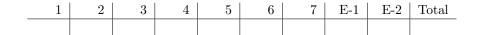
Análise 1 - MA
502 & MM202 - Primeira Avaliação

Prof. Gabriel Ponce

Nome: Gauss RA: 00000001



Instruções:

- Coloque nome completo em **TODAS** as folhas;
- Escreva de forma clara os argumentos utilizados;
- Não escreva no quadro de pontuação acima;
- Devolva esta folha juntamente com as soluções ao final da avaliação.
- Indique abaixo quais questões você escolheu. No caso de haver escolha de mais de 3 questões dentre as questões 1-5, serão corrigidas apenas as 3 primeiras indicadas.

Questões escolhidas:

Escolha 3 questões dentre os problemas 1-5.

Problema 1: (2.0)

- a) (1.0) Mostre que não existe um número racional r tal que $r^2 = 7$.
- b) (1.0) Sejam a, b, c números reais positivos tais que

$$a + b + c = 1$$
,

mostre que

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge 9.$$

Solução:

a) Suponhamos por absurdo que existe $r \in \mathbb{Q}$ tal que $r^2 = 7$. Podemos escrever r = p/q com $p,q \in \mathbb{Z}, \ q > 0$ e p e q primos entre si, ou seja, de forma que a fração seja irredutível. Assim temos,

$$\frac{p^2}{q^2} = 7 \Rightarrow p^2 = 7q^2.$$

Como o lado direito é múltiplo de 7, o lado esquerdo também deve ser. Assim, 7 é parte da fatoração de p em potências de números primos e, portanto, 7 divide p. Logo, p pode ser escrito como p = 7k, $k \in \mathbb{Z}$. Substituindo na equação acima temos:

$$7^2k^2 = 7q^2 \Rightarrow 7k^2 = q^2$$
.

Pelo mesmo argumento, 7 dividirá q, contradizendo a hipótese "p e q são primos entre si". Logo, de fato não existe $r \in \mathbb{Q}$ com $r^2 = 7$.

b) Denotemos

$$x_1 = \frac{1}{\sqrt{a}}, \quad x_2 = \frac{1}{\sqrt{b}}, \quad x_3 = \frac{1}{\sqrt{c}}$$

 \mathbf{e}

$$y_1 = \sqrt{a}, \quad y_2 = \sqrt{b}, \quad y_3 = \sqrt{c}.$$

Pela desigualdade de Cauchy-Schwarz sabemos que

$$(x_1y_1 + x_2y_2 + x_3y_3)^2 \le (x_1^2 + x_2^2 + x_3^2)(y_1^2 + y_2^2 + y_3^2).$$

Substituindo as notações definidas acima e utilizando a hipótese a+b+c=1 temos:

$$(1+1+1)^2 \le \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)(a+b+c) \Rightarrow 9 \le \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

como queríamos demonstrar.

Problema 2: (2.0)

- a) (1.0) Defina
 - Conjunto finito;
 - Conjunto infinito;
 - Conjunto enumerável;
 - Conjunto não-enumerável.
- b) (1.0) Seja A um conjunto enumerável, mostre que o conjunto $A \times A$ é enumerável.

Solução:

- a) Ver definições feitas em sala.
- b) Seja A um conjunto enumerável. Para cada $a \in A$ defina B_a da seguinte forma

$$B_a := \{a\} \times A = \{(a, b) : b \in A\}.$$

Para cada $a \in A$ fixado, considere a função $f_a: A \to B_a$ dada por f(b) = (a,b). Observe que f é sobrejetora pois dado qualquer elemento $x \in B_a$, existe $b \in A$ tal que x = (a,b) e, portanto, x = (a,b) = f(b). Observe que f é também injetora pois se f(b) = f(c) para certos $b,c \in A$ então

$$(a,b) = f(b) = f(c) = (a,c) \Rightarrow b = c.$$

Logo f é bijetora, donde segue que B_a também é enumerável uma vez que A é enumerável. Finalmente, observe que

$$A \times A = \bigcup_{a \in A} \{(a, b) : b \in A\} = \bigcup_{a \in A} B_a.$$

Assim, $A \times A$ é união enumerável de conjuntos enumeráveis, portanto, enumerável.

