## Deformed G<sub>2</sub>-instantons

Jason D. Lotay

Oxford

3 September 2020

(Joint work with Goncalo Oliveira)

### Overview

### Deformed G<sub>2</sub>-instantons

- special connections in 7 dimensions
- "mirror" to calibrated cycles → enumerative invariants?
- ullet critical points of Chern–Simons-type functional  ${\cal F}$

#### Results

- first non-trivial examples
- examples detect different G<sub>2</sub>-structures (including nearly parallel and isometric)
- deformation theory: obstructions and topology of moduli space
- ullet relation to  ${\mathcal F}$



## Key example: the 7-sphere

Hopf fibration:  $\mathcal{S}^3 \to \mathcal{S}^7 \to \mathcal{S}^4$ 

- round metric  $g^{ts} = g_{S^3} + g_{S^4}$
- "canonical variation"  $g_t = t^2 g_{S^3} + g_{S^4}$  for t > 0
- $g_t$  Einstein  $\Leftrightarrow g^{ts} = g_1$  or  $g^{np} = g_{1/\sqrt{5}}$

**Octonions:**  $S^7 \subseteq \mathbb{O}$ 

- $\bullet \leadsto \mathsf{cross} \; \mathsf{product} \; \times$
- $\bullet \rightsquigarrow 3$ -form

$$\varphi^{ts}(u, v, w) = g^{ts}(u \times v, w)$$
 G<sub>2</sub>-structure

- Fact:  $\varphi^{ts}$  determines  $g^{ts}$
- $d\varphi^{ts} = \lambda * \varphi^{ts}$  for  $\lambda > 0$  constant  $\leftrightarrow$  nearly parallel
- Note:  $d * \varphi^{ts} = 0$



## Deformed G<sub>2</sub>-instantons

 $X^7$ ,  $\varphi$  G<sub>2</sub>-structure,  $d*\varphi=0$ , connection A on bundle over X

### Definition (J.-H. Lee-N.C. Leung)

A deformed  $G_2$ -instanton  $(dG_2) \Leftrightarrow curvature F_A$  satisfies

$$F_A \wedge *\varphi + \frac{1}{6}F_A^3 = 0$$

$$\mathbb{R}^7 = \mathbb{R}^3 \oplus \mathbb{R}^4$$
,  $x = (x_1, x_2, x_3) \in \mathbb{R}^3$ ,  $y = (y_0, y_1, y_2, y_3) \in \mathbb{R}^4$ ,  $\varphi(u, v, w) = g_{\mathbb{R}^7}(u \times v, w) \rightsquigarrow$  "mirror branes"

- $A = i(a_j(x)dx_j + u_k(x)dy_k) dG_2$ -instanton  $\Leftrightarrow$ L = Graph(u) associative  $\varphi|_L = vol_L$  and  $i(a_jdx_j)$  flat
- $A = i(v_j(y)dx_j + b_k(y)dy_k) dG_2$ -instanton  $\Leftrightarrow$  M = Graph(v) coassociative  $*\varphi|_M = vol_M$  and  $B = i(b_kdy_k)$  anti-self-dual (ASD)  $F_B = *F_B$

 $\rightarrow$  primary interest in U(1)-connections



### Lower dimensions

**4 dimensions:**  $\pi: X^7 \to Z^4$ , Z ASD Einstein, connection B on Z

#### Lemma

 $\pi^* B \ dG_2$ -instanton  $\Leftrightarrow B \ ASD$ 

• ASD-instantons on  $S^4 \rightsquigarrow dG_2$ -instantons on  $S^7$ 

**6 dimensions:**  $\pi: X^7 \to Y^6$ , Y Calabi–Yau 3-fold Hol  $\subseteq$  SU(3)  $\omega$  Kähler form on Y, connection B on Y

#### Lemma

 $\pi^*B$  dG<sub>2</sub>-instanton  $\Leftrightarrow B$  deformed Hermitian–Yang–Mills

$$F_B^{(0,2)} = 0$$
 and  $\text{Im}((\omega + F_B)^3) = 0$ .

