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One of the main features of directly transmitted infections is the strong dependency

of the risk of infection with age. We propose and analyze a simple mathematical

model where the force of infection (per-capita incidence rate) is age-depending. The
existence and stability of the non-trivial equilibrium point are determined based

on the basic reproduction number. For this reason we deal with a characterization
of the basic reproduction number by applying the spectral radius theory.

1. Introduction

Directly transmitted childhood infections, like rubella and measles, have
been used as good examples for the application of mathematical models to
the study and comprehension of the epidemiology of these diseases. The
models are formulated basically by taking into account the force of infection
depending on the contact rate, which is related to the pattern of contacts
among susceptible and infectious individuals. Therefore, the assumptions
on the contact rate lead to quite different approaches when one deals with
the models2.
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A first assumption, and also the simplest, is to consider a constant
contact rate among individuals over all ages and time. Consequently the
force of infection becomes constant. The resulting mathematical model
is described by a time-depending system of differential equations without
age structure. This assumption can generate non-realistic outputs when
modeling childhood diseases with a strong age depending pattern. A second
and better assumption is, therefore, to take into account the age dependency
in the pattern of contacts. A mathematical model with this assumption
yields a time- and age-depending system of differential equations (see Dietz5

who was the first author to apply this formalism to epidemiology with
constant contact rate), resulting in the well established concept of the age
depending force of infection8.

When dealing with a constant contact rate modeling, there are classi-
cal results related to the basic reproduction number and the lower value
(threshold) for the vaccination rate above which the disease can be consid-
ered eradicated1. With respect to age-structured modeling, results related
to the basic reproduction number R0 and the threshold vaccination rate
are more complex. For instance, Greenhalgh7 and Inaba10 showed the exis-
tence and uniqueness of the non-trivial solution for the Hammerstein equa-
tion similar to that presented in Yang18. They showed that the bifurcation
from the trivial to non-trivial solution of the Hammerstein integral equa-
tion occurs when the spectral radius assumes unity value. Furthermore,
they related this spectral radius with the basic reproduction number, and
stated that whenever R0 < 1 the disease fades out in the community, and
when R0 > 1, the disease can be settle at an endemic level. Following
the same arguments, they showed the procedure to calculate the threshold
vaccination rate.

Two attempts of representing the age-structured contact rate can be
found in the literature: a matrix with constant elements and a constant
value for different age classes. Anderson and May1 developed the con-
cept they called Who-Acquires-Infection-From-Whom matrix (WAIFW).
Briefly, this is a matrix where the elements of rows and columns are the
contact rates, constant values, over the discrete age classes of susceptible
and infectious individuals. Schenzle15 developed an age-structured contact
pattern where constant values on several age intervals are assigned and,
then, structured the dynamics in a coupled differential equations to esti-
mate the contact rate from notified data. Although both methods represent
good approaches to modeling the dynamics of direct transmitted diseases,
they are applicable to the description of different kinds of data collection:
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the WAIFW method is appropriate to analyze seroprevalence data, while
Schenzle’s method is better applied to incidence records.

The purpose of this paper is to develop a model with age-structured
contact rate. However, as pointed by Tudor17, data on contact rates do
not exist, although most parameters related to the disease transmission
can be estimated directly. This fundamentally theoretical paper is divided
as follows. In section 2 the general model is presented and analyzed. In
section 3 we present a characterization of the basic reproduction number.
Discussion and conclusion are presented in section 4.

2. The model

Farrington6 obtained an age depending force of infection from cumulative
distribution function of age at infection. Here, the age depending force
of infection is obtained from a compartmental model taking into account
an age-structured contact rate. Let a closed community be subdivided into
four groups X(a, t), H(a, t), Y (a, t) and Z(a, t) which are, respectively, sus-
ceptible, exposed, infectious and immune individuals, distributed according
to age a at time t. According to the natural history of infection, susceptible
individuals are infected at a rate λ (a, t), known as force of infection (per-
capita incidence rate), and transferred to exposed class. The age-specific
force of infection at time t is defined by

λ (a, t) =

L∫
0

β (a, a′)Y (a′, t) da′, (1)

where β (a, a′) is the age-structured contact rate, that is, the contact among
susceptible individuals of age a with infectious individuals of age a′, and L
is the maximum age attainable by human population. The exposed indi-
viduals are moved to the infectious class at a constant rate σ, and enters to
the immune class at a rate γ. All individuals are under a constant mortality
rate µ. We remark that the additional mortality due to the disease, the loss
of immunity and the protective action of maternal antibodies in newborns
are not considered in the model.

Based on the above considerations, the dynamics of directly transmit-
ted infectious diseases model considering age-structured contact rate is de-
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scribed by a system of partial differential equations16,
∂
∂tX (a, t) + ∂

∂aX (a, t) = − [λ (a, t) + ν (a) + µ]X (a, t)
∂
∂tH (a, t) + ∂

∂aH (a, t) = λ (a, t)X (a, t)− (µ+ σ)H (a, t)
∂
∂tY (a, t) + ∂

∂aY (a, t) = σH (a, t)− (µ+ γ)Y (a, t)
∂
∂tZ (a, t) + ∂

∂aZ (a, t) = ν (a)X (a, t) + γY (a, t)− µZ (a, t) ,

(2)

where ν (a) is the age depending vaccination rate. Note that the last equa-
tion is decoupled from the system, hence, hereafter, we will omit the equa-
tion for the immune individuals, Z (a, t). Defining the total population as
N (a, t) = X (a, t) +H (a, t) + Y (a, t) +Z (a, t), we obtain the equation for
the age-distribution of the population irrespective of the disease as

∂

∂a
N (a, t) +

∂

∂t
N (a, t) = −µN (a, t) .

