation occurs at α = α0. However, for k > k̄, when

ᾱ < α < α0, ᾱ given by equation (20), we have two positive equilibrium

values, Bsp (unstable, saddle point) and Bgp (LAS, stable node). At α = ᾱ

occurs backward bifurcation, and the unstable branch of solutions Bsp forms
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the break point.13 In both cases, the trivial equilibrium P0 is globally stable

for α ≤ µB , and P ∗ is stable node (due to ∆Λ > 0 and b1 > 0 from equation

(5)).

4. Numerical results

Let us illustrate our findings by drawing the bifurcation diagrams. The

values of the model’s parameters are: α = 5 × 10−3, µB = 1 × 10−3,

µC = 1 × 10−2, µG = 1 × 10−3, µT = 4 × 10−4, θ = 3 × 10−3 (all in

days−1); δ = 1.25×10−7, γ = 1.0×10−5, β = 1.25×10−8, ε = 1.25×10−7,

(all in [•]−1 × days−1, where [•] is concentration of the variables), λ = 50

(in [M ] × days−1), k = 1.0 × 104 and n−1 = 2. These values results in

α0 = 1.69× 10−3 days−1. Hereafter we will omit units.

In Figure 1a we show the forward bifurcation diagram (B̄×α) using the

values given above. The bifurcation occurs at α = α0, and the concentration

of free bacteria B−p reaches the asymptote Bmax. Note that at α = 0.005

the asymptote is practically achieved. In Figure 1b we show the backward

bifurcation diagram (B̄ × α). In order to do this, we consider the values

given above, except k = 5.0×107 and γ = 1.0×10−9. In this case α0 is the

same obtained above, and we have ᾱ = 2.36× 10−5, nβ − γ = 5.29× 10−9,

k̄ = 4.68 × 106 and ᾱ = 1.32 × 10−3. The backward bifurcation occurs at

α = ᾱ due to the fact that k > k̄ and at α = α0 the decreasing branch

assumes zero value.

In order to illustrate the role of the break point, which separates two

basins of attraction, we show the dynamical trajectories of B, C, G and T

using the values given above, except γ = 1.0×10−9, α = 1.40176×10−2 and

k = 5.0 × 107. The assigned values for α and k are such that ᾱ < α < α0

and k > k̄. In Figure 2a, we supply B(0) = 0.99 × Bsp, C(0) = C̄(Bsp),

G(0) = Ḡ(Bsp) and T (0) = T̄ (Bsp) as the initial conditions, where Bsp is

the small positive solution of the equation (14), and Ḡ, T̄ and C̄ are the

equilibrium values evaluated at B̄ = Bsp, using equations (4) and (13).

Being the initial conditions below the unstable branch (the break point),

the trajectories go to the trivial equilibrium point. In Figure 2b we supply

B(0) = 1.01 × Bsp, C(0) = C̄(Bsp), G(0) = Ḡ(Bsp) and T (0) = T̄ (Bsp),

above the unstable branch. The dynamical trajectories go to the non-

trivial equilibrium obtained with big positive root of equation (14), Bgp . In

both cases we have stable nodes.

Figure 2a shows the immune response clearing the infecting Mtb, and

C reaches the asymptote C0. Nevertheless, Figure 2b shows that, even in
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Figure 1. The curve illustrates the forward bifurcation (cases γ > nβ; and γ < nβ

and k < k̄) occurring at α = α0, and due to Bmax < k, the asymptote reaches Bmax

(a). The curve shows the backward bifurcation (case γ < nβ and k > k̄) occurring at

α = ᾱ (b). The asymptote reaches k, because Bmax < 0. The thick curve is the stable

equilibrium point, forming the increasing branch, while the thin curve corresponds to
unstable (break point) equilibrium point, which assumes zero value at α = α0, and

negative values since after. The scale in the vertical axis must be multiplied by the
factor shown in the denominator of the variable.
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Figure 2. We show the dynamical trajectories B, C, G and T . The backward bifurca-
tion generates break point (unstable branch), and the trajectories depend on the initial

conditions supplied to the dynamical system. When the initial conditions are situated

below the unstable branch, the trajectories go to the trivial equilibrium point (a); and the
dynamical trajectories go to the stable non-trivial equilibrium because the initial condi-
tions are situated above the unstable branch (b). The scale in the vertical and horizontal

axes must be multiplied by the factor shown in the denominator of the variables.

the case α < α0, if the level of inoculation of bacteria is sufficiently higher

(above the breaking point) and, additionally, they encounter favorable envi-
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ronment (k > k̄), bacteria population can be established in the host. In this

case, the dynamics of interaction of bacteria with immune response occurs

more slowly (10 times) than the case of strong immune response. Moreover,

the level of reactive granulomas reaches higher concentration (main reason

is due to γ < nβ) showing a more predisposition for future reactivation of

TB.6

Let us consider tobacco smokers. Epidemiological evidence indicates

that smoking is associated with risk of being infected with Mtb, risk of

developing TB, risk of developing more severe TB and risk of dying of

TB.14 The mechanism of increased susceptibility to infections, as Mtb, in

smokers is multifactorial and includes alteration of the structural and im-

munologic host defenses.15 First, mechanical and structural changes include

peribronchiolar inflammation and fibrosis, increased mucosal permeability,

impairment of the mucociliary clearance, changes in pathogen adherence

and disruption of the respiratory epithelium. With respect to immunologic

mechanisms, the effects are various: Elevated peripheral white blood cells

count (30% higher among smokers than nonsmokers), marked decrease in

the percentage and absolute number of CD4+ cells and increase in CD8+

with lower ratio CD4+/CD8+, deficit in cell-mediated immunity in the

lung alveolus, significant increases in the percentage of macrophages (hav-

ing a greater inhibitory effect on lymphocyte proliferation, which shows an

immunosuppressive effect) in bronchoalveolar lavage fluid, and impairment

of natural killer (NK) cell activity.

