Análise 1 - MA502 & MM202 - Segunda Avaliação

Prof. Gabriel Ponce

Nome: Fibonacci RA: 1123581321

Instruções:

- Coloque nome completo em TODAS as folhas;
- Escreva de forma clara os argumentos utilizados;
- Não escreva no quadro de pontuação acima;
- Devolva esta folha juntamente com as soluções ao final da avaliação.
- Indique abaixo quais questões você escolheu. No caso de haver escolha de mais de 3 questões dentre as questões 1-5, serão corrigidas apenas as 3 primeiras indicadas.

Questões escolhidas:

Escolha 3 questões dentre os problemas 1-5.

Problema 1: (2.0) Dada uma série $\sum_{n=1}^{\infty} a_n$ de números reais. Defina

$$\alpha := \limsup_{n \to +\infty} \sqrt[n]{|a_n|}$$

- a) (1.0) Mostre que se $\alpha < 1$ então a série dada converge em \mathbb{R} .
- b) (1.0) Mostre que se $\alpha>1$ então a série dada diverge em $\mathbb{R}.$

Solução:

a) Suponha que $\alpha < 1$, ou seja $\limsup_{n \to +\infty} \sqrt[n]{|a_n|} < 1$. Tome β tal que $\alpha < \beta < 1$. Pelo teorema de caracterização do limite superior, existe $N \in \mathbb{N}$ tal que

$$\sqrt[n]{|a_n|} \le \beta, \quad \forall n \ge N.$$

Assim,

$$|a_n| \le \beta^n, \quad \forall n \ge N.$$

Portanto, pelo teste da comparação, se a série $\sum \beta^n$ convergir a série $\sum a_n$ também irá convergir. Como $\beta < 1$, por um resultado anterior, a série $\sum \beta^n$ converge. Donde segue que $\sum a_n$ é convergente como queríamos demonstrar.

b) Suponha que $\alpha > 1$. Pela teorema de caracterização do limite superior, existe uma subsequência $\sqrt[nk]{|a_{n_k}|}$ de $\sqrt[n]{|a_n|}$ tal que

$$|a_{n_k}| \rightarrow \alpha.$$
 (0.1)

Tome $\varepsilon = \alpha - 1$. Por (0.1) segue que existe $k_0 \in \mathbb{N}$ tal que , para todo $k \ge k_0$ temos

$$| {}^{n_k}\sqrt{|a_{n_k}|} - \alpha | < \varepsilon \Rightarrow 1 - \alpha < {}^{n_k}\sqrt{|a_{n_k}|} - \alpha \Rightarrow 1 < {}^{n_k}\sqrt{|a_{n_k}|}.$$

Assim,

$$1 < |a_{n_k}|, \quad \forall k \ge k_0. \tag{0.2}$$

Assim, a série $\sum a_n$ diverge pois, se ela fosse convergente deveríamos ter $\lim_{n\to+\infty} |a_n| = 0$ o que contradiz (0.2).

Problema 2: (2.0)

- a) (1.0) Sejam $(X, d_x), (Y, d_Y)$ espaços métricos. Seja $f: X \to Y$ uma função contínua. Mostre que se X é um espaço métrico compacto então f(X) é um conjunto compacto.
- b) (1.0) Seja $f: X \to \mathbb{R}$ uma função contínua definida num espaço métrico compacto X. Mostre que existem $a, b \in X$ tais que

$$f(a) \le f(x) \le f(b)$$

para todo $x \in X$.

