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• Stability in nonlinear population models is often es-

tablished by examining the eigenvalues of the lin-

earized dynamics

• This methods gives only stability relative to infinites-

imal perturbations of the initial state.

• Populations on the real word are subjected to large

perturbations.

• It is essential that a population model should be sta-

ble relative to finite perturbations of its initial state.

In this course we deal with global properties of classic

epidemic models using the direct Lyapunov method and

topological approaches.

2



BASIC EPIDEMIOLOGICAL MODEL

(Kermack & Mc. Kendrick, 1927)

• The population is divided into disjoint classes with

change with time:

a) Susceptible class: individuals who can incur the

disease but are not yet infective.

b) Infective class: individuals who are transmitting

the disease to others.

c) Removed class: individuals who are removed form

the susceptible-infective interaction by immunity

or isolation.

• The fraction of the total population in these classes:

S(t), I(t) and R(t).

• The population has constant size N .

• The death removal rate is denoted by µ. The average

lifetime is 1/µ.

• The average number of contacts per infective per day

which result in infection is denoted by λ.

• The average fraction of susceptibles infected by the

infective class is λSI .

• Individuals recover from the infective class at a per

capita constant rate γ.
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µ−→ S
λSI−→ I

γI−→ R

↓ ↓ ↓
µS µI µR

S′(t) = µ− λSI − µS

I ′(t) = λSI − µI

R′(t) = γI − µR (1)

S(t) + I(t) + R(t) = 1.

Since R(t) = 1− S(t) − I(t) it is enough to consider

S′(t) = µ− λSI − µS

I ′(t) = λSI − (γ + µ)I (2)

in T = {(S, I)|S ≥ 0, I ≥ 0, S + I ≤ 1}.

S = 0⇒ S′(t) = µ > 0,

I = 0⇒ I ′(t) = 0,

S + I = 1⇒ (S + I)′ = −γI ≤ 0

⇒ T is positively invariant (solutions starting in T re-

mains there for t > 0).
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EQUILIBRIUM POINTS

Disease free equilibrium E0 = (1, 0).

Endemic equilibrium E1 = (S∗, I∗)

S∗ =
1

R0
, I∗ =

µ

λ
(R0 − 1),

R0 =
λ

γ + µ
.

Basic reproduction number: Average number of sec-

ondary infections of an infective during the infection pe-

riod.

LINEAR ANALYSIS

Characteristic roots of the linearization around E0: −µ, (γ+

µ)(R0 − 1).

⇒ E0 is a stable node if R0 < 1 and a saddle if R0 > 1.

Characteristic equation of the linearization around E1:

s2 + µR0s + µλ(R0 − 1).

Routh Hurwitz criteria (Gantmacher, 1959)⇒ E1 is l.a.s

for R0 > 1.
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GLOBAL STABILITY

Poincarè-Bendixon Theorem (Coddington & Levin-

son, 1955).

For two dimensional systems, bounded paths approach

a) an equilibrium point,

b) a limit cycle or,

c) a cycle graph.

Limit cycles must contain alt least one equilibrium in

their interior.

Cyclic graphics are not possible from a stable equilibrium.

Bendixon-Dulac test (Hethcote, 1976).

x′(t) = F (x, y)

y′(t) = G(x, y)

(x, y) ∈ D simply connected, F (x, y), G(x, y) ∈ C1(D)

∂(HF )/∂x + ∂(HG)/∂y sign stable in D for some

H(x, y) ∈ C1(D) ⇒

there is no periodic solution or cyclic graphs in D.
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R0 ≤ 1:

E0 ∈ ∂T is the only equilibrium point in T.

There is not limit cycle in T.

There is not cyclic graph in T.

⇒ All paths in T approach E0.

R0 > 1:

E0 is a saddle, (S, 0)⇒ E0 for 0 ≤ S ≤ 1.

E1 ∈ int T is l.a.s.

H = 1/I ⇒
∂

∂S
(−λS + µ(1−S)/I) +

∂

∂I
(λS − γ−µ) = −λ−µ/I

⇒ all paths in T except the S axis approach E1.
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DIRECT METHOD OF LYAPUNOV

( Hale, 1969)

V : U ⊆ Rn → R; 0̄ ∈ U V ∈ C1(U)

is positive definite on U if

(i)V (0̄) = 0

(ii) V (x̄) > 0, x̄ 6= 0̄ ∈ U .

V is negative definite if −V is positive definite.

x̄(t)′ = f (x̄)

x̄ = (x1, x2, ...xn) ∈ Rn,

f (x̄) = (f1(x̄), f2(x̄), ..., fn(x̄)) ∈ C1(Rn).

The orbital derivative of V along the trajectory x̄(t)

V̇ (x̄(t)) = Σn
i=1

∂V (x̄(t))

∂xi
x′

i(t)
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Theorem 1 (Lyapunov). Let 0̄ an equilibrium point of

x̄′ = f (x̄), V positive definite on a neighborhood U of 0̄.