Using this equation, we can obtain the decoupled variable as Z (a, t) =
N (a, t)−X (a, t)−H (a, t)− Y (a, t).

The boundary conditions of (2) are X (0, t) = Xb, which is the newborn
rate, and H (0, t) = Y (0, t) = 0, which come out from the assumptions of
the model. Let us assume that a vaccination strategy is introduced at t = 0
in a non-vaccinated population (ν (a) = 0) in which the disease encounters
in the steady state. Then the initial conditions of (2) are the solutions of

d
daX0(a) = − [λ0(a) + µ]X0(a)
d
daH0(a) = λ0(a)X0(a)− (σ + µ)H0(a)
d
daY0(a) = σH0(a)− (γ + µ)Y0(a),

(3)

where λ0(a) =
∫ L

0
β(a, a′)Y0(a′)da′ is equation (1) in the steady state.

From the boundary conditions, the initial conditions are X0(0) = Xb and
H0 (0) = Y0 (0) = 0.

3. A characterization of R0 in the steady state

Let us characterize the reproduction number Rν as a spectral radius of a
integral operator. The basic reproduction number R0 is defined as the aver-
age number of secondary infections produced by one susceptible individual
in a completely homogeneous and susceptible population in the absence
of any kind of constraint (ν = 0). Hence, R0 describes the epidemiolog-
ical situation in a non-vaccinated population. Greenhalgh7 considered an
age-structured contact rate β (a, a′) being a separable function

β (a, a′) =
n∑
i=1

pi (a) qi (a′) ,
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and applied results from the spectral radius of linear operators on Banach
spaces in a finite dimension. In our case, we consider β (a, a′) ∈ C [0, L]
and use results from bifurcation points and positive operators in cones3

and fixed points11. In a companion paper4, as Inaba10, we discuss about
the stability of the trivial solution and the uniqueness of the non-trivial
solution, and provide the estimations for upper and lower bounds of R0 for
special contact rates.

Let us introduce some definitions.
We consider a Banach space X with a solid cone K and an operator

T : X → X. A cone is a proper convex closed subset (K is proper if
K ∩ −K = ∅) such that for all k > 0 we have kK ⊂ K. A cone is solid if
it has int (K) 6= ∅ (particularly, if a cone is solid it is reproducing, that
is, X = K −K). K establishes on X a partial ordering relation, that is, if
x, y ∈ X, we say that x ≤ y if y−x ∈ K and x < y if y−x ∈ K and x 6= y.
Particularly, we say that 0 ≤ x if x ∈ K and 0 < x if x ∈ K and x 6= 0.
A cone K is called normal if exists a δ > 0 such that ‖x1 + x2‖ ≥ δ for
x1, x2 ∈ K and ‖x1‖ = ‖x2‖ = 1. For example, the cone of non-negative
continuous real functions in a closed interval with the sup-norm is normal.
An operator T : X −→ X is positive if T (K) ⊂ K, and strongly positive
if for 0 6= x ∈ K, then T (x) ∈ int (K) (see Deimling3).

An operator T : X −→ X is (strongly) Fréchet differentiable at the
point u0 ∈ X in the directions of the cone K if there exist a linear
operator T ′ (u0) : X → X and an operator ω (u0, ·) : K −→ X so that

T (u0 + h) = T (u0) + T ′ (u0)h+̄ω (u0, h) ,∀h ∈ K,

where lim
‖h‖→0

‖ω(u0,h)‖
‖h‖ = 0. T ′ (u0) is called (strong) Fréchet deriva-

tive with respect to the cone K at the point u. A function
y : t ∈ R → y (t) ∈ X is called differentiable at infinity if the ratio(

1
t

)
y (t) converges to some element y′ (∞) ∈ X as t→∞, and it is usual to

speaking about strong or weak differentiability at infinity depending
on whether

(
1
t

)
y (t) converges strongly or weakly to y′ (∞). The operator

T is called (strongly) differentiable at infinity in the directions of the
cone K if for all directions h ∈ K, h 6= 0, we have the derivative y′ (∞) of
T (th) is representable in the form y′ (∞) = T ′ (∞)h, where T ′ (∞) is some
continuous linear operator, which is the derivative at infinity with respect
to the cone K. The operator T ′ (∞) is called the strong asymptotic
derivative with respect to the cone K, and the operator T is called
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strongly asymptotically linear with respect to the cone K, if

lim
R→∞

sup
‖x‖≥R,x∈K

‖Tx− T ′ (∞)x‖
‖x‖

= 0

(see Krasnosel’skii11).
If X is not a complex Banach space, we can consider its complexification

XC, the complex Banach space of all pairs (x, y) with x, y ∈ X, where

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

and

(λ1 + iλ2) (x, y) = (λ1x− λ2y, λ1y + λ2x) ,

with norm given by ‖(x, y)‖ = sup
θ∈[0,2π]

‖x cos θ + y sin θ‖. In this case, X is

isometrically isomorphic to the real subspace X̂ = {(x, 0) ;x ∈ X} of XC.
If T : X → X is a linear operator, its complexification TC : XC → XC is
defined by