Solução:

a) Sejam $X, Y \in f: X \to Y$ como no enunciado. Tome $\mathcal{V} = \{V_{\alpha}\}_{{\alpha} \in A}$ uma cobertura aberta de f(X) qualquer. Assim temos que

$$f(X) \subset \bigcup_{\alpha \in A} V_{\alpha} \Rightarrow X \to f^{-1} \left(\bigcup_{\alpha \in A} V_{\alpha} \right) = \bigcup_{\alpha \in A} f^{-1}(V_{\alpha}).$$
 (0.3)

Como f é contínua e cada V_{α} é aberto, segue que $f^{-1}(V_{\alpha})$ é aberto para todo $\alpha \in A$. Assim, $\{f^{-1}(V_{\alpha})\}_{\alpha \in A}$ é uma cobertura aberta para X (por (0.3)). Como X é compacto, esta cobertura aberta admite uma subcobertura finita, isto é, existem $\alpha_1, ..., \alpha_n \in A$ tais que

$$X \subset f^{-1}(V_{\alpha_1}) \cup f^{-1}(V_{\alpha_2}) \cup ... \cup f^{-1}(V_{\alpha_n}).$$

Aplicando f em ambos os lados temos

$$f(X) \subset f(f^{-1}(V_{\alpha_1}) \cup f^{-1}(V_{\alpha_2}) \cup \ldots \cup f^{-1}(V_{\alpha_n})) = f(f^{-1}(V_{\alpha_1})) \cup \ldots \cup f(f^{-1}(V_{\alpha_n})).$$

Finalmente, usando o fato que $f(f^{-1}(V_{\alpha_i})) \subset V_{\alpha_i}$ segue que

$$f(X) \subset V_{\alpha_1} \cup ... \cup V_{\alpha_n}$$
.

Da arbitrariedade da escolha da cobertura aberta \mathcal{V} de f(X) segue que f(X) é compacto como queríamos demonstrar.

b) Do item (a) sabemos que $f(X) \subset \mathbb{R}$ é compacto e, portanto, fechado e limitado. Uma vez que f(X) é limitado e \mathbb{R} tem a propriedade do sup e a propriedade do inf, existem sup f(X) e inf f(X) em \mathbb{R} . Denote

$$m := \inf f(X), \quad M := \sup f(X).$$

Como f(X) é fechado, por um teorema visto em sala, seu supremo e seu ínfimo pertencem ao conjunto, ou seja, $m, M \in f(X)$. Portanto, existem $a, b \in X$ tais que

$$f(a) = m$$
 e $f(b) = M$.

Agora, pela definição de m e M temos que,

$$m \le f(x) \le M, \quad \forall x \in X.$$

Assim,

$$f(a) \le f(x) \le f(b), \quad \forall x \in X,$$

concluindo o que queríamos provar.

Problema 3: (2.0) Seja E_n uma sequência de conjuntos fechados não vazios e limitados em um espaço métrico completo X. Se $E_n \supset E_{n+1}$ e

$$\lim_{n \to \infty} \operatorname{diam} E_n = 0$$

então a interseção

$$\bigcap_{n=1}^{\infty} E_n$$

consiste de um único ponto.

Solução: Para cada $n \in \mathbb{N}$ escolha um ponto $x_n \in E_n$ qualquer. Tal escolha é possível uma vez que todos os E_n 's são não vazios.

Afirmação 1: A sequência (x_n) é uma sequência de Cauchy em X.

Demonstração: Seja $\varepsilon > 0$ qualquer. Como $\lim_{n \to +\infty} \operatorname{diam}(E_n) = 0$, existe $N \in \mathbb{N}$ tal que

se
$$n \geq N$$
 então diam $(E_n) < \varepsilon$.

Dados $m, n \geq N$ quaisquer, observe que:

$$x_m \in E_m \subset E_N$$
, e $x_n \in E_n \subset E_N$.

Assim, para quaisquer $m, n \ge N$ temos que

$$d(x_m, x_n) \leq \operatorname{diam}(E_N) < \varepsilon.$$

Ou seja, a sequência (x_n) é uma sequência de Cauchy. \triangle

Como X é um espaço métrico completo, a sequência (x_n) , que é de Cauchy, é convergente em X. Digamos

$$x_n \to x \in X$$
.

Afirmação 2: $x \in E_n$ para todo $n \ge 1$.