(i) If V̇ (x̄) ≤ 0 for x̄ ∈ U − {0̄} ⇒ 0̄ is stable.

(ii) If V̇ (x̄) < 0 for x̄ ∈ U − {0̄} ⇒ 0̄ is asymptotically

stable.

(iii) If V̇ (x̄) > for x̄ ∈ U − {0̄} ⇒ 0̄ is unstable.

V is a Lyapunov function if V is positive definite, and

V̇ (x̄) ≤ 0.

M ⊆ Rn is an invariant set under the flow of x̄′ = f (x̄)

if for any x̄0 ∈ M , the solution trajectories through x̄0

belong to M for all t ∈ R.

Theorem 2. (La Salle-Lyapunov). Let V a C1(Rn)

real valued function, U = {x̄ ∈ Rn|V (x̄) < k}, k ∈ R,

and V̇ (x̄) ≤ 0.

M the largest invariant set in S = {x̄ ∈ U |V̇ (x̄) = 0}.
Then every path that starts in U and remains bounded

approach to M .
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Global stability of (1, 0) by Lyapunov functions

V : T → R

V (S, I) = I

V̇ (S, I) = λSI − (γ + µ)I = (γ + µ)(R0S − 1)I ≤ 0

for R0 ≤ 1.

If R0 < 1 : V̇ = 0⇔ I = 0.

If R0 = 1 : V̇ = 0⇔ S = 1.

In both cases M = {E0}.

By La Salle-Lyapunov Theorem, E0 is g.a.s in T .
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Global stability of (S∗, I∗) by Lyapunov functions

V : T+ :→ R, T+ = {(S, I) ∈ T |S > 0, I > 0}

V (S, I) = W1

[
S − S∗ − S∗ln

(
S

S∗

)]
+ W2

[
I − I∗ − I∗ln

(
I

I∗

)]

for some W1 > 0, W2 > 0.

V̇ = W1(S − S∗)(−λI − µ +
µ

S
)

+ W2(I − I∗)(λS − (γ + µ))

From the equations at equilibrium:

−µ = λI∗ −
µ

S∗ , −(µ + γ) = −λS∗

V̇ = λ(W2 −W1)(S − S∗)(I − I∗) −W1µ(S − S∗)2

W1 = W2 = 1⇒

V̇ = −µ
(S − S∗)2

SS∗ ≤ 0

V̇ = 0⇔ S = S∗ ⇒M = {(S∗, I∗)}.
All paths in T+ approach E1. Since the vector field on

the I axis, and on the line S+I = 1 points to the interior

of T ⇒all paths in T − {(S, 0)|0 ≤ S ≤ 1} tend to E1.
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• Generalizations of the Kermack and Mc.Kendrick model

to introduce more realistic situations.

• Analysis of the asymptotic behavior of more complex

systems.

• General ODE system that include a class of epidemi-

ological models (Bereta & Capasso, 1986).

z̄′(t) = diag(z̄) (ē + Az̄) + b̄(z̄) (3)

Rn
+ = {z̄ ∈ Rn|, zi ≥ 0, i = 1, ...n}

(i) ē ∈ Rn, a constant vector;

(ii) A = (aij), a real constant matrix;

(iii) b̄(z̄) = c̄ + Bz̄, c̄ ∈ Rn
+, B = (bij) a constant non

negative matrix with bii = 0;

(iv)

Ω = {z̄ ∈ Rn
+|Σn

i=1zi ≤ 1} or Ω = {z̄ ∈ Rn
+|zi ≤ 1}

are positively invariant under the flow induced by (3).
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The vector field F (z̄) = diag(z̄) (ē+Az̄)+ b̄(z̄) ∈ C1(Ω)

Consider Di = {z̄ ∈ Ω|zi = 0}.

• If bi(z̄)|Di
= 0 ⇒ F (z̄)|Di

= 0 ⇒ Di is positively

invariant.

• If bi(z̄) > 0 ⇒ F (z̄) · n̄i < 0, n̄i is the exterior

normal to Ω in Di ⇒ F (z̄) points inside Ω.

• Fixed point theorem assures the existence of at least

one equilibrium solution within Ω.

• If c̄ is positive definite, then system (3) has a positive

equilibrium z̄∗.

Define Ω+ = {z̄ ∈ Ω|zi > 0, i = 1, ...n}

A positive equilibrium z̄ ∈ Ω+ is called an endemic equi-

librium.

• If an endemic equilibrium z̄∗ is globally asymptoti-

cally stable (g.a.s) with respect to Ω+ ⇒ z̄ is unique.

13



EXAMPLES

I) Kermack & McKendrick model

S′(t) = µ− λSI − µS

I ′(t) = λSI − (γ + µ)I

A =

(
0 −λ

λ 0

)
, ē =

(
−µ

−(γ + µ)

)
, c̄ =

(
µ

0

)
, B = 0

II) Multi group SIS model (Lajmanovich & Yorke,

1979)

Si + Ii = 1, i = 1, ..n.