TC (x, y) = (Tx, Ty) ,

and ‖TC‖ = ‖T‖ (see Deimling3).
Let T : X −→ X be a linear operator on a complex normed space X,

and λ is a complex number, λ ∈ C. Then we have associate operators

Tλ = T − λI

and

< (λ) = T−1
λ

when the inverse operator exists. The application < which for λ ∈ C
associates < (λ), when it is possible, is called the resolvent operator of
T . λ ∈ C is called a regular value of T if there exists < (λ), < (λ) is
bounded linear operator and Dom (< (λ)) = X. The set of all regular values
of T is called resolvent set of T , or simply, the resolvent of T , which is
denoted by ρ (T ). σ (T ) = C − ρ (T ) is called the spectrum of T . The
set of all λ ∈ C so that R (λ) does not exist is called the point spectrum
of T , σp (T ), and their elements are called eigenvalues, so λ ∈ σp (T ) if
and only if there exists x ∈ X, x 6= 0, so that Tx = λx, and x is called an
eigenvector of T associates to eigenvalue λ, or simply, an eigenvector
of T . Following the definition of spectrum of T , λ ∈ σ (T ) if one of the
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above conditions is not true, that is, whether T−1
λ does not exist, or if there

exists but it is not bounded, or Dom (R (λ)) 6= X.
Let us consider that X is a complex Banach space and T is bounded.

Then if < (λ) exists, is defined on the whole space X, and is bounded.
The classical results show that ρ (T ) is open and the natural domain of the
analyticity of < (a domain in the complex plane C is an open subset such
that every pair of points can be joined by a broken line consisting of finitely
many straight line segments such that all points of they belong to it) and
σ (T ) is non-avoid closed bounded set. Since T is a bounded linear operator
and σ (T ) is bounded, we have the definition of the spectral radius r (T ),

r (T ) = sup
λ∈σ(T )

|λ| ,

and it is known that

r (T ) = lim
n→∞

‖Tn‖
1
n ,

which is called Gelfand’s formula (see Kreyszig13).
An operator T : X → X is a compact operator if bounded sets are

mapped in relatively compact sets. If T is a compact linear operator their
properties closely resemble those of operators on finite dimensional spaces.
For example, if T is a compact linear operator its set of the eigenvalues is
countable (perhaps finite or even empty) and λ = 0 is the only possible
point of accumulation of this set, the dimension of any eigenspace of T is
finite and every spectral value λ 6= 0 is an eigenvalue. Furthermore, if λ 6= 0
is an eigenvalue there exists a natural number r = r (λ) such that

X = N (T rλ)⊕ T rλ (X) ,

where

N
(
T 0
λ

)
⊂ N (Tλ) ⊂ N

(
T 2
λ

)
⊂ · · · ⊂ N (T rλ) = N

(
T r+1
λ

)
= · · · ,

and

T 0
λ (X) ⊃ Tλ (X) ⊃ T 2

λ (X) ⊃ · · · ⊃ T rλ (X) = T r+1
λ (X) = · · · .

The dim (N (T rλ)) is the algebraic multiplicity of λ and dim (N (Tλ)) is
the geometric multiplicity of λ (in the case that X = Rn, dim (N (T rλ))
and dim (N (Tλ)) are the multiplicities of λ as a zero of the character-
istic polynomial and minimal polynomial of T ). Particularly, the order
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of eingevalue λ 6= 0 as pole of resolvent operator < (·) is its algebraic
multiplicity3.

Let us consider the Banach space C [0, L] of all continuous
real functions defined on [0, L], the normal solid cone C [0, L]+ =
{f ∈ X; f (s) ≥ 0, s ∈ [0, L]}, and the usual norm, that is, ‖f‖ =
sup {|f (s)| ; s ∈ [0, L]}.

The steady state solutions of (2), letting zero the derivatives with respect
to time, are

X∞(a) = Xbe
−[µa+Λ(a)+N(a)]

H∞(a) = Xbe
−(µ+σ)a

a∫
0

eσζ−N(ζ)λ∞(ζ)e−Λ(ζ)dζ

Y∞(a) = Xbe
−(µ+γ)a

a∫
0

σe(γ−σ)sds
s∫
0

eσζ−N(ζ)λ∞(ζ)e−Λ(ζ)dζ,

where Λ(ζ) =
∫ ζ

0
λ∞(s)ds and N(ζ) =

∫ ζ
0
ν(s)ds. Substituting the result-

ing Y∞(a) into the equation (1) at equilibrium, after some calculations we
obtain

λ∞(a) =

L∫
0

B(a, ζ)×M (ζ, λ∞ (ζ) , ν (ζ))× λ∞(ζ)dζ, (4)

where the function M (ζ, λ (ζ) , ν (ζ)) is

M (ζ, λ (ζ) , ν (ζ)) = e−
∫ ζ
0 λ(s)ds × e−

∫ ζ
0 ν(s)ds

and the kernel B(a, ζ) is

B (a, ζ) = σXbe
−N(ζ)

L∫
ζ

e−σ(s−ζ)eγs

 L∫
s

β (a, a′) e−(µ+γ)a′da′

 ds. (5)

Equation (4) is a Hammerstein equation9. Notice that the force of infection
corresponding to the initial conditions, solutions of (3), is

λ0(a) =

L∫
0

B′(a, ζ)M (ζ, λ0 (ζ) , 0)λ0(ζ)dζ,

from which we characterize the basic reproduction number R0.
Let us assume that:
(a) β (a, a′) is continuous and β (a, a′) > 0 for every a, a′ ∈ [0, L], except

for a = a′ = 0, where β (a, a′) = 0.
(b) ν (a) is continuous or piecewise continuous with only finitely many

discontinues and is bounded.