Problema 3: (2.0) Seja (X, d) um espaço métrico.

- a) (1.0) Defina
 - Ponto interior de um conjunto $E \subset X$;
 - Conjunto aberto;
 - Ponto de acumulação de um conjunto $E \subset X$;
 - Conjunto fechado.
- b) (1.0) Seja $E \subset X$ um conjunto qualquer, mostre que \overline{E} é um conjunto fechado.

Solução:

- a) Ver definições feitas em sala.
- b) Consideremos $E \subset X$ um conjunto qualquer. Para provar que \overline{E} é fechado basta mostrarmos que $(\overline{E})^c$ é aberto. Tome um ponto $p \in (\overline{E})^c$. Então, $p \notin E$ e $p \notin E'$ onde E' é o conjunto dos pontos de acumulação de E.

Como $p\notin E'$ então existe r>0tal que $(B(p,r)\setminus\{p\})\cap E=\emptyset,$ mas como $p\notin E$ então obtemos

$$B(p,r) \cap E = \emptyset.$$

Se mostrarmos que $B(p,r) \subset (\overline{E})^c$ então teremos obtido que p é ponto interior de $(\overline{E})^c$, concluindo o problema. Tome $q \in B(p,r)$ qualquer. Consideremos

$$R := r - d(p, q).$$

Então, se $z \in B(q, R)$ temos, pela desigualdade triângular,

$$d(z,p) \leq d(z,q) + d(p,q) < R + d(p,q) = r - d(p,q) + d(p,q) = r \Rightarrow z \in B(p,r),$$

isto é, $B(q,R) \subset B(p,r) \subset E^c$. Logo $B(q,R) \cap E = \emptyset$, o que implica que $q \notin E$ e $q \notin E'$. Logo $q \in (\overline{E})^c$. Assim, $B(p,r) \subset (\overline{E})^c$ como queríamos demonstrar.

Problema 4: (2.0) Seja (X, d) um espaço métrico.

- a) (1.0) Mostre que um conjunto $E\subset X$ é aberto se, e somente se, E^c é fechado.
- b) (1.0) Sejam $A_1, A_2, ..., A_k$ subconjuntos abertos de X, prove que

$$\bigcap_{i=1}^{k} A_i$$

é um subconjunto aberto de X.

Solução:

a) Assuma que E é um conjunto aberto e vamos demonstrar que E^c é fechado. Considere $p \in X$ um ponto de acumulação de E^c e suponha por absurdo que $p \notin E^c$. Então $p \in E$ e, como E é aberto, existe r > 0 tal que $B(p,r) \subset E$. Em particular,

$$(B(p,r) \setminus \{p\}) \cap E^c \subset B(p,r) \cap E^c = \emptyset,$$

contradizendo o fato que p é ponto de acumulação de E^c . Logo $p \in E^c$ e E^c é fechado como queríamos.

Agora assuma que E^c é fechado e tome $p \in E$. Como $p \notin E^c$ e E^c é fechado então p não pode ser ponto de acumulação de E^c , ou seja, existe r > 0 tal que

$$(B(p,r) \setminus \{p\}) \cap E^c = \emptyset.$$

Mas como $p \in E$ então a igualdade de conjuntos anterior implica: $B(p,r) \cap E^c = \emptyset \Rightarrow B(p,r) \subset E$. Logo p é ponto interior de E e E é aberto como queríamos demonstrar. \square b) Chame $B = \bigcap_{i=1}^n A_i$ e tome $p \in B$ qualquer. Pela definição de B temos $p \in A_i$ para todo $1 \le i \le n$. Como cada A_i é aberto, para cada $1 \le i \le n$ existe $r_i > 0$ tal que

$$B(p, r_i) \subset A_i$$
.