I ′i = (1 − Ii)Σ
n
j=1λijIj − (µi + αi)Ii

A =




−λ11 −λ12 · · −λ1n

−λ21 −λ22 · · −λ2n

· · · · ·
· · · · ·
−λn1 −λn2 · · −λnn




, ē =




λ11 − (µ1 + α1)

λ22 − (µ2 + α2)

·
·
λnn − (µn + αn)




c̄ = 0, B =




0 λ12 · · λ1n

λ21 0 · · λ2n

· · · · ·
· · · · ·

λn1 λn2 · · 0
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Assume an equilibrium z∗ in Ω+, z∗i > 0

Goh (1978) for a predator prey system

V : Ω+ → R

V (z̄) = Σn
i=1Wi

(
zi − z∗i − z∗i ln

zi

z∗i

)
(4)

W = diag(W1, ..., Wn), Wi positive real numbers.

V̇ (z̄) = (z̄ − z̄∗)TWA diag(z̄−1) z̄′ (5)
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At the equilibrium z̄∗:

0 = diag(z̄∗) (ē + Az̄∗) + b̄(z̄∗)

ē = −Az∗ − diag(z̄∗
−1

) b̄(z∗)

where z̄∗
−1

= (1/z∗1, ..., 1/z
∗
n).

Substituting ē:

z′(t) = diag(z) [A + diag(z̄∗
−1

) B](z̄ − z̄∗)

− diag(z̄ − z̄∗) diag(z̄∗
−1

)b̄(z̄)

V̇ becomes

V̇ (z̄) = (z̄−z̄∗)TW

[
Ã− diag

(
b̄1(z)

z1z
∗
1

, ..,
b̄n(z)

znz∗n

)]
(z̄−z̄∗)

(6)

Ã = A + diag(z̄∗
−1

) B.
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C a real n× n matrix.

• C ∈ Sw ⇔ there exists a positive diagonal real ma-

trix W such that WC + CTW is positive definite.

• C is W skew-symmetrizable ⇔ there exists a posi-

tive diagonal real matrix W such that WC is skew-

symmetric (aji = −aij, aii = 0).

If

−
[
Ã− diag

(
b̄1(z)

z1z∗1
, ..,

b̄n(z)

znz∗n

)]
∈ SW

V̇ (z̄) ≤ 0, V̇ (z̄) = 0⇔ z̄ = z̄∗

z̄ is g.a.s within Ω+.
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If WÃ is skew-symmetric

V̇ (z̄) = −Σn
i=1

Wibi(z̄)

ziz∗i
(zi − z∗i )

2 ≤ 0.

V̇ (z̄) = 0⇔

z̄ ∈ R = {z̄ ∈ Ω|zi = z∗i , i = 1, .., n s.t. bi(z̄) > 0}.

Associate a graph to Ã in which nodes representing epi-

demiological classes zi, and arrows the mutual interac-

tions following the rules

(i) If bi(z̄) = 0, zi is represented by
•
i.

(ii) If bi(z̄) > 0, zi is represented by
◦
i.

(iii) Each pair of elements ãijãji < 0 is represented by

an arrow connecting nodes i and j.
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Lemma 1. ( Cooke & Yorke, 1973). Ã W -skew sym-

metrizable n×n matrix. If the associated graph is either

a) a tree and p− 1 of the p terminal nodes are ◦,
b) or a chain and two consecutive internal nodes are ◦,
c) or a cycle and two consecutive nodes are ◦,
then M = {z̄} within R.

•
1

↙ ↘
◦
2

•
3

a

•
1 −→

◦
2 −→

◦
3

b

◦
1

↗ ↘
◦
2 ←−

•
3

c

If Ã satisfies a, b or c of Lemma 1 ⇒ z̄∗ is g.a.s within

Ω+.
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I) SIR model

S′(t) = µ− λSI − µS

I ′(t) = λSI − (γ + µ)I

Ã = A =

(
0 −λ

λ 0

)
, B = 0, b̄(z̄) = c̄ =

(
µ

0

)

Ã is skew-symmetric. The associated graph
◦
1→

•
2 .

II) SIRS model with temporary immunity (Het-

hcote, 1976)

S′(t) = µ− λSI − µS + αR

I ′(t) = λSI − (µ + γ)I

R′(t) = γI − (α + µ)R

S + I + R = 1

S′(t) = (µ + α) − λSI − (µ + α)S − αI

I ′(t) = λSI − (µ + γ)I

Endemic equilibrium (S∗, I∗)

S∗ =
1

R0
, I∗ =

(δ + α)(R0 − 1)

λ + αR0
, R0 =

λ

γ + µ
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S̃ = S + α/λ

S̃′(t) = (µ + α)(1 + α/λ) − λS̃I − (µ + α)S̃

I ′(t) = λS̃I − (µ + γ + α)I

A =

(
0 −λ

λ 0

)
, ē =

(
−(µ + α)

−(γ + µ + α)

)
, c̄ =

(
(µ + α)(1 + α/λ)

0

)
,

B = 0.