Demonstração: Tome $n_0 \in \mathbb{N}$ qualquer. Então, pelo mesmo argumento utilizado anteriormente temos que $x_n \in E_{n_0}$ para todo $n \geq n_0$. Assim, x que é limite da sequência $(x_n)_{n \geq n_0}$ é consequentemente limite de uma sequência de pontos de E_{n_0} . Uma vez que E_{n_0} é fechado segue, por um resultado demonstrado em sala, que $x \in E_{n_0}$. Da arbitrariedade de n_0 segue que $x \in E_n$ para todo $n \in \mathbb{N}$. \triangle

Assim, temos

$$x \in \bigcap_{n=1}^{\infty} E_n$$
.

Tome qualquer $y \in \bigcap_{n=1}^{\infty} E_n$. Então, $x, y \in E_n$ para todo $n \in \mathbb{N}$. Logo

$$d(x,y) \leq \operatorname{diam}(E_n), \quad \forall n \in \mathbb{N}.$$

Tomando o limite em n de ambos os lados temos:

$$d(x,y) \le \lim_{n \to \infty} \text{diam} E_n = 0 \Rightarrow d(x,y) = 0 \Rightarrow y = x.$$

Ou seja, x é o único ponto na interseção de todos os E_n , concluindo o que queríamos demonstrar.

Problema 4: (2.0) Sejam f, g funções reais contínuas em $[a, b] \subset \mathbb{R}$ e diferenciáveis em (a, b). Mostre que existe um ponto $x \in (a, b)$ tal que

$$(f(b) - f(a)) \cdot g'(x) = (g(b) - g(a)) \cdot f'(x).$$

Solução: Considere a função $h:[a,b]\to\mathbb{R}$ dada por

$$h(x) = (f(b) - f(a)) \cdot g(x) - (g(b) - g(a)) \cdot f(x).$$

Observe que h é contínua em [a,b] e diferenciável em (a,b) uma vez que f e g o são. Note que

$$\begin{split} h(a) = & (f(b) - f(a)) \cdot g(a) - (g(b) - g(a)) \cdot f(a) \\ = & f(b)g(a) - g(b)f(a) = f(b)g(b) - f(a)g(b) - g(b)f(b) - g(a)f(b) \\ = & (f(b) - f(a)) \cdot g(b) - (g(b) - g(a)) \cdot f(b) = h(b). \end{split}$$

Vamos agora considerar três casos distintos e complementares.

Primeiro caso: h é constante no intervalo [a, b]. Neste caso, sabemos que h'(x) = 0 para todo $x \in [a, b]$. **Segundo caso:** Existe $t \in (a, b)$ tal que h(t) > h(a) = h(b).

Neste caso, considere $x \in [a, b]$ o ponto onde a função h atinge o máximo no intervalo [a, b]. Note que tal ponto existe pois h é contínua e [a, b] é compacto. Agora, uma vez que existe $t \in (a, b)$ tal que h(t) > h(a) = h(b) então x é diferente de a e de b, ou seja, $x \in (a, b)$. Por um teorema visto em sala segue que h'(x) = 0.

Terceiro caso: Existe $t \in (a, b)$ tal que h(t) < h(a) = h(b).

Neste caso, considere $x \in [a, b]$ o ponto onde a função h atinge o mínimo no intervalo [a, b]. Note que tal ponto existe pois h é contínua e [a, b] é compacto. Agora, uma vez que existe $t \in (a, b)$ tal que h(t) < h(a) = h(b) então x é diferente de a e de b, ou seja, $x \in (a, b)$. Por um teorema visto em sala segue que h'(x) = 0.

Em todo caso existe $x \in (a, b)$ tal que h'(x) = 0. Logo, existe $x \in (a, b)$ tal que $0 = h'(x) = (f(b) - f(a)) \cdot g'(x) - (g(b) - g(a)) \cdot f'(x) \Rightarrow (f(b) - f(a)) \cdot g'(x) = (g(b) - g(a)) \cdot f'(x)$, concluindo o que queríamos demonstrar.

Problema 5: (2.0) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua satisfazendo

i) $\lim_{x\to +\infty} f(x) = \alpha \quad \text{para algum } \alpha \in \mathbb{R};$

ii) $\lim_{x\to -\infty} f(x) = \beta \quad \text{para algum } \beta \in \mathbb{R}.$

Prove que f é uniformemente contínua em \mathbb{R} .