Quantitatively, the surface of alveolar area producing tuberculous cavity

(k) and granuloma formation (β) increase among tobacco smokers due to

decrease in immune response, mechanical disruption of cilia function results

in a weak barrier against invading bacteria (α increases, and/or the initial

inoculation increases), defects in macrophage immune response increase the

non-activated alveolar macrophages (increasing λ
µC

in conjunction with β

increases the formation of granulomas), and/or CD4+ lymphopenia occurs

(ε and γ decrease). As a consequence, we have a decreasing in α0, an

increasing in the number of invading (inoculation of) Mtb, and possibly in

γ < nβ, which may allow the occurrence of backward bifurcation. Hence,

all these factors in combination can result in an increased TB risk.15

In a well responding immune system, CD4+ cells are efficiently acti-

vated, and are driven to proliferate rapidly. However, in smokers, it is

observed deficit in cell-mediated immunity in the lung alveolus and signifi-

cant increase in the percentage of macrophages having a greater inhibitory

effect on lymphocyte proliferation. In other words, we have the reduction
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in the capacity of activating lymphocytes (q) and the decrease in the pro-

liferation (γ) of these activated cells. Hence, the phagocytosis and further

lysis of bacteria (ε) and the destruction of granulomas (δ) by activated

macrophages are seriously impaired. Conversely, the granuloma formation

(β) is increased in a weak cell-mediated immune response due to phagocy-

tosis of bacteria by naive macrophages, and mechanical disruptions increase

k. As a consequence, the risk of direct progression to TB is increased.

5. Conclusion

A simple model was proposed to describe the progression of Mtb infection.

In this work, the continuously varying action of cytokines and other immune

cells (as dendritic cells, CD4+ and Cd8+ T cells, etc.) was approximated

by a constantly acting parameter q.

A simple model was applied to explain the direct progression to TB.

The analysis of the model showed the existence of a threshold parameter

α0, which is a key parameter to control the infection. If the intrinsic growth

rate of mycobacteria is lower than this value, the infection does not fade

out and occurs the persistence of the bacilli. To control the infection, the

parameter α0 must be increased in order to surpass α. One of the control-

ling mechanisms is the administration of antibiotics in order to increase µB .

A vaccine with the property of increasing the activation and proliferation

of macrophages (described by the parameters ε and δ) should be a po-

tent prophylactic control, since the Mtb infection requires cellular response

mounted by human immune system to be controlled. Note that the phago-

cytosis of bacteria by naive macrophages (described by the parameter β)

also reduces the capacity of mycobacterial proliferation. The improvement

of the nutrition factor due to socioeconomic conditions getting better influ-

ences positively the health conditions of the population. As a consequence,

the immune system is enhanced, by increasing the alveolar macrophages

(parameter C0 = λ/µC).

The rate of proliferation and recruitment of macrophages (γ) plays an

important role. This parameter does not contribute to the threshold value

α0, because its influence occurs moments after the infection. This overall

parameter is combination of γM and rM according to γ = q (γM + rM ).

Obviously, without the cell-mediated response by action of activated lym-

phocytes (q = 0), there is not recruitment of naive macrophages neither the

proliferation of activated macrophages. An interesting property is regard-

ing to the strength of immune response: If recruitment is more intense than
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proliferation, there is more recruitment of naive macrophages in compari-

son with proliferation of activated macrophages, even in a strong immune

response. This fact can compromise the efficiency of cell-mediated immune

response against Mtb infection: Increasing naive macrophages, the granu-

loma formation can be enhanced. Hence, in the case of Mtb infection, pro-

liferation of activated macrophages must prevail over recruitment of naive

macrophages, attesting the very importance of CD4+ cells (and dendritic

cells) to circumscribe or to eliminate invading bacteria.

We applied the results obtained from the model with respect to en-

hanced and weakened immune responses, taking smokers as an example.

In tobacco smoking individual, for instance due to mechanical disruption

of cilia function,16 the alveolar regions where invading bacteria can reach

could be increased, which is described quantitatively by increasing the car-

rying capacity k. The immune response is impaired by decreasing CD4+

cells (q is decreased, decreasing ε, δ and γ, and increasing β)17–18 and the

number of alveolar macrophages can also be increased (increasing C0),19

but acting as immunosuppressive way.20 Moreover, the impairment of NK

cell activity is a potential mechanism for the increased incidence of infection

among smokers.21 As a consequence, when an elevate quantity of bacteria

infects persons with weakened immune response (especially in the case of

γ < nβ and α < a0), granulomas are formed in higher quantity. There-

fore, there is an increase in the success of the invading mycobacteria being

persistent (α > ᾱ), or, even in the case of clearance of invading bacteria,

the solid caseous material derived from reactive granulomas are left in ele-

vate concentration in the host. This fact shows that the reactivation of TB

can be facilitated and also can occur in a short period of time after prime

infection. Reactivation of TB is dealt with in a companion paper.6
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