Ã = A is skew-symmetric, b̄(z̄) = c̄.

The associated graph
◦
1→

•
2 .
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III) SIS model for two dissimilar groups

I ′1 = [λ11I1 + λ12I2](1− I1)− (µ1 + α1)I1, I1 + S1 = 1

I ′2 = [λ21I1 + λ22I2](1− I2)− (µ2 + α2)I2, I2 + S2 = 1

Ii ≤ 1, i = 1, 2.

A =

(
−λ11 −λ12

−λ21 −λ22

)
, ē =

(
λ11 − (µ1 + α1)

λ22 − (µ + α2)

)
, c̄ = 0,

B =

(
0 λ12

λ21 0

)

z̄ = (I1, I2)
T , b̄(z̄) = (λ12I2, λ21I1)

T

Ã =




−λ11
λ12(1− I∗1 )

I∗1
λ21(1− I∗2 )

I∗2
−λ22
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To show:

C = −
[
Ã− diag

(
λ12I2

I∗1I1
,
λ21I1

I∗2I2

)]
∈ SW .

WC =




W1

(
λ11 +

λ12I2

I∗1I1

)
W1

λ12(1 − I∗1 )

I∗1

W2
λ21(1− I∗2 )

I∗2
W2

(
λ22 +

λ21I1

I∗2I2

)




Choosing W1, W2:

λ21(1− I∗2 )

I∗2
W2 =

λ12(1− I∗1 )

I∗1
W1

⇒ C is symmetric

Det(C) > 0⇒ C ∈ SW .

z̄∗ is g.a.s in Ω = {z̄ ∈ R2|Ii ≤ 1, i = 1, 2}
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IV Host-vector-host model (Hethcote, 1976)

I1, and I3 infected hosts, I2 infected vector.

I ′1(t) = λ12I2(1− I1)− (γ1 + α1)I1, S1 + I1 = 1

I ′2(t) = [λ21I1 + λ23I3](1− I2) − (γ2 + α2)I2, S2 + I2 = 1

I ′3(t) = λ32I2(1− I3)− (γ3 + α3)I3, S3 + I3 = 1

A =




0 −λ12 0

−λ21 0 −λ23

0 −λ32 0


 , ē =



−(γ1 + α1)

−(γ2 + α2)

−(γ3 + α3)


 , c̄ = 0,

B =




0 λ12 0

λ21 0 λ23

0 λ32 0
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b̄(z̄) = Bz̄, Ã =




0
λ12(1− I∗1 )

I∗1
0

λ21(1 − I∗2 )

I∗2
0

λ23(1− I∗2 )

I∗2

0
λ32(1− I∗3 )

I∗3
0




C = −W

[
Ã− diag

(
b1(z̄)

I1I
∗
1

,
b2(z̄)

I2I
∗
2

,
b3(z̄)

I3I
∗
3

)]
becomes




λ12I2

I1I∗1
W1 −λ12(1− I∗1 )

I∗1
W1 0

−
λ21(1− I∗2 )

I∗2
W2

(λ21I1 + λ23I3)

I2I
∗
2

W2 −
λ23(1− I∗2 )

I∗2
W2

0 −
λ32(1− I∗3 )

I∗3
W3

λ32I2

I3I∗3
W3




is symmetric if

W1 > 0, W2 =
λ12(1 − I∗1 )I∗2
λ21(1 − I∗2 )I∗1

W1, W3 =
λ23(1− I∗2 )I∗3
λ32(1− I∗3 )I∗2

W2.
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Sufficient condition for C to be positive definite

det C11 > 0, det C22 > 0, det C33 > 0

where Cii is the i × i sub matrix of C taking the first

i-rows and the first i columns.

These conditions are always satisfied by an endemic equi-

librium z̄∗ ∈ Ω+.
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• For an epidemiological model with arbitrary n dis-

similar groups is difficult to apply the above results.

• Lajmanovich & Yorke (1976) proved existence and

stability of the endemic equilibrium for n multigrup

SIS model using Lyapunov functions and Perron-

Frobenius Theorem for positive and irreducible ma-

trices.

I ′i = (1−Ii)Σ
n
j=1λijIj−(µi+αi)Ii, Si+Ii = 1, i = 1, ..n

(7)

can be written also as

Ī ′ = AĪ + N(Ī) (8)

A =




λ11 − (µ1 + α1) λ12 · · λ1n

λ21 λ22 − (µ2 + α2) · · λ2n

· · · · ·
· · · · ·

λn1 λn2 · · λnn − (µn + αn)




N(Ī) =




−Σn
j=1λ1jIjI1

−Σn
j=1λ2jIjI2

·
·

−Σn
j=1λnjIjIn
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Assume for any proper subset S of (1,..,n) there exists

i ∈ S and j ∈ Sc such that λij > 0 (equivalent to A is

irreducible). ⇒ 0̄ is the only invariant set in ∂Ω.