March 1, 2010 18:39 Proceedings Trim Size: 9in x 6in yang1

9

Let us consider the operator T on C [0, L] defined by

Tu (a) =

L∫
0

B (a, ζ)M (ζ, u (ζ) , ν (ζ))u (ζ) dζ, (6)

where B (a, ζ) and M (ζ, u, ν) are real functions satisfying the conditions:
(c) B (a, ζ) is defined on [0, L]× [0, L], which is positive and continuous

in a and ζ.
(d) M (ζ, u, ν) is defined on [0, L] × [0,∞) × [0,∞), which is positive,

continuous in ζ for each u and v, strictly monotone decreasing for u for
each ζ and ν, and there exists k1 ≥ 0 such that

|M (ζ, u1 (ζ) , ν (ζ))−M (ζ, u2 (ζ) , ν (ζ))| ≤ k1 ‖u1 − u2‖+R (u1, u2) ,

with lim
‖u1−u2‖→0

R (u1, u2) = 0.

(e) there exists a real number m > 0 such that |M (ζ, u, ν)| ≤ m for
every ζ, u and ν.

Notice that |M (ζ, λ (ζ) , ν (ζ))| ≤ 1 for all ζ ∈ [0, L], and

|M (ζ, λ1 (ζ) , ν (ζ))−M (ζ, λ2 (ζ) , ν (ζ))| ≤
∣∣∣1− e− ∫ L

0 (λ1(s)−λ2(s))ds
∣∣∣→ 0,

when ‖λ1 − λ2‖ → 0.

Definition 3.1. An operator A is completely continuous if it is a com-
pact continuous operator.

The following three theorems are used to proof lemmas below.

Theorem 3.1. (Krasnosel’skii12) Let us consider the Banach spaces E1

and E2, the operator f : E1 → E2 which is continuous and bounded and
also B : E2 → E1 which is completely continuous linear operator. Then the
operator A = B f : E1 → E1 is completely continuous.

Theorem 3.2. (Ascoli’s Theorem, Kreyszig13) A bounded equicontin-
uous sequence (xn)n in C [0, L] has a subsequence which converges in the
norm on C [0, L] (a sequence (yn)n in C [0, L] is said to be equicontinuous

if for every ε > 0 there is a δ > 0, depending only on ε, such that for all yn
and all a, a′ ∈ [0, L] satisfying |a− a′| < δ we have |yn (a)− yn (a′)| < ε).

Theorem 3.3. (Compactness criterion, Kreyszig13) Let S : Y → Z be
a linear operator where Y and Z are normed spaces. Then S is compact
operator if and only if it maps every bounded sequence (yn)n in Y onto a
sequence in Z which has a convergent subsequence.
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Lemma 3.1. T is completely continuous positive operator.

Proof: If u ∈ C [0, L]+ then Tu ∈ C [0, L]+. Let be a1, a2 ∈ [0, L] then

|Tu (a1)− Tu (a2)| ≤L0 |M (ζ, u (ζ) , ν (ζ))| |u (ζ)| |B (a1, ζ)−B (a2, ζ)| dζ ≤
m ‖u‖L0 |B (a1, ζ)−B (a2, ζ)| dζ.

Note that B is continuous on compact set [0, L] × [0, L], hence, given

ε > 0 there is δ > 0 such that if ‖(a1, ζ)− (a1, ζ)‖ =
√

(a1 − a2)2 ≤ δ,
then |B (a1, ζ)−B (a2, ζ)| ≤ ε

m‖u‖L . Therefore, if |a1 − a2| ≤ δ then
|Tu (a1)− Tu (a2)| ≤ ε.
We show that T is continuous. Let u, u0 ∈ C [0, L] and a ∈ [0, L], then

|Tu (a)− Tu0 (a)| ≤
L∫
0

|M (ζ, u (ζ) , ν (ζ))u (ζ)−M (ζ, u0 (ζ) , ν (ζ))u0 (ζ)| |B (a, ζ)| dζ.

As B is continuous over a compact set, so there is m1 > 0 such that
|B (a, ζ)| ≤ m1 for all (a, ζ) ∈ [0, L]× [0, L]. Furthermore,

|M (ζ, u (ζ) , ν (ζ))u (ζ)−M (ζ, u0 (ζ) , ν (ζ))u0 (ζ)| ≤ |M (ζ, u (ζ) , ν (ζ))u (ζ)−
M (ζ, u (ζ) , ν (ζ))u0 (ζ)|+ |M (ζ, u (ζ) , ν (ζ))u0 (ζ)−
M (ζ, u0 (ζ) , ν (ζ))u0 (ζ)| ≤ |M (ζ, u (ζ) , ν (ζ))| |u (ζ)− u0 (ζ)|+
|M (ζ, u (ζ) , ν (ζ))−M (ζ, u0 (ζ) , ν (ζ))| |u0 (ζ)| ≤
|M (ζ, u (ζ) , ν (ζ))| ‖u− u0‖+ [k1 ‖u− u0‖ ‖u0‖+R (u (ζ) , u0 (ζ))] ‖u0‖ ≤
m ‖u− u0‖+ k1 ‖u0‖ ‖u− u0‖+ ‖u0‖R (u (ζ) , u0 (ζ)) ,

from which

|Tu (a)− Tu0 (a)| ≤
L∫
0

m1 [m ‖u− u0‖+ k1 ‖u0‖ ‖u− u0‖+ ‖u0‖R (u (ζ) , u0 (ζ))] dζ ≤

m1 (m+ k1 ‖u0‖) ‖u− u0‖L+m1 ‖u0‖
L∫
0

R (u (ζ) , u0 (ζ)) dζ.

