Topologia Geral - MA/MM 453 Lista 3

Prof.Gabriel Ponce IMECC- UNICAMP gaponce@ime.unicamp.br

1 Topologia produto e topologia das caixas (topologia box)

- 1. Seja x_1, x_2, \ldots uma sequência de pontos de um espaço produto $\prod X_{\alpha}$. Mostre que esta sequência converge para o ponto x se, e somente se, a sequência $\pi_{\alpha}(x_1), \pi_{\alpha}(x_2), \ldots$, converge para $\pi_{\alpha}(x)$ para cada α . Este fato continua verdadeiro na topologia box?
- 2. Considere \mathbb{R}^{∞} o conjunto de todas as sequências em \mathbb{R}^{w} com apenas um número finito de coordenadas não nulas. Determine $\overline{\mathbb{R}^{\infty}}$ tanto na topologia box quanto na topologia produto.
- 3. Dada uma sequência $(a_1, a_2, ...)$ e $(b_1, b_2, ...)$ de números reais com $a_i > 0$ para todo i, defina $h: \mathbb{R}^w \to \mathbb{R}^w$ por

$$h((x_1, x_2, \ldots)) = (a_1x + b_1, a_2x_2 + b_2, \ldots).$$

Mostre que se \mathbb{R}^w estiver munido da topologia produto h será um homeomorfismo de \mathbb{R}^w com ele mesmo. O que ocorre se \mathbb{R}^w estiver munido da topologia box?

4. O seguinte princípio é conhecido como axioma da escolha:

Axioma da escolha: Dada uma coleção \mathcal{A} de conjuntos disjuntos e não vazios, existe um conjunto C consistindo de exatamente um elemento de cada elemento de \mathcal{A} ; isto é, um conjunto C tal que C está contido na união dos elementos de \mathcal{A} , e para cada $A \in \mathcal{A}$ tem-se $C \cap A$ é um conjunto unitário.

Mostre que o axioma da escolha é equivalente à seguinte afirmação: para qualquer família indexada de conjuntos não-vazios $\{A_{\alpha}\}_{{\alpha}\in J}$ (não necessariamente disjuntos), com $J\neq 0$, o produto cartesiano

$$\prod_{\alpha \in J} A_{\alpha}$$

é não vazio.

- 5. Seja A um conjunto, $\{X_{\alpha}\}_{{\alpha}\in J}$ uma família indexada de espaços e seja $\{f_{\alpha}\}_{{\alpha}\in J}$ uma família indexada de funções $f_{\alpha}:A\to X_{\alpha}$.
 - 1) Mostre que existe uma única topologia mais grossa τ em A relativamente à qual todas as aplicação f_{α} são contínuas.
 - 2) Seja

$$S_{\beta} = \{ f_{\beta}^{-1}(U_{\beta}) : U_{\beta} \text{ \'e aberto em } X_{\beta} \},$$

e considere $\mathcal{S} := \bigcup \mathcal{S}_{\beta}$. Mostre que \mathcal{S} é uma subbase para τ .

- 3) Mostre que a função $g:Y\to A$ é contínua relativamente a τ se, e somente se, cada função $f_\alpha\circ g.$
- 4) Seja $f: A \to \prod X_{\alpha}$ definida pela equação

$$f(a) = (f_{\alpha}(a))_{\alpha \in J}.$$

Mostre que a imagem de cada elemento de τ por f é um subconjunto aberto de f(A) onde f(A) está munido com a topologia induzida por $\prod X_{\alpha}$.

6. Seja X um espaço topológico, considere \mathbb{R} munido da topologia usual. Sejam $f,g:X\to\mathbb{R}$ funções contínuas, mostre que as funções:

$$f+g$$
, $f-g$, $f \cdot g$

são contínuas e que, se $g(x) \neq 0$ para todo $x \in X$ então f/g também será contínua.

2 Topologia quociente

7. Sejam X,Y espaços topológicos. Defina o que significa dizer que uma aplicação $p:X\to Y$ é uma aplicação quociente.

noindent 8. Seja $p:X\to Y$ uma aplicação quociente e $A\subset X$ um subespaço, é verdade que a restrição de p dada por:

$$p_{|_A}:A\to p(A)$$

é uma aplicação quociente?

- 9. Seja $p: X \to Y$ uma aplicação quociente e seja A um subespaço de X que é saturado com respeito a p. Seja $q: A \to p(A)$ a restrição de p a A mostre que:
 - 1) se A for aberto ou fechado em X então q será uma aplicação quociente.

2) se p for uma aplicação aberta ou fechada então q será uma aplicação quociente.

10.

- a) Seja $p:X\to Y$ uma função contínua. Mostre que se existir uma função contínua $f:Y\to X$ tal que $p\circ f$ é a função identidade em Y, então p será uma aplicação quociente.
- b) Se $A \subset X$, uma retração de X sobre A é uma aplicação contínua $r: X \to A$ tal que r(a) = a para cada $a \in A$. Mostre que uma retração é uma aplicação quociente.
- 11. Seja $\pi_1: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ a projeção na primeira coordenada. Seja A o subespaço de $\mathbb{R} \times \mathbb{R}$ consistindo de todos os pontos (x,y) para os quais ou $x \geq 0$ ou y=0 (ou ambos); seja $q: A \to \mathbb{R}$ a restrição de p a A. Mostre que q é uma aplicação quociente que não é nem aberta e nem fechada.
- 12. Dê um exemplo de uma aplicação quociente $p:X\to Y$ de forma que $p\times p:X\times X\to Y\times Y$ definida por:

$$(p \times p)(x, y) = (p(x), p(y)),$$

não seja uma aplicação quociente.