Stability modulus:

s(A) = max1≤i≤nRe si, si eigenvalues ofA

Theorem 3. s(A) ≤ 0⇒ Ī0 = 0̄ is g.a.s. in Ω.

s(A) > 0 ⇒ the system has an endemic equilibrium

point Ī1 g.a.s. in Ω+ − {0̄}.

An example: n = 2, λ11 = λ22 = 0 (no homosexual

contacts).

A =

(
−(µ1 + α1) λ12

λ21 −(µ2 + α2)

)

Tr A = −(µ1 + α1 + µ2 + α2) < 0.

s(A) ≤ 0⇔ det A = (µ1 +α1)(µ2 +α2)−λ12λ21 ≥ 0⇔

λ12

(µ2 + α2)

λ21

(µ1 + α1)
≤ 1
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Proof of Theorem 3.

From Perron-Frobenius Theorem (Varga, 1962) it can be

proved the following

Lemma 2. (Lajmanovich & Yorke, 1976.) Let C an

irreducible n × n matrix, and assume cij ≥ 0 whenever

i 6= j. Then, there exists an eigenvector w̄ of C such that

w̄ > 0 and the corresponding eigenvalue is s(A).

By Lemma 2, A has an eigenvector w̄ > 0 with eigenvalue

s(A). Assume s(A) ≤ 0.

Define the Lyapunov function

V (Ī) = w̄ · Ī

V̇ (Ī) = w̄ · Ī ′(t) = (w̄ · AĪ) + (w̄ ·N(Ī))

= (AT w̄ · Ī) + (w̄ ·N(Ī))

= s(A)(w̄ · Ī) + (w̄ ·N(Ī)) ≤ 0

{0̄} is the only invariant set contained in M = {Ī ∈
Ω|V̇ (Ī) = 0}
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Assume s(A) > 0.

Ī ∈ Ωε = {Ī | V (Ī) ≥ ε}

⇒ V̇ ≥ s(A)ε − ||w̄||||N(Ī)||.

Ī ∈ ∂Ωε ⇒ ε = w̄ · Ī ≥ r||Ī ||, r = min wi

⇒ ||Ī|| ≤ ε/r

Choose δ such that s(A) − (||w||/r)δ > 0.

Choose ε0 such that ||N(Ī)|| ≤ δ||Ī|| for ||Ī || ≤ ε0.

For ε ∈ [0, ε0] :

V̇ (Ī) ≥ s(A)− εδ
||w̄||

r
=

(
s(A) − δ

||w̄||
r

)
ε > 0.

By Fixed Point Theorem Ωε0 contains an endemic equi-

librium Ī∗ = (I∗1 , .., I
∗
n), Ii > 0.

Remark.

If Ī 6= 0̄ then Ī(t) remains remains at a positive distance

from the boundary of Ω for t ≥ 0.
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Global stability of Ī∗

Remark. For V (x̄) continuous Lyapunov Theorem is

still true replacing V̇ (x̄) by

V̇+ = lim suph→0+
V (x̄(t + h)) − V (x̄(t))

h
.

Define M, m : Ω→ R

M(Ī) = maxi=1,..,n (Ii/I
∗
i ) m(Ī) = mini=1,..,n (Ii/I

∗
i ).

Assume: M(Ī(t)) = I1(t)/I
∗
1 for [t0, t0 + ε]

⇒ Ṁ+(I(t0)) =
I ′(t0)

I∗1

From (7):

I∗1
I ′1(t0)

I1(t0)
= (1− I1(t0))Σ

n
j=1λ1j

Ij(t0)I
∗
1

I1(t0)
− (µ1 + α1)I

∗
1

If M(Ī(t0)) > 1:

I∗1
I ′1(t0)

I1(t0)
< (1 − I∗1 )Σn

j=1λ1jI
∗
j − (µ1 + α1)I

∗
1 = 0

⇒ I ′1(t0) < 0⇒ Ṁ+(Ī(t0)) < 0
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In the same fashion it can be proved:

• M(Ī(t0)) = 1⇒ Ṁ+(Ī(t0)) ≤ 0

• m(Ī(t0)) < 1⇒ ṁ+(Ī(t0)) > 0

• m(Ī(t0)) = 1⇒ ṁ+(Ī(t0)) ≥ 0

Define

V (Ī) = max[M(Ī)−1, 0], W (Ī) = max[1−m(Ī), 0].

V (Ī) ≥ 0, W (Ī) ≥ 0 and V̇+(Ī) ≤ 0 Ẇ+(Ī) ≤ 0.