Tome $r := \min\{r_i : 1 \le i \le n\}$. Então, para qualquer $1 \le i \le n$ temos

$$B(p,r) \subset B(p,r_i) \subset A_i$$

o que implica

$$B(p,r) \subset \bigcap_{i=1}^{n} A_i = B.$$

Assim, p é ponto interior de B. Da arbitrariedade de $p \in B$ segue que B é aberto.

Problema 5: (2.0) Seja (X, d) um espaço métrico.

- a) (1.0) Defina conjunto compacto.
- b) (1.0) Mostre que se $I \subset \mathbb{R}^k$ é uma k-célula então I é compacto. Obs: Uma vez que este fato é usado para demonstrar que "compacto em $\mathbb{R}^k \Leftrightarrow$ fechado e limitado em \mathbb{R}^k ", a prova não pode ser feita da forma: "I é fechado e limitado portanto compacto".

Solução:

- a) Ver definição feita em sala.
- b) Consideremos uma k-célula I. Então, I é da forma

$$I = [a_1, b_1] \times [a_2, b_2] \times ... \times [a_k, b_k]$$

para certos $a_i, b_i \in \mathbb{R}$ com $a_i \leq b_i$. Para cada i defina $c_i = (a_i + b_i)/2$. Assim, os intervalos fechados $[a_i, c_i], [c_i, b_i], 1 \leq i \leq k$ determinam 2^k k-células menores que chamaremos de $C_{1,1}, \ldots, C_{1,2^k}$. Denotemos

$$\delta := \left(\sum_{j=1}^{k} |b_j - a_j|^2 \right)^{1/2},$$

ou seja δ é a maior distância possível entre dois pontos na k-célula I. Suponhamos por absurdo que I não é compacto. Então existe uma cobertura aberta $\{G_{\alpha}\}$ de I que não admite uma subcobertura finita para I. Em particular, existe alguma (pelo menos uma) k-célula $C_{1,j}$ que também não pode ser coberta por um número finito de abertos da cobertura $\{G_{\alpha}\}$. Chamemos uma tal k-célula de I_2 . Construídas $I_1, I_2, ..., I_{n-1}$ construímos I_n da seguinte forma: seja $I_{n-1} = [a_{n-1,1}, b_{n-1,1}] \times ... \times [a_{n,1}, b_{n,1}]$, consideramos as k-células menores formadas pelos intervalos $[a_{n,j}, c_{n,j}], [c_{n,j}, b_{n,j}]$ onde $c_{n,j} := (a_{n,j} + b_{n,j})/2$. Pelo menos uma dessas k-células também não pode ser coberta por uma quantidade finita de abertos de $\{G_{\alpha}\}$. Escolhemos uma tal k-célula e chamamos ela de I_n .

Assim, construímos uma sequência de k-células I_{ii} tal que

- $I \supset I_2 \supset I_3 \supset \dots$;
- I_n não pode ser coberto por uma quantidade finita de elementos de $\{G_\alpha\}$, para todo $n \geq 2$;
- a maior distância possível entre dois elementos de I_n é $\delta/2^{n-1}$, $\forall n \geq 2$.

Por um teorema demonstrado em sala, o primeiro item listado acima implica que a interseção de todas as k-células I_n é não vazia, ou seja, podemos tomar um ponto

$$x \in \bigcap_{n=1}^{\infty} I_n$$
.

Uma vez que $\{G_{\alpha}\}$ é uma cobertura de I, existe α tal que $x \in G_{\alpha}$. Como G_{α} é aberto, existe r > 0 tal que

$$B(x,r) \subset G_{\alpha}$$
.

Agora, tome n_0 grande o bastante para que

$$\frac{\delta}{2^{n_0-1}} < \frac{r}{2}.$$

Como $x \in I_{n_0}$ então dado qualquer ponto $y \in I_{n_0}$, pelo terceiro item listado acima temos

$$d(y,x) \le \frac{\delta}{2^{n-1}} < \frac{r}{2}$$

o que implica $I_{n_0} \subset B(x,r) \subset G_{\alpha}$. Mas isso contradiz o segundo item. Assim, concluímos que I é compacto como queríamos demonstrar.