• Conjecture: existence of dHYM ↔ stability condition

## G<sub>2</sub>-structures on the 7-sphere

**Recall:**  $\mathcal{S}^3 o \mathcal{S}^7 o \mathcal{S}^4$ , 3-form  $\varphi^{ts}$  inducing round metric  $g^{ts}$ 

- $S^3 = SU(2) \rightsquigarrow \text{left-invariant coframe } \eta_1, \eta_2, \eta_3$
- $\omega_1, \omega_2, \omega_3$  orthogonal self-dual 2-forms on  $\mathcal{S}^4$  with length 2
- $\rightsquigarrow$  two 1-parameter families of 3-forms for t > 0:

$$\varphi_t^{\pm} = \pm t^3 \eta_1 \wedge \eta_2 \wedge \eta_3 - t \eta_1 \wedge \omega_1 - t \eta_2 \wedge \omega_2 \mp t \eta_3 \wedge \omega_3$$

•  $\varphi_t^{\pm}$  induces  $g_t = t^2 g_{S^3} + g_{S^4} \Rightarrow \varphi_t^+$  and  $\varphi_t^-$  isometric

#### Lemma

- $d * \varphi_t^{\pm} = 0$
- $\varphi_t^{\pm}$  nearly parallel  $\Leftrightarrow \varphi^{ts} = \varphi_1^-$  or  $\varphi^{np} = \varphi_{1/\sqrt{5}}^+$

**Note:**  $\varphi^{np}$  induces "squashed" Einstein metric  $g^{np}$ 



### 3-Sasakian 7-manifolds

#### **Definition**

$$(X^7, g^{ts})$$
 3-Sasakian  $\Leftrightarrow$  cone  $(\mathbb{R}^+ \times X^7, g = dr^2 + r^2 g^{ts})$  hyperkähler  $Hol(g) \subseteq Sp(2)$  ( $\leadsto$  generalizes  $(S^7, g^{ts})$ )

Fact: ∃ infinitely many 3-Sasakian 7-manifolds

- $V^3 \rightarrow X^7 \rightarrow Z^4$ ,  $V = SU(2)/\Gamma$ , Z ASD Einstein
- $\rightsquigarrow g_t = t^2 g_V + g_Z$  and

$$\varphi_t^{\pm} = \pm t^3 \eta_1 \wedge \eta_2 \wedge \eta_3 - t \eta_1 \wedge \omega_1 - t \eta_2 \wedge \omega_2 \mp t \eta_3 \wedge \omega_3$$

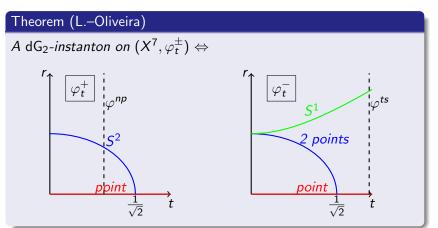
- $\varphi^{ts} = \varphi_1^-$  nearly parallel inducing  $g^{ts}$
- $\varphi^{np} = \varphi_{1/\sqrt{5}}^+$  nearly parallel inducing  $g^{np}$  "squashed" Einstein metric, cone has Hol = Spin(7)

**Example:** Aloff–Wallach space  $(SU(3) \times SU(2))/(U(1) \times SU(2))$ 



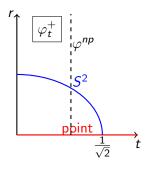
## Non-trivial examples

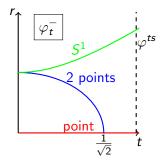
- $(X^7, g^{ts})$  3-Sasakian,  $\varphi_t^{\pm}$  inducing  $g_t$
- $a = (a_1, a_2, a_3) \in \mathbb{R}^3 \rightsquigarrow A = i(a_1\eta_1 + a_2\eta_2 + a_3\eta_3)$  connection on trivial line bundle, r = |a| "distance to trivial connection"



### Observations

**Proof:** explicit calculation → solve quadratic equations





- distinct solution spaces for isometric  $\varphi_t^+$  and  $\varphi_t^-$
- ullet distinct solution spaces for nearly parallel  $\varphi^{ts}$  and  $\varphi^{np}$

Can construct examples on non-trivial line bundles on Aloff–Wallach space with similar behaviour