V̇ = 0 in HV = {Ī|0 ≤ Ii ≤ I∗i }
Ẇ = 0 in HW = {Ī |I∗i ≤ Ii ≤ 1} ∪ {0̄}

By La Salle-Lyapunov Theorem solutions in Ω approach

HV ∩HW = {Ī∗} ∪ {0̄}.

Since Ī(0) 6= 0̄⇒ lim inft→∞||Ī(t)|| > 0 then Ī∗ is g.a.s.

in Ω− {0̄}.
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• There are fewer mathematical results concerning global

stability for epidemic models involving n subpopula-

tions for diseases with immunity.

• Hethcote (1978) analyzed the global behavior of so-

lutions of an SIR model with n subpopulations, but

without births and deaths.

• For an SEIR model with n subpopulations, Thieme

(1983) proved global asymptotic stability if the latent

and removed periods are sufficiently short.

• Esteva & Vargas (1998) proved global asymptotic

stability of a host-vector epidemic model with immu-

nity for dengue disease. They use the approach given

by Li and Muldowney (1995) for a SEIR model.
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DENGUE DISEASE MODEL

(Esteva & Vargas, 1998)

Nh human population size.

Nv mosquito population size.

A mosquito recruitment rate.

µh human mortality rate.

µv mosquito mortality rate.

N ′
h = 0⇒ Nh const. N ′

v = A−µvNv ⇒ Nv →
A

µv
.

Sh(t), Ih(t), Rh(t) number of suceptibles, infectives

and recovered humans.

Sv(t), Iv(t) number of susceptibles and infectives mosquitoes.
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PARAMETERS

b biting rate. Average number of bites per mosquito

per day (once every two or three days).

βh probability that an infectious bite produces a new

case in a susceptible human.

βv probability that an infectious bite produces a new

case in a susceptible mosquito.

m number of alternative hosts available as blood sources.

γh per capita human recovered rate.

1

γh
infectious period.
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INFECTION RATES

Nh

Nh + m
probability that a mosquito chooses a human

as a host.

A human receives b
Nv

Nh

Nh

Nh + m
bites per day.

A mosquito takes b
Nh

Nh + m
human blood meals per day.

Infection rates per susceptible human and susceptible vec-

tor

βhb
Nv

Nh

Nh

Nh + m

Iv

Nv
=

βhb

Nh + m
Iv

βvb
Nh

Nh + m

Ih

Nh
=

βvb

Nh + m
Ih.
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S′
h(t) = µhNh −

βhb

Nh + m
IvSh − µhSh

I ′h(t) =
βhb

Nh + m
IvSh − (γh + µh)Ih

R′
h(t) = γhIh − µhRh (9)

S′
v(t) = A−

βvb

Nh + m
IhSv − µvSv

I ′v(t) =
βvb

Nh + m
IhSv − µvIv.

Sh + Ih + Rh = Nh Sv + Iv = Nv
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1. The subset

T : Sh + Ih + Rh = Nh, Sv + Iv =
A

µv

is invariant under system (9).

2. All solutions of (9) approach T since Nh is constant

and Nv →
A

µv
. It is enough to study the asymptotic

behavior of solutions of system (9) in T .

3. In T Nh and Nv are constant. Take proportions:

sh =
Sh

Nh
, ih =

Ih

Nh
, rh =

Rh

Nh
, sv =

Sv

A/µv
, iv =

Ih

A/µv
.

4. Since rh = 1− sh− ih and sv = 1− iv it is enough to

consider only the variables sh, ih, iv.
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s′h(t) = µh −
βhbA/µv

Nh + m
ivsh − µhsh

i′h(t) =
βhbA/µv

Nh + m
ivsh − (γh + µh)ih (10)

i′v(t) =
βvbNh

Nh + m
ih(1 − sv)− µviv.

Ω = {(sh, ih, iv)| 0 ≤ iv ≤ 1, 0 ≤ sh, 0 ≤ ih, sh+ih ≤ 1}.

Ω is positively invariant under the flow induced by system

(10).
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EQUILIBRIUM POINTS

Define

R0 =
βhβvb

2NhA/µv

(Nh + m)2µv(γh + µh)
(11)

β =
βvbNh

µv(Nh + m)

M =
γh + µh

µh

Disease-free equilibrium E1 = (1, 0, 0)

Endemic equilibrium E2 = (s∗h, i
∗
h, i

∗
v)

s∗h =
β + M

β + MR0
, i∗h =

R0 − 1

β + MR0
, i∗v =

β(R0 − 1)

R0(β + M)

R0 ≤ 1⇒ E1 is the only equilibrium in Ω.

R0 > 1⇒ E2 will also lie in Ω.
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BASIC REPRODUCTIVE NUMBER

For dengue disease

N1 =
βvbA/µv

(Nh + m)

1

(γh + µh)
number of secondary infec-

tions produced by a single human in a susceptible mosquito

population.