Solução: Tome $\varepsilon > 0$ qualquer. De (i) e (ii) segue que existe $N \in \mathbb{N}$ tal que

se
$$x > N$$
 então $|f(x) - \alpha| < \frac{\varepsilon}{2}$. (0.4)

е

se
$$x < -N$$
 então $|f(x) - \beta| < \frac{\varepsilon}{2}$. (0.5)

Consideremos o intervalo I=[-N-1,N+1]. Como f é contínua e I é compacto, por um resultado visto em sala, f é uniformemente contínua em I. Portanto, existe $\delta>0$ tal que se $x,y\in I$ e $|x-y|<\delta$ então $|f(x)-f(y)|<\varepsilon$. É fácil ver que podemos assumir que $\delta<1$ pois do contrário bastaria tomarmos $\delta':=2^{-1}\min\{1,\delta\}$. Tomemos $x,y\in\mathbb{R}$ tais que $|x-y|<\delta$. Então:

- Se $x, y \in I$, pela definição de δ segue que $|f(x) f(y)| < \varepsilon$.
- Se $x \notin I$ e $y \notin I$ então, como $|x-y| < \delta < 1$ temos que x,y > N ou x,y < -N. Caso x,y > N por (0.4) temos que

$$|f(x) - f(y)| \le |f(x) - \alpha| + |\alpha - f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Analogamente, se x, y < -N temos por (0.5) que

$$|f(x) - f(y)| \le |f(x) - \beta| + |\beta - f(y)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Logo, se $x, y \notin I$ então $|f(x) - f(y)| < \varepsilon$.

- Assuma que nenhum dos dois casos anteriores ocorre, ou seja, $x \in I$ e $y \notin I$ ou $x \notin I$ e $y \in I$. Se $y \notin I$ então y > N+1 ou y < -N-1 logo, como $|x-y| < \delta < 1$ temos que
 - se y > N+1 então $y > N+y-x \Rightarrow x > N$. Logo x,y > N e então por (0.4) e pela desigualdade triângular (como feito no item anterior), temos que $|f(x)-f(y)| < \varepsilon$;
 - se y < -N 1 então $y < -N + y x \Rightarrow x < -N$. Logo x, y < -N e então por (0.5) e pela desigualdade triângular (como feito no item anterior), temos que $|f(x) f(y)| < \varepsilon$.

O caso $y \in I$ e $x \notin I$ é idêntico.

Ou seja, dado $\varepsilon > 0$ qualquer encontramos $\delta > 0$ tal que se $x,y \in \mathbb{R}$ e $|x-y| < \delta$ então $|f(x) - f(y)| < \varepsilon$. Assim, f é uniformemente contínua em \mathbb{R} .

Resolva AMBAS as questões 6 e 7.

Problema 6: (2.0) Sejam $(X, d_X), (Y, d_Y)$ espaços métricos.

- a) (1.5) Mostre que $f:X\to Y$ é contínua se, e somente se, dado qualquer conjunto aberto $V\subset Y,\,f^{-1}(V)\subset X$ é um conjunto aberto.
- b) (0.5) Mostre que $f: X \to Y$ é contínua se, e somente se, dado qualquer conjunto fechado $V \subset Y$, $f^{-1}(V) \subset X$ é um conjunto fechado.

Solução:

a) (\Rightarrow) Suponha que f é contínua. Tome $V \subset Y$ um conjunto aberto qualquer e vamos provar que $f^{-1}(V)$ é aberto em X. Seja $p \in f^{-1}(V)$ um ponto qualquer, então $f(p) \in V$ e, como V é aberto, f(p) é um ponto interior de V. Assim, existe r > 0 tal que

$$B_Y(f(p),r) \subset V$$
.

Agora, como f é contínua existe $\delta > 0$ tal que

$$f(B_X(p,\delta)) \subset B_Y(f(p),r) \subset V.$$

Portanto, existe $\delta > 0$ tal que

$$B_X(p,\delta) \subset f^{-1}(V)$$
.