Resolva AMBAS as questões 6 e 7.

Problema 6: (2.0)

a) (1.0) Sejam $A,B\subset\mathbb{R}$ subconjuntos não vazios satisfazendo: para todos $a\in A,\,b\in B$ temos

$$a \leq b$$
.

Mostre que sup $A \leq \inf B$.

- b) (1.0) Para cada um dos seguintes conjuntos, indique (caso existam) o supremo, ínfimo, máximo e o mínimo ou diga se algum destes valores não existe para o tal conjunto:
 - b.1) $(0.4) \{2/n : n \in \mathbb{N}^*\}.$
 - b.2) $(0.3) [0,1) \cup (2,+\infty)$.
 - b.3) $(0.3) \{n^3 : n \in \mathbb{R}, n \le 7\}.$

Obs: Para esta alternativa não é necessário provar como obteve os valores, apenas indicar quais são.

Solução:

a) Sejam $A, B \subset \mathbb{R}$ como no enunciado. Fixado qualquer elemento $b \in B$ temos que:

$$a \le b, \quad \forall a \in A,$$

ou seja b é limitante superior de A, logo A é limitado superiormente e, portanto, admite supremo. Pela definição de supremo, o supremo é o menor limitante superior, então

$$\sup A \leq b$$
.

Da arbitrariedade de $b \in B$ temos que sup A é limitante inferior de B, ou seja, B é limitado superiormente e, portanto, admite ínfimo. Além disso, pela definição de ínfimo, o ínfimo é o maior limitante inferior, concluímos que

$$\sup A \leq \inf B$$
.

- b) Denotemos $X = \{2/n : n \in \mathbb{N}^*\}, Y = [0,1) \cup (2,+\infty), Z = \{n^3 : n \in \mathbb{R}, n^3 \le 7\}$. Então:
- b.1) sup X = 2, inf X = 0, max X = 2, X não possui mínimo;
- b.2) inf Y = 0, min Y = 0. O conjunto não possui máximo e nem supremo em \mathbb{R} . Na reta estendida seu supremo seria sup $Y = +\infty$;
- b.3) sup $Z=7^3$, max $Z=7^3$. O conjunto Z não possui mínimo nem ínfimo em \mathbb{R} . Na reta estendida seu ínfimo seria inf $Z=-\infty$.

Problema 7: (2.0)

- a) (0.5) Seja (X,d) um espaço métrico e $E\subset X$ um conjunto compacto. Mostre que E é fechado e limitado.
- b) (0.5) Seja $E \subset \mathbb{R}^k$, $k \geq 1$. Mostre que E é compacto se, e somente se, E é fechado e limitado.
- c) (1.0) Uma função $f: X \to \mathbb{R}$ definida em um espaço métrico (X,d) é dita localmente constante se ela satisfaz a seguinte propriedade: para todo $x \in X$, existe $r_x > 0$ tal que f é constante na bola aberta $B(x, r_x)$, ou seja, $f(B(x, r_x))$ é um conjunto unitário. Seja $K \subset X$ um conjunto compacto em X, e $f: X \to \mathbb{R}$ uma função localmente constante. Prove que $f_{|_K}$ assume apenas uma quantidade finita de valores, ou seja, f(K) é um conjunto finito.

Solução:

a) Seja E um conjunto compacto. Suponha por absurdo que E não é fechado. Então, existe um ponto de acumulação $p \in X$ de E tal que $p \in E^c$.