Since lim
‖λ1−λ2‖→0

R (λ1, λ2) = 0, we have that ‖Tu− Tu0‖ → 0 when

‖u− u0‖ → 0.
Now we show that T is compact. To prove this we will use the Theorem
3.1. Let us consider the operators

B : C [0, L]→ C [0, L]

Bu (a) =
L∫
0

B (a, ζ)u (ζ) dζ
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and {
f : C [0, L]→ C [0, L]

fu (ζ) = M (ζ, u (ζ) , ν (ζ))u (ζ) .

It is enough to verify that B is completely continuous and f is continuous
and bounded.
We show that B is completely continuous, that is, B is compact and con-
tinuous. Let be u ∈ C [0, L] and a, a0 ∈ [0, L], then

∣∣Bu (a)−Bu (a0)
∣∣ =

∣∣∣∣∣L∫0 B (a, ζ)u (ζ) dζ −
L∫
0

B (a0, ζ)u (ζ) dζ

∣∣∣∣∣ ≤
‖u‖

L∫
0

|B (a, ζ)−B (a0, ζ)| dζ.

As B is continuous on compact, given ε > 0 there is δ > 0 such that
|a− a0| ≤ δ, then |B (a, ζ)−B (a0, ζ)| ≤ ε

‖u‖L . Thus Bu ∈ C [0, L].
First we show that B is continuous. Let be u, u0 ∈ C [0, L] and a ∈ [0, L],
then ∣∣Bu (a)−Bu0 (a)

∣∣ =∣∣∣∣∣L∫0 B (a, ζ)u (ζ) dζ −
L∫
0

B (a, ζ)u0 (ζ) dζ

∣∣∣∣∣ ≤ m1L ‖u− u0‖ .

So
∥∥Bu−Bu0

∥∥→ 0 when ‖u− u0‖ → 0.
Second, B is compact. Let (un)n be a bounded sequence in C [0, L], that is,
there is m2 ∈ R such that ‖un‖ = sup

a∈[0,L]

|un (a)| ≤ m2 for every n. Hence,

given a1, a2 ∈ [0, L], we have

∣∣Bun (a1)−Bun (a2)
∣∣ =

∣∣∣∣∣L∫0 B (a1, ζ)un (ζ) dζ −
L∫
0

B (a2, ζ)un (ζ) dζ

∣∣∣∣∣ ≤
m2

L∫
0

|B (a1, ζ)−B (a2, ζ)| dζ.

Being B continuous on compact, given ε > 0 there is δ > 0 such that if
|a1 − a2| ≤ δ, then |B (a1, ζ)−B (a2, ζ)| ≤ ε

m2L
. So

(
B (un)

)
n

is equicon-
tinuous. That

(
B (un)

)
n

is bounded sequence is checked straightforwardly.
As
(
B (un)

)
n

is equicontinuous and bounded sequence on C [0, L], it has a
convergent subsequence (see Theorem 3.2). Since B maps a bounded se-
quence into a sequence which has a convergent subsequence it is a compact
operator (see Theorem 3.3).
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In relation to f , we show that fu ∈ C [0, L] if u ∈ C [0, L]. Let be
ζ, ζ0 ∈ [0, L], then

∣∣fu (ζ)− fu (ζ0)
∣∣ =

∣∣∣e− ∫ ζ
0 u(s)dse−

∫ ζ
0 ν(s)dsu (ζ)− e−

∫ ζ0
0 u(s)dse−

∫ ζ0
0 ν(s)dsu (ζ0)

∣∣∣ .
Let us suppose that ζ < ζ0, then, when ζ → ζ0, we have

∣∣fu (ζ)− fu (ζ0)
∣∣ =

e−
∫ ζ
0 u(s)dse−

∫ ζ
0 ν(s)ds

∣∣∣u (ζ)− e−
∫ ζ0
ζ u(s)dse−

∫ ζ0
ζ ν(s)dsu (ζ0)

∣∣∣→ 0.

Now, we will see that f is continuous. Let be u, u0 ∈ C [0, L] and ζ ∈ [0, L],
in a way that

∣∣fu (ζ)− fu0 (ζ)
∣∣ = |M (ζ, u (ζ) , ν (ζ))u (ζ)−M (ζ, u0 (ζ) , ν (ζ))u0 (ζ)| ≤

{|M (ζ, u (ζ) , ν (ζ))u (ζ)−M (ζ, u (ζ) , ν (ζ))u0 (ζ)|+
|M (ζ, u (ζ) , ν (ζ))u0 (ζ)−M (ζ, u0 (ζ) , ν (ζ))u0 (ζ)|} ≤
|M (ζ, u (ζ) , ν (ζ))| ‖u− u0‖+ |M (ζ, u (ζ) , ν (ζ))−M (ζ, u0 (ζ) , ν (ζ))| ‖u0‖ ≤
m ‖u− u0‖+ ‖u0‖ [k1 ‖u− u0‖+R (u (ζ) , u0 (ζ))] .