Ou seja, p é ponto interior de $f^{-1}(V)$. Da arbitrariedade da escolha de p em $f^{-1}(V)$ segue que $f^{-1}(V)$ é um conjunto aberto.

(\Leftarrow) Assuma que dado qualquer conjunto aberto $V \subset Y$ a imagem inversa $f^{-1}(V)$ é um subconjunto aberto de X. Vamos mostrar que f é contínua.

Tome $p \in X$ qualquer. Dado $\varepsilon > 0$, defina $V = B_Y(f(p), \varepsilon) \subset Y$. V é um subconjunto aberto de Y e, portanto, pela hipótese segue que $f^{-1}(V)$ é aberto em X. Como $p \in f^{-1}(V)$, existe $\delta > 0$ tal que

$$B_X(p,\delta) \subset f^{-1}(V) \Rightarrow f(B_X(p,\delta)) \subset V = B_Y(f(p),\varepsilon).$$

Ou seja, para qualquer $p \in X$, dado $\varepsilon > 0$ qualquer, existe $\delta > 0$ tal que

$$f(B_X(p,\delta)) \subset B_Y(f(p),\varepsilon).$$

Assim, f é contínua como queríamos demonstrar.

b) Primeiramente observe que dado qualquer conjunto $E \subset X$ temos que

$$f^{-1}(E^c) = (f^{-1}(E))^c$$
.

Agora, suponhamos primeiro que f é contínua. Tome $F \subset Y$ um conjunto fechado qualquer. Então, $V := F^c$ é aberto. Como f é contínua segue pela alternativa (a) que $f^{-1}(V)$ é aberto. Mas pela observação que fizemos no início temos

$$f^{-1}(V) = f^{-1}(F^c) = (f^{-1}(F))^c.$$

Assim, $(f^{-1}(F))^c$ é aberto, logo $f^{-1}(F)$ é fechado.

Agora suponhamos que a imagem inversa de todo fechado é fechado e vamos demonstrar que f é contínua. Tome $V \subset Y$ um aberto qualquer. Então V^c é fechado e, por hipótese, segue que $f^{-1}(V^c)$ é fechado. Logo, pela observação feita no início temos que $f^{-1}(V^c) = (f^{-1}(V))^c$ é fechado, de onde segue que, $f^{-1}(V)$ é aberto. Ou seja, dado qualquer aberto $V \subset Y$ temos que $f^{-1}(V)$ é aberto em X. Pela alternativa (a) segue que f é contínua.

Problema 7: (2.0) Seja $h: \mathbb{R} \to \mathbb{R}$ definida por $h(x) := e^x$. Assuma conhecido que $h'(x) = e^x$ para todo $x \in \mathbb{R}$.

a) (1.0) Calcule o limite

$$\lim_{x \to +\infty} \frac{(x-\pi)^2 \cdot e^x}{x^4}.$$

b) (1.0) Sejam α, β números reais satisfazendo $\alpha^2 > 4\beta$ e sejam a e b as raízes de

$$x^2 - \alpha x + \beta = 0.$$

Suponha que $f:\mathbb{R}\to\mathbb{R}$ é uma função duas vezes diferenciável satisfazendo as seguintes condições:

i) f(0) = 1, f'(0) = 0;

ii)

$$f''(x) + \alpha f'(x) + \beta f(x) \ge 0,$$

para todo $x \in [0, \infty)$.

Prove que

$$f(x) \ge \frac{1}{\sqrt{\alpha^2 - 4\beta}} \left(ae^{-bx} - be^{-ax} \right), \quad x \ge 0.$$

Solução:

a) Observe que

$$\lim_{x \to +\infty} \frac{(x-\pi)^2 \cdot e^x}{x^4} = \lim_{x \to +\infty} \frac{x^2 \left(1 - \frac{\pi}{x}\right)^2 \cdot e^x}{x^4} = \lim_{x \to +\infty} \frac{\left(1 - \frac{\pi}{x}\right)^2 \cdot e^x}{x^2}.$$