Para cada $x \in E$ defina $r_x := \frac{d(x,p)}{2}$ e tome

$$A_x := B(x, r_x), \quad B_x := B(p, r_x).$$

Observe que $A_x \cap B_x = \emptyset$ para todo $x \in E$. Além disso,

$$E \subset \bigcup_{x \in E} A_x$$

pois todo ponto $x \in E$ é centro de alguma bola aberta A_x . Como cada A_x é um conjunto aberto e E é compacto, existem $x_1, x_2, ..., x_n \in E$ tais que

$$E \subset A_{x_1} \cup A_{x_2} \cup \dots \cup A_{x_n}. \tag{0.1}$$

Considere $r := \min\{r_{x_1}, r_{x_2}, ..., r_{x_n}\}$ e tome B := B(p, r). Assim, dado $1 \le i \le n$ qualquer temos $B(p, r) \subset B(p, r_{x_i})$, portanto:

$$B \cap A_{x_i} = B(p,r) \cap A_{x_i} \subset B(p,r_{x_i}) \cap A_{x_i} = B_{x_i} \cap A_{x_i} = \emptyset.$$

Por (0.1) segue que $B \cap K \subset \bigcup_{i=1}^n (B \cap A_{x_i}) = \emptyset$. Ou seja, encontramos um raio r > 0 tal que

$$B(p,r) \cap E = \emptyset$$
,

o que contradiz o fato que p é ponto de acumulação de E. Logo, concluímos que de fato E é fechado.

Basta agora mostrar que E é limitado. Observe que $E \subset \bigcup_{x \in E} B(x,1)$. Logo, como E é compacto, existem $x_1,...,x_m$ tais que

$$E \subset \bigcup_{i=1}^{m} B(x_i, 1).$$

Considere $r=1+2\max\{d(x_1,x_j):2\leq j\leq m\}$. Observe que se $y\in B(x_j,1)$ então, pela desigualdade triângular,

$$d(x_1, y) \le d(x_1, x_j) + d(x_j, y) < \frac{r-1}{2} + 1 = \frac{r+1}{2} < r$$
, pois $r > 1$.

Assim, $B(x_j, 1) \subset B(x_1, r)$ para todo $1 \le j \le m$ e, portanto,

$$E \subset \bigcup_{i=1}^{m} B(x_i, 1) \subset B(x_1, r).$$

Logo, E é limitado como queríamos demonstrar.

b) Seja $E \subset \mathbb{R}^k$, $k \geq 1$. Assuma primeiramente que E é compacto. Então, pela alternativa (a) segue que E é fechado e limitado como queríamos. Agora assuma que E é fechado e limitado.

Como E é limitado, existe uma k-célula $I \subset \mathbb{R}^k$ tal que $E \subset I$. Por um teorema visto em sala, toda k-célula em \mathbb{R}^k é compacta, logo I é compacto. Assim, E é um conjunto fechado contido em um conjunto compacto logo, também por um resultado demonstrado em sala, E é compacto.

c) Seja $f: X \to \mathbb{R}$ uma função localmente constante e $K \subset X$ um conjunto compacto. Para cada $x \in K$ considere $r_x > 0$ de forma que f é constante na bola aberta $B(x, r_x)$, ou seja, $f(B(x, r_x))$ é um conjunto unitário em \mathbb{R} , digamos

$$f(B(x, r_x)) = \{c_x\}.$$

Observe que K é coberto por essas bolas, ou seja,

$$K \subset \bigcup_{x \in K} B(x, r_x)$$

pois todo ponto de K é centro de alguma dessas bolas abertas. Como K é compacto, existem $x_1, x_2, ..., x_n$ tais que

$$K \subset B(x_1, r_{x_1}) \cup B(x_2, r_{x_2}) \cup ... \cup B(x_n, r_{x_n}).$$

Assim,

$$\begin{split} f(K) \subset & f(B(x_1, r_{x_1}) \cup B(x_2, r_{x_2}) \cup \ldots \cup B(x_n, r_{x_n})) \\ = & f(B(x_1, r_{x_1})) \cup f(B(x_2, r_{x_2})) \cup \ldots \cup f(B(x_n, r_{x_n})) \\ = & \{c_{x_1}, \ldots, c_{x_n}\}. \end{split}$$

Como f(K) é subconjunto de um conjunto finito então f(K) é um conjunto finito, como queríamos demonstrar. \Box

Bônus. As questões abaixo não são obrigatórias.