## Deformation theory: obstructions

**Key question:** is deformation theory unobstructed or obstructed?

Unobstructed: moduli space locally smooth manifold of expected dimension, i.e. linearised dG<sub>2</sub>-instanton operator  $\mathcal{L}$  surjective

$$\mathcal{L} = (\frac{1}{2}F_A^2 + *\varphi) \wedge d: \Omega^1 \to d\Omega^5$$

→ infinitesimal deformations guaranteed to extend to deformations

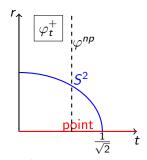
Obstructed:  $\mathcal{L}$  not surjective  $\leadsto$  some infinitesimal deformations may not extend

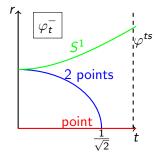
### Theorem (L.-Oliveira)

- Non-trivial  $dG_2$ -instantons constructed for  $\varphi^{ts}$  and  $\varphi^{np}$  are obstructed
- Trivial dG<sub>2</sub>-instanton unobstructed for  $\varphi^{ts}$  and  $\varphi^{np}$  but obstructed for  $\varphi_{1/\sqrt{2}}^{\pm}$

## Deformation theory: moduli space

**Proof:** (Kawai–Yamamoto) → unobstructed ⇔ rigid and isolated





At  $t = \frac{1}{\sqrt{2}}$ :  $\exists$  infinitesimal deformation of trivial dG<sub>2</sub>-instanton  $\Rightarrow$  obstructed

### Corollary

Moduli space of  $dG_2$ -instantons on trivial line bundle for  $\varphi^{ts}$  and  $\varphi^{np}$  contains at least two components of different dimensions

## Chern-Simons-type functional

- $A_0$  reference connection on line bundle L on  $(X^7, \varphi)$
- A connection on L
- $\rightsquigarrow \mathbb{A} = A_0 + s(A A_0)$  connection on L over  $X \times [0, 1]$
- ullet  $\leadsto$  curvature  ${\mathbb F}$

### Proposition (Karigiannis–N.C. Leung)

 $A dG_2$ -instanton  $\Leftrightarrow A$  critical point of functional

$$\mathcal{F}(A) = \int_{X imes [0,1]} e^{\mathbb{F} + *arphi}$$

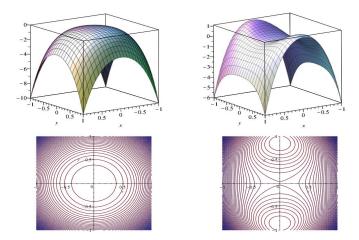
**Recall:** our examples  $A = i(a_1\eta_1 + a_2\eta_2 + a_3\eta_3)$ 

 $\rightsquigarrow$  restriction of  $\mathcal{F}$  is function of two variables x and y:

$$x = a_3$$
 and  $y^2 = a_1^2 + a_2^2$ 



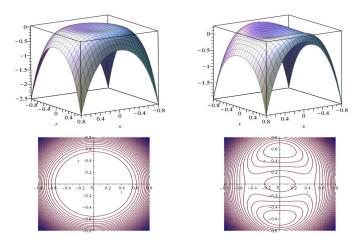
## ${\mathcal F}$ for $\varphi_1^+$ and $\varphi^{ts}=\varphi_1^-$ with level sets



- trivial connection only critical point ⇒ local maximum
- otherwise trivial connection saddle point
- non-trivial dG<sub>2</sub>-instantons are local maxima



# ${\mathcal F}$ for $\varphi^{\it np}=\varphi^+_{1/\sqrt{5}}$ and $\varphi^-_{1/\sqrt{5}}$ with level sets



- trivial connection is local minimum
- continuous families of dG<sub>2</sub>-instantons are local maxima
- two isolated examples are saddle points



## Questions

- non-trivial dG<sub>2</sub>-instantons for holonomy G<sub>2</sub>-manifolds?
- (adiabatic) limits of dG<sub>2</sub>-instantons?
- dependence of moduli space on G<sub>2</sub>-structure?
- "mirror count"?
- ullet applications of  ${\mathcal F}$  to compactness or deformation theory?
- Spin(7) version?