Chame $f_1(x) = \left(1 - \frac{\pi}{x}\right)^2$ e $f_2(x) = \frac{e^x}{x^2}$. Observe que

•
$$\lim_{x \to +\infty} f_1(x) = \lim_{x \to +\infty} \left(1 - \frac{\pi}{x}\right)^2 = (1 - 0)^2 = 1.$$

Agora, como $\lim_{x\to+\infty} e^x = \infty$ e $\lim_{x\to\infty} x^2 = \infty$, podemos utilizar o teorema de L'Hospital para calcular $\lim_{x\to+\infty} f_2(x)$.

$$\lim_{x \to +\infty} f_2(x) = \lim_{x \to +\infty} \frac{e^x}{x^2} = \lim_{x \to +\infty} \frac{e^x}{2x}.$$

Novamente estamos nas condições de aplicar o Teorema de L'Hospital, assim:

$$\lim_{x \to +\infty} f_2(x) = \lim_{x \to +\infty} \frac{e^x}{2x} = \lim_{x \to +\infty} \frac{e^x}{2} = \infty.$$

Portanto,

$$\lim_{x \to +\infty} \frac{(x-\pi)^2 \cdot e^x}{x^4} = \lim_{x \to +\infty} (f_1(x) \cdot f_2(x)) = \lim_{x \to +\infty} f_1(x) \cdot \lim_{x \to +\infty} f_2(x) = \infty.$$

- b) Sejam a e b as raízes da equação dada, observe que como $\alpha^2>4\beta$ então $a-b\neq 0$. Além disso temos
 - $a+b=\alpha$,
 - $ab = \beta$

Utilizando estas relações temos:

$$0 \le f''(x) + \alpha f'(x) + \beta f(x) = [f''(x) + af'(x)] + b[f'(x) + af(x)].$$

Defina g(x) := f'(x) + af(x). Então a última inequação implica

$$0 \le g'(x) + bg(x).$$

Multiplicando ambos os lados por e^{bx} temos:

$$0 \le g'(x)e^{bx} + be^{bx}g(x) = (g(x)e^{bx})'$$

o que implica que a função $g(x)e^{bx}$ é crescente. Portanto, para todo $x \in [0, +\infty)$ temos que

$$g(x)e^{bx} \ge g(0)e^0 = f'(0) + af(0) = a \Rightarrow g(x) \ge a \cdot e^{-bx}$$
.

Substituindo a expressão de g(x) temos que

$$f'(x) + af(x) \ge a \cdot e^{-bx} \Rightarrow f'(x) + af(x) - a \cdot e^{-bx} \ge 0.$$

Agora multiplicando ambos os lados por e^{ax} temos:

$$0 \le f'(x)e^{ax} + ae^{ax}f(x) - a \cdot e^{(a-b)x} = \left(f(x)e^{ax} - \frac{a}{a-b}e^{(a-b)x}\right)', \quad \forall x \ge 0.$$

Ou seja, a função $f(x)e^{ax} - \frac{a}{a-b}e^{(a-b)x}$ é crescente no intervalo $[0,+\infty)$. Portanto, para todo $x \ge 0$ temos

$$f(x)e^{ax} - \frac{a}{a-b}e^{(a-b)x} \ge f(0) - \frac{a}{a-b} = 1 - \frac{a}{a-b} = -\frac{b}{a-b}.$$

Logo,

$$f(x) \ge e^{-ax} \left(\frac{a}{a-b} e^{(a-b)x} - \frac{b}{a-b} \right) = \frac{1}{a-b} \left(ae^{-bx} - be^{-ax} \right).$$

Tomando,

$$a = \frac{\alpha + \sqrt{\alpha^2 - 4\beta}}{2}$$
 e $b = \frac{\alpha - \sqrt{\alpha^2 - 4\beta}}{2}$

segue que $a - b = \sqrt{\alpha^2 - 4\beta}$. Portanto

$$f(x) \ge \frac{1}{\sqrt{\alpha^2 - 4\beta}} \left(ae^{-bx} - be^{-ax} \right), \quad \forall x \ge 0$$