Problema Extra-1:(1.0) Seja P o conjunto de Cantor.

a) (0.5) Prove que

$$P - P = \{a - b : a \in P, b \in P\} = [-1, 1].$$

b) (0.5) Seja R um retângulo contido no quadrado unitário $[0,1] \times [0,1]$ e com lados paralelos aos eixos cartesianos. Mostre que

$$R \subset (P \times [-1, 1]) \cup ([-1, 1] \times P).$$

Solução: Atendimento.

Problema Extra-2: (0.5) Sejam $a_1, ..., a_n$ números reais positivos tais que $a_1 + a_2 + ... + a_n = 1$. Determine o mínimo de

$$\sum_{i=1}^{n} \left(a_i + \frac{1}{a_i} \right)^2.$$

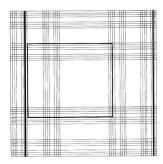


Figure 1: Figura para o problema Extra-1

Solução: Consideremos $x_i := a_i + \frac{1}{a_i}$ e $y_i = 1, 1 \le i \le n$. Pela desigualdade de Cauchy-Schwarz temos:

$$\left(\sum_{i=1}^n x_i^2\right) \left(\sum_{i=1}^n y_i^2\right) \geq \left(\sum_{i=1}^n x_i y_i\right)^2 \Rightarrow \left(\sum_{i=1}^n \left(a_i + \frac{1}{a_i}\right)^2\right) (1 + \ldots + 1) \geq \left(\sum_{i=1}^n a_i + \frac{1}{a_i}\right)^2.$$

Como $\sum_{i=1}^{n} a_i = 1$ segue que

$$\left(\sum_{i=1}^{n} \left(a_i + \frac{1}{a_i}\right)^2\right) \cdot n \ge \left(1 + \sum_{i=1}^{n} \frac{1}{a_i}\right)^2. \tag{0.2}$$

Agora, aplicando novamente a desigualdade de Cauchy-Schwarz para os termos

$$z_i := \frac{1}{\sqrt{a_i}}, w_i = \sqrt{a_i},$$

 $1 \le i \le n$, temos

$$\left(\sum_{i=1}^n z_i^2\right) \left(\sum_{i=1}^n w_i^2\right) \ge \left(\sum_{i=1}^n z_i w_i\right)^2 \Rightarrow \left(\sum_{i=1}^n \frac{1}{a_i}\right) \left(\sum_{i=1}^n a_i\right) \ge \left(\sum_{i=1}^n 1\right)^2 = n^2.$$

Novamente usando o fato que $a_1 + ... + a_n = 1$ temos que

$$\sum_{i=1}^{n} \frac{1}{a_i} \ge n^2.$$

Então, de (0.2) segue que:

$$\left(\sum_{i=1}^{n} \left(a_i + \frac{1}{a_i}\right)^2\right) \cdot n \ge \left(1 + \sum_{i=1}^{n} \frac{1}{a_i}\right)^2 \ge (1 + n^2)^2 = 1 + n^4 + 2n^3$$

$$\Rightarrow \sum_{i=1}^{n} \left(a_i + \frac{1}{a_i}\right)^2 \ge n^3 + 2n^2 + \frac{1}{n}.$$

Mostramos então que $n^3+2n^2+\frac{1}{n}$ é limitante inferior para a expressão do enunciado. Para concluir que este valor é o mínimo basta exibir um caso onde ele é atingido. Tome

$$a_1 = a_2 = \dots = a_n = \frac{1}{n}.$$

Então, de fato $a_1+\ldots+a_n=1$ e

$$\sum_{i=1}^{n} \left(a_i + \frac{1}{a_i} \right)^2 = \sum_{i=1}^{n} \left(\frac{1}{n} + n \right)^2 = n \cdot \left(\frac{1}{n^2} + 2 + n^2 \right) = n^3 + 2n + \frac{1}{n}.$$

Assim, o mínimo é $n^3 + 2n + \frac{1}{n}$.