N2 =
βhbNh

(Nh + m)

1

µv
number of secondary infections pro-

duced by a single infectious mosquito during its lifespan.

The basic reproductive number is the geometric mean of

N1 and N2

R̃0 =
√

N1N2 =
√

R0
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STABILITY ANALYSIS

Linearizing around the disease-free equilibrium E1

DF (E1) =



−µh 0 −βhbA/µv

Nh+m

0 −(γh + µh)
βhbA/µv

Nh+m

0 βvbNh
Nh+m

−µv




Eigenvalues of DF (E1):

−µh

−(γh + µh + µv)±
√

(γh + µh + µv)2 − 4µv(γh + µh)(1− R0)

2

E1 is locally asymptotically stable for R0 < 1 and unsta-

ble for R0 > 1.
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Global stability of E1 for R0 ≤ 1:

V =

(
bβhA/µv

(Nh + m)µv

)
iv + ih

Orbital derivative

V̇ = −
bβhA/µv

Nh + m
(1−sh)iv−(γh+µh)[1−R0(1−iv)]ih ≤ 0

V̇ = 0⇒

(1− sh)iv = 0, ih = 0 if R0 < 1

(1− sh)iv = 0, ivih = 0 if R0 = 1.

La Salle-Lyapunov Theorem⇒ trajectories in Ω approach

the maximal invariant set contained in V̇ = 0.

{E1} is the only invariant set contained in V̇ = 0.
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The eigenvalues of DF (E2) are the roots of the char-

acteristic equation

p(λ) = λ3 + Aλ2 + Bλ + C = 0

A = µh
β + MR0

β + M
+ µhM + µvR0

(β + M)

β + MR0

B = µ2
hM

β + MR0

β + M
+ µvµhr0 + µvβ

µhM(R0 − 1)

β + MR0

C = µvµ
2
hM(R0 − 1).

Routh-Hurwitz criterion (Gantmacher 1959), : all eigen-

values of p(λ) have negative real parts if and only if

A > 0, B > 0, C > 0, and AB > C.

• R0 > 1⇒ B > 0, C > 0.

• AB > C easy to verify.

E2 is locally asymptotically stable for R0 > 1.
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Global stability of E1 follows from the following result.

Theorem 4. Assume x̄′ = F̄ (x̄) is an autonomous

system in a convex, bounded subset D of R3 which is

competitive, persistent and has the property of stability

of periodic orbits. If x̄0 is the only equilibrium point in

int Ω, and it is locally asymptotically stable, then it is

globally stable in int Ω.

(Li & Muldowney, 1995).
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COMPETITIVE AND COOPERATIVE SYSTEMS

(Smith, 1995)

x̄′ = F̄ (x̄) (12)

x̄ = (x1, x2, .., xn) ∈ D ⊂ Rn,

F̄ = (f1(x̄), f2(x̄), ..., fn(x̄)) : D → Rn.

• Cooperative system.

Solutions preserve lexicographic partial order in Rn

for t ≥ 0:

x̄1(0) ≤ x̄2(0) ⇒ x̄1(t) ≤ x̄2(t), t ≥ 0.

• Competitive system.

Solutions preserve lexicographic partial order in Rn

for t ≤ 0:

x̄1(0) ≤ x̄2(0) ⇒ x̄1(t) ≤ x̄2(t), t ≤ 0.
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For D a convex set and F̄ a C1 function:

System (12) is cooperative in D if
∂fi(x̄)

∂xj
≥ 0, i 6= j.

System (12) is competitive in D if
∂fi(x̄)

∂xj
≤ 0, i 6= j.

n-dimensional cooperative and competitive systems be-

have like a dynamical flow in a (n-1)-dimensional space.

For n = 3

The solutions of a cooperative or competitive system

in a closed convex set D ⊂ R3 that contains no equi-

libria are closed or approach a closed orbit when t ≥ 0.
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The definitions and results above can be generalized:

System (12) is cooperative in D if for some diagonal ma-

trix

H = diag(ε1, ε2, ..., εn)

εi is either -1 or 1, H−1DF (x̄)H has non-negative off-

diagonal elements for x̄ ∈ D

εiεj
∂fi

∂xj
(x̄) ≥ 0, i 6= j.

System (12) is competitive in D if

εiεj
∂fi

∂xj
(x̄) ≤ 0, i 6= j.

The flow of a cooperative (competitive) system pre-

serves for t > 0 (t < 0) the partial order ≤m generated

by Km = {x̄ ∈ Rn | εixi ≥ 0, 1 ≤ i ≤ n}

x̄ ≤m ȳ ⇐⇒ ȳ − x̄ ∈ Km
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By looking at its derivative DF and choosing

H =




1 0 0

0 −1 0

0 0 1




it can be seen that system (10) is competitive in Ω

with respect to the partial order defined by the orthant

K = {(sh, ih, iv) ∈ R3 | sh ≥ 0, ih ≤ 0, iv ≥ 0 }
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PERSISTENCE

(Butler & Waltman, 1986)

• System (12) is persistent ⇐⇒ the solutions start-

ing in int D remains at a positive distance from the

boundary of Ω.