Being lim
‖λ1−λ2‖→0

R (λ1, λ2) = 0, we have
∥∥fu− fu0

∥∥→ 0 when ‖u− u0‖ →

0. That f is bounded is checked straightforwardly, i.e.,

∥∥fu∥∥ = sup
ζ∈[0,L]

∣∣fu (ζ)
∣∣ = sup

ζ∈[0,L]

|M (ζ, u (ζ) , ν (ζ))u (ζ)| =

sup
ζ∈[0,L]

|M (ζ, u (ζ) , ν (ζ))| |u (ζ)| ≤ m ‖u‖ .

Lemma 3.2. T is Fréchet differentiable at the point 0 ∈ C [0, L] in the
directions of the cone C [0, L]+ and

T ′ (0)h (a) =

L∫
0

B (a, ζ)M (ζ, 0, ν (ζ))h (ζ) dζ. (7)

Furthermore T ′ (0) is strongly positive completely continuous operator.
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Proof: Let be u, h ∈ C [0, L]. Then, from equation (6), we have

T (u+ h) (a)− Tu (a) =
L∫
0

B (a, ζ)M (ζ, (u+ h) (ζ) , ν (ζ)) (u+ h) (ζ) dζ−
L∫
0

B (a, ζ)M (ζ, u (ζ) , ν (ζ))u (ζ) dζ =

L∫
0

B (a, ζ) [M (ζ, (u+ h) (ζ) , ν (ζ))−M (ζ, u (ζ) , ν (ζ))]u (ζ) dζ+

L∫
0

B (a, ζ)M (ζ, (u+ h) (ζ) , ν (ζ))h (ζ) dζ.

So we have at u ≡ 0,

T (h) (a)− T (0) (a) =
L∫
0

B (a, ζ)M (ζ, h (ζ) , ν (ζ))h (ζ) dζ =

L∫
0

B (a, ζ) [M (ζ, h (ζ) , ν (ζ))−M (ζ, 0, ν (ζ))]h (ζ) d+

L∫
0

B (a, ζ)M (ζ, 0, ν (ζ))h (ζ) dζ.

Defining ω (a, h) by equation

ω (a, h) =

L∫
0

B (a, ζ) [M (ζ, h (ζ) , ν (ζ))−M (ζ, 0, ν (ζ))]h (ζ) dζ,

we observe that

|ω (a, h)| =

∣∣∣∣∣L∫0 B (a, ζ) [M (ζ, h (ζ) , ν (ζ))−M (ζ, 0, ν (ζ))]h (ζ) dζ

∣∣∣∣∣ ≤
L∫
0

|B (a, ζ)| [k1 |h (ζ)|+R (h (ζ) , 0)] |h (ζ)| dζ,

and lim
‖h‖→0

R (h (ζ) , 0) = 0, then

lim
‖h‖→0

‖ω (a, h)‖
‖h‖

= 0.

Hence, we have (7), the definition of Fréchet derivative,

T ′ (0)h (a) =

L∫
0

B (a, ζ)M (ζ, 0, ν (ζ))h (ζ) dζ.
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Now we show that T ′ (0) is strongly positive. Let us consider 0 6= h ∈
C [0, L]+, that is, there exists ζ∗ ∈ [0, L] such that h (ζ∗) 6= 0. If
T ′ (0)h (a∗) = 0 for some a∗ ∈ [0, L], then

L∫
0

B (a∗, ζ)M (ζ, 0, ν (ζ))h (ζ) dζ = 0.

Since B (a, ζ)M (ζ, 0, ν (ζ))h (ζ) is positive continuous function in ζ for
each a, we have

B (a∗, ζ)M (ζ, 0, ν (ζ))h (ζ) = 0

for all ζ, particularly for ζ∗, we have

B (a∗, ζ∗)M (ζ∗, 0, ν (ζ∗))h (ζ∗) = 0.

Therefore, we have

B (a∗, ζ∗) = 0,

which implies that β (a∗, a′) = 0 for all a′ ∈ [ζ∗, L] and this is not possible
(see condition (a) on β (a, a′)).
Since T ′ (0) is a linear operator, to verify that it is completely continuous,
it is sufficient to proceed like the case of operator T in Lemma 3.1.

To demonstrate that Rν = r (T ′ (0)), we use three theorems stated
below. In their enunciates, X, Y , K and T will be general spaces and
operator, respectively. Notice that R0 is calculated by (7) letting ν = 0.

Theorem 3.4. (Krasnosel’skii11) Let the positive operator T (T0 = 0)
have a strong Fréchet derivative T ′ (0) with respect to a cone and a strong
asymptotic derivative T ′ (∞) with respect to a cone. Let the spectrum of
the operator T ′ (∞) lie in the circle |µ| ≤ ρ < 1. Let the operator T ′ (0)
have in K an eigenvector h0; then

T ′ (0)h0 = µ0h0,

where µ0 > 1, and T ′ (0) does not have in K eigenvectors to which an
eigenvalue equals to 1. Then if T is completely continuous, the operator T
has one non-zero fixed point in the cone.

Theorem 3.5. (Deimling3) Let be X a Banach space, K ⊂ X a solid
cone, that is, int (K) 6= ∅, and T : X → X strongly positive compact linear
operator. Then:
(i) r (T ) > 0, r (T ) is a simple eigenvalue with eigenvector v ∈ int (K) and
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there is not eigenvalue with positive eigenvector.
(ii) if λ is an eigenvalue and λ 6= r (T ), then |λ| < r (T ).
(iii) if S : X → X is bounded linear operator and Sx ≥ Tx on K, then
r (S) ≥ r (T ), while r (S) > r (T ) if Sx > Tx for x ∈ K,x > 0.