• For system (10) the vector field points to the interior

of Ω except in the sh axis. In this axis s′h = µh(1−sh)

⇒ sh(t)→ 1 as t→∞⇒ E1 is the only equilibrium

in the boundary.

V = iv +
µv(Nh + m)(1 + R0)

2bβhA/µv
ih

• For R0 > 1 there exists a neighborhood U of E1

such that V̇ > 0 along orbits starting in U
⋂

int Ω

⇒ they go away from E1⇒ system (10) is persistent

for R0 > 1.
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STABILITY OF PERIODIC ORBITS

• γ(t) a periodic solution of system (12) with period ω

and orbit γ = {γ(t) : 0 ≤ t ≤ ω}.

• γ is orbitally stable⇐⇒ for each ε > 0, there exists

δ such that, any solution x̄(t) for which the distance

from x̄(0) from γ is less than δ, remains at a distance

less than ε from γ, for all t ≥ 0. It is asymptotically

orbitally stable, if the distance of x̄(t) from γ also

tends to zero as t goes to infinity.

• System (12) has the property of stability of periodic

orbits⇐⇒ the orbit of any periodic solution γ(t) is

asymptotically orbitally stable.
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COMPOUND MATRICES

(J.S. Muldowney, 1990)

A = n ×m matrix. Let ai1..ik,j1...jk determinant de-

fined by the rows (i1, .., ik) and the columns (j1, ..., jk),

1 ≤ i1 < i2 < · · · < ik ≤ n, 1 ≤ j1 < j2 < · · · <
jk ≤ m.

• The kth multiplicative compound A(k) of A is the

Cn
k × Cm

k matrix whose entries in lexicographic or-

der are ai1..ik,j1...jk, where Cn
k denotes the number of

combinations of n elements in groups of k elements.

• For n× k matrix with columns a1, a2, .., an

A(k) = a1 ∧ a2 ∧ · · · ∧ ak.

• If A is a n × n matrix the kth additive compound

A[k] of A is the Cn
k ×Cn

k matrix

A[k] =
d

dh
(I + hA)(k) |h=0

• A[1] = A, A[n]=Traza(A).
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For A = (aij) 3× 3 matrix:

A[1] = A,

A[2] =




a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a22 a21 + a33


 ,

A[3] = a11 + a22 + a33.

• Criterion for asymptotic orbital stability of a periodic

orbit γ:

If the zero solution of

X̄(t) = (DF [2](γ(t)))X̄ (t)

is asymptotically stable⇒ γ(t) is asymptotically or-

bitally stable, where DF [2] is the second additive

compound matrix of the derivative DF .
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For system (10)

X̄(t) = (DF [2](γ(t)))X̄ (t) becomes

X ′ = −(µh + ahbβhiv + γh + µh)X + ahbβhshY + ahbβhshZ

Y ′ = avbβv(1− iv)X − (µh + ahbβhiv + µv + avbβvih)Y

Z ′ = ahbβhivY − (µv + avbβvih + γh + µh)Z

ah =
A/µv

Nh + m
, av =

Nh

Nh + m

Lyapunov function:

V (X(t), Y (t), Z(t), sh(t), ih(t), iv(t)) =

∣∣∣∣
∣∣∣∣((X(t),

ih(t)

iv(t)
Y (t),

ih(t)

iv(t)
Z(t)

∣∣∣∣
∣∣∣∣

||(X, Y, Z)|| = sup{|X|, |Y | + |Z|}

• V (X(t), Y (t), Z(t), sh(t), ih(t), iv(t)) ≥ K||(X, Y, Z)||.
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Along solutions:

• V (t) = sup{|X(t),
ih(t)

iv(t)
(|Y (t)| + |Z(t)|)}

• D+V (t) ≤ sup{h1(t), h2(t)}V (t)

h1(t) = −(µh + ahbβ − hiv + γh + µh) + ahbβhsh
iv
ih

,

h2(t) =
h

iv
avbβv(1− iv) +

i′h
ih
− i′v

iv
− µh − µv − avbβvih

ahbβhsh
iv
ih

=
i′h
ih

+γh+µh and
h

iv
avbβv(1−iv) =

i′v
iv

+µv

⇒

• D+V (t) ≤
(
−µh +

i′h
ih

)
V (t)

• V (t) ≤ V (0)ih(t)e
−µht ≤ V (0)e−µht→ 0 as t→∞

• (X(t), Y (t), Z(t)) → 0 as t → ∞ ⇒ system (10)

has the property of stability of periodic orbits.

• ⇒E2 is globally asymptotically stable for Ω−{(sh, 0, 0) :

0 ≤ sh ≤ 1}.
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