Definition 3.2. (Deimling3) Let X, Y be Banach spaces, J =
(λ0 − δ, λ0 + δ) a real interval, Ω ⊂ X a neighborhood of 0 and F :
J × Ω −→ Y such that F (λ, 0) = 0 for all λ ∈ J , then (λ0, 0) will be
a bifurcation point for F (λ, x) if

(λ0, 0) ∈ {(λ, x) ∈ J × Ω;F (λ, x) = 0, x 6= 0}.

Theorem 3.6. (Bifurcation Theorem, Griffel9) Consider the equation
Au = ηu, where A is a compact non-linear operator, Fréchet-differentiable
at u = 0, such that A0 = 0. Then:
(i) if µ0 is a bifurcation point of F (µ, x) = x−µAx, then µ−1

0 is an eigen-
value of the linear operator A′ (0).
(ii) if µ−1

0 is an eigenvalue of A′ (0) with odd multiplicity, then µ0 is a bi-
furcation point of F (µ, x).

Theorem 3.7. (Existence Theorem) Let us consider the operator T :
C [0, L]→ C [0, L] described by the equation (6), or

Tu (a) =

L∫
0

B (a, ζ)M (ζ, u (ζ) , ν (ζ))u (ζ) dζ.

If r (T ′ (0)) ≤ 1, the only solution of equation (4), that is,

λ (a) =

L∫
0

B (a, ζ)M (ζ, λ (ζ) , ν (ζ))λ (ζ) dζ

is the trivial solution. Otherwise, if r (T ′ (0)) > 1 there is at least one
non-trivial positive solution for this equation.

Proof : We use the same arguments given in Greenhalgh7. Suppose
r (T ′ (0)) ≤ 1 and the equation (4) has a non-trivial positive solution λ∗,
that is,

λ∗ (a) =

L∫
0

B (a, ζ)M (ζ, λ∗ (ζ) , ν (ζ))λ∗ (ζ) dζ.
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Since λ∗ > 0 and M (ζ, λ, ν) is strictly monotone decreasing for λ we have
that

L∫
0

B (a, ζ)M (ζ, λ∗ (ζ) , ν (ζ))λ∗ (ζ) dζ < T ′ (0)λ∗ (a) .

Since both side of last equation are continuous on compact, then there
exists ε > 0 such that

λ∗ (1 + ε) < T ′ (0)λ∗.

By finite inducing over n we have that

λ∗ (1 + ε)n < T ′ (0)n λ∗.

So

‖λ∗ (1 + ε)n‖ < ‖T ′ (0)n λ∗‖ ≤ ‖T ′ (0)n‖ ‖λ∗‖ ,

and

(1 + ε)n < ‖T ′ (0)n‖

for every n = 1, 2, 3, · · · . Then r (T ′ (0)) > 1, which is an absurd.
Let us suppose that r (T ′ (0)) > 1. Firstly, we will calculate T ′ (∞) . For
every u ∈ K, since

T (tu) =

L∫
0

B (a, ζ) e
−t

ζ∫
0
u(s)ds

tu (ζ) dζ,

where B (a, ζ) is given by equation (5), we will have

lim
t→∞

T (tu)
t

= 0,

then T ′ (∞) = 0. Now, we show that T is strongly asymptotically linear
with respect to the cone K,

lim
R→∞

sup
‖x‖≥R,x∈K

‖Tx− T ′ (∞)x‖
‖x‖

= lim
R→∞

sup
‖x‖≥R,x∈K

‖Tx‖
‖x‖

.

We have

‖Tx‖ = sup
a∈[0,L]

∣∣∣∣∣L∫0 B (a, ζ) e−
∫ ζ
0 x(s)dsx (ζ) dζ

∣∣∣∣∣ =

sup
a∈[0,L]

∣∣∣∣∣L∫0 B (a, ζ) d
dζ

(
−e−

∫ ζ
0 x(s)ds

)
dζ

∣∣∣∣∣ ≤
m′

L∫
0

d
dζ

(
−e−

∫ ζ
0 x(s)ds

)
dζ = m′

[
1− e−

∫ L
0 x(s)ds

]
,
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where m′ = sup
a,ζ∈[0,L]

|B (a, ζ)|. Then

lim
R→∞

sup
‖x‖≥R,x∈K

‖Tx‖
‖x‖

≤ lim
R→∞

sup
‖x‖≥R,x∈K

m′
[
1− e−

∫ L
0 x(s)ds

]
‖x‖

= 0,

that is, T is strongly asymptotically linear with respect to the cone K,
with the strong asymptotic derivative with respect to the cone K equals
T ′ (∞) = 0.
Let us consider in Theorem 3.4 µ0 = r (T ′ (0)) . Following Theorem 3.5,
r (T ′ (0)) is a simple eigenvalue of T ′ (0) with eigenvector in int (K) and
there is not other eigenvalue of T ′ (0) with positive eigenvector. Obviously,
being T ′ (0) a positive operator, 1 can not be a positive eigenvalue of T ′ (0)
by above argument. Since T is completely continuous, all conditions of
the Theorem 3.4 are satisfy, and we conclude that the equation (4) has a
non-trivial solution.
Moreover, let us consider 0 < µ < 1

r(T ′(0)) such that there is a x ∈ K,x 6= 0,
with F (µ, x) = x−µTx. Then Tx = 1

µx and it follows that 1
µ ≤ r (T ′ (0)),

and this is not possible. So such µ does not exist.
Since r (T ′ (0)) is a simple eigenvalue of T ′ (0), we have that 1

r(T ′(0)) is a
bifurcation point of F (µ, x) = x− µTx (Theorem 3.6).
Let us suppose now that there exists µ∗ > 1

r(T ′(0)) being a bifurcation point
of F (µ, x) = x−µTx, that is, there exists (µn, xn)→ (µ∗, 0) when n→∞,
where xn ∈ K\ {0} and F (µn, xn) = xn−µnTxn = 0, that is, Txn = 1

µn
xn.

Being T Fréchet differentiable at u = 0 in the direction of K, we have

Txn = T (0) + T ′ (0)xn + ω (0, xn) =
1
µn
xn,

where lim
n→∞

‖ω(0,xn)‖
‖xn‖ = 0. Since T (0) = 0 we have

T ′ (0)
xn
‖xn‖

+
ω (0, xn)
‖xn‖

=
1
µn

xn
‖xn‖

.

Being T ′ (0) is a compact operator and
(

xn
‖xn‖

)
is a bounded sequence, we

can assume that there is v ∈ K such that

lim
n→∞

{
T ′ (0)

xn
‖xn‖

}
= v.

On the one hand,

lim
n→∞

{
T ′ (0)

(
xn
‖xn‖

)}
= v.
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From the linearity and continuity of T ′ (0), we have

ν = lim
n→∞

T ′ (0) xn
‖xn‖ = lim

n→∞
T ′ (0)

(
µn

1
µn

xn
‖xn‖

)
=

T ′ (0)
(

lim
n→∞

µn
1
µn

xn
‖xn‖

)
= T ′ (0) (µ∗ν) ,

that is, T ′ (0) (ν) = 1
µ∗ ν, and 1

µ∗ is an eigenvalue of T ′ (0) with a positive
eigenvector, which is not possible by Theorem 3.5. So such µ∗ can not
exist. Therefore, we have that 1

r(T ′(0)) is a unique bifurcation point of
F (µ, x) = x− µTx.

4. Discussion and conclusion

A characterization of the basic reproduction number R0 was done consid-
ering fixed point and monotone operators11,12, and properties regarding to
the positive operators and strongly positive operators on cones3.

We compare our results with those obtained by Greenhalgh7 and Lopez
and Coutinho14. Greenhalgh7 assumed that the contact rate is strictly
positive, which is not necessary in our case. Lopez and Coutinho14 ap-
plied Schauder’s theorem, which requires that the application acts on a
convex set. The definition of convexity given by Griffell9 has the following
geometric meaning: a convex set must contain any line segment joining
any two points belonging to it. For the sake of simplicity, let us consider
L = 1. It is easy to verify that the set T = C [0, L]+ ∩ {ϕ; ‖ϕ‖ = 1} is not
convex: From the functions x (a) = a, y (a) = 4a (1− a) belonging to T

and z (a) = 1
2x (a) +

(
1− 1

2

)
y (a), we obtain ‖z‖ = 50

64 , which shows that
z does not belong to T , even that it belongs to the line segment joining
points of T , namely, x and y. Remember that the Schauder’s theorem
establishes the existence of a fixed point with respect to a continuous op-
erator acting on a closed and convex set, which image is contained in a
relatively compact subset of the defined domain. When we consider the set
C [0, L]+ ∩ {ϕ; ‖ϕ‖ ≤ 1}, a convex set, we can not disregard the possibility
that the null function is the fixed point obtained by applying the Schauder’s
theorem, due to the fact that for the particular operator considered, the
image of the zero function is the zero function itself.

With respect to the generalization of the results obtained using positive
core to include non-negative core made by Lopez and Coutinho14, they
defined that a set of positive functions is cone if a function has a finite
number of points at which the function is zero plus zero function. However,
a cone must be a closed set. Taking again L = 1 for the same reason given
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above, and considering the following sequence

fn (a) =

{
1
n [sen (4nπa) + 1] , 0 ≤ a ≤ 1

2
2(n−1)
n

(
a− 1

2

)
+ 1

n ,
1
2 ≤ a ≤ 1,

which belongs to positive function, this sequence converges to function

f (a) =
{

0, 0 ≤ a ≤ 1
2

2
(
a− 1

2

)
, 1

2 ≤ a ≤ 1,

which does not belong to the set.
The characterization of Rν as the spectral radius of an operator allows

us to assess vaccination strategies having as goal the eradication of the
disease. It is possible to introduce vaccination rate in the form ν (a) =
νθ (a− a1) θ (a2 − a), where ν is a constant vaccination rate and [a1, a2] is
the age interval of individuals that are vaccinated, and we determine19,20:
(i) if the vaccination programme is efficient, that is, yields Rν ≤ 1, in which
case we have λ∞ ≡ 0; (ii) the minimum vaccination effort, νm such that
Rν = 1; and (iii) the more appropriate vaccinated age interval [a1, a2] to
control the infection.

In a companion paper4 we show uniqueness of the non-trivial solution
in order to validate R0 obtained by applying spectral radius as the basic
reproduction number. The unique bifurcation value corresponds to the ap-
pearance of non-trivial solution corresponding to the endemic level. We also
evaluate the basic reproduction number for some functions describing the
contact rate. Due to the difficulty and complexity found in the calculation
of the spectral radius, we evaluate the upper and lower limits for R0.
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