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Abstract. In this paper we mainly address the problem of disintegration of
Lebesgue measure along the central foliation of volume preserving diffeomor-
phisms isotopic to hyperbolic automorphisms of 3-torus. We prove that atomic
disintegration of the Lebesgue measure (ergodic case) along the central folia-
tion has the peculiarity of being mono-atomic (one atom per leaf). This implies
the measurability of the central foliation. As a corollary we provide open and
non-empty subset of partially hyperbolic diffeomorphisms with minimal yet
measurable central foliation.
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1. Introduction

Let (M,µ,B) be a probability space, where M a compact metric space, µ
a probability measure and B the borelian σ-algebra. Given a partition P of
M by measurable subsets, the quotient space can be equipped with a natural
measure and in general it may be a singular measure space, i.e the measurable
subsets have just measure zero or one. For example, this is the case for the
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partition of T2 into orbits of irrational flow (Kronecker flow). By the way, there
is an opposite situation which is the case of measurable partitions. The word
measurable here should be understood as countably generated, as in Definition
2.4. In this case, the measure µ can be disintegrated into probability (conditional)
measures. See Section 2 for details. A foliation is a particular case of (not
necessarily measurable) partition. It is well worth recall that the quotient space
of a foliated space may not be Hausdorff. This is the case of the example of
Sullivan [22] where all the leaves are compact however, their size goes to infinity.
Indeed, any foliation with compact leaves is measurable. See Proposition 2.5.

In the smooth ergodic theory, one of the natural partitions to be studied is the
partition into leaves of invariant foliations by a dynamical system. Some cele-
brated examples are the stable and unstable foliations of (uniformly) hyperbolic
dynamics. The partition into global stable or unstable leaves is non measurable
and there are deep results where techniques are developed to find measurable
partitions “subordinated” to the global leaves (see for instance [16]).

Non measurability “typically” comes with some non trivial topological proper-
ties of the leaves. For instance this is the case of stable and unstable leaves of a
transitive Anosov diffeomorphism. These foliations are minimal, i.e every leaf is
dense. Although the notion of minimality seems to be in the opposite direction
to the measurability, in this paper we find minimal yet measurable foliations.

Our results mainly focus on the comprehension of disintegration of volume mea-
sure along the central invariant foliation of partially hyperbolic diffeomorphisms.

Definition 1.1. A diffeomorphism is called partially hyperbolic if the tangent
bundle of the ambient manifold admits an invariant decomposition TM = Es ⊕
Ec ⊕ Eu, such that all unit vectors vσ ∈ Eσ

x , σ ∈ {s, c, u} for all x ∈M satisfy:

‖Dxfv
s‖ < ‖Dxfv

c‖ < ‖Dxfv
u‖

and moreover ‖Df |Es‖ < 1 and ‖Df−1|Eu‖ < 1. We call f absolute partially
hyperbolic, if it is partially hyperbolic and for any x, y, z ∈M

‖Dxfv
s‖ < ‖Dyfv

c‖ < ‖Dzfv
u‖

where vs, vc and vu belong respectively to Es
x, E

c
y and Eu

z .

In this paper by partial hyperbolicity, we mean absolute partial hyperbolicity.
It is well known (Hirsch-Pugh-Shub [15]) that Es and Eu are tangent to two
invariant foliations F s and Fu. In general Ec is not tangent to an invariant
foliation, however absolute partially hyperbolic diffeomorphisms defined on T3

admit invariant central foliation (See [6].)

Theorem A. There exists an open subset U of volume preserving partially hy-
perbolic diffeomorphisms on T3 such that for any g ∈ U the central foliation is
minimal yet measurable (with respect to Lebesgue measure) as partition.
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The proof of the above result is based on a careful study of disintegration of
Lebesgue measure along the central foliation of diffeomorphisms in U which were
constructed in [17]. We consider the example of the above theorem as a nice
application of dynamical systems argument in topologic and geometric measure
theory properties of foliations.

In fact we prove a general result on the disintegration of Lebesgue measure
along the central foliation of derived from Anosov diffeomorphisms on T3.

Definition 1.2. We say that f : T3 → T3 is derived from Anosov or just a DA
diffeomorphism if it is partially hyperbolic and its action on the homotopy is a
hyperbolic automorphism (no eigenvalue of norm one).

Theorem B. Let f be an ergodic volume preserving DA diffeomorphism on T3. If
the volume has atomic disintegration on the center leaves, then the disintegration
is mono atomic.

In principle the disintegration of the Lebesgue measure along central foliation
of a DA diffeomorphism can be non-atomic even if it is singular with respect to
Lebesgue (see [24]). This makes the study of derived from Anosov (even Anosov,
seen as partially hyperbolic systems) diffeomorphisms interesting from the point
of view of geometric measure theory.

Another relevant comment is that for a general partially hyperbolic diffeomor-
phism (not derived from Anosov), atomic disintegration along central foliation
does not imply mono atomicity. There exist partially hyperbolic diffeomorphisms
where the disintegration of Lebesgue measure is atomic with finite (strictly larger
than one) atoms. There are also systems with conditional measures with infinitely
many atoms. See section 3 for some examples and discussions.

Let us recall the definition of Lyapunov exponents of f along the invariant
bundles Es, Ec and Eu.

λτ (x) := lim
n→∞

1

n
log ||Dfn(x) · v||

where v ∈ Eτ and τ ∈ {s, c, u}. If f is ergodic, the stable, center and unstable
Lyapunov exponents are constant almost everywhere.

In the proof of Theorem A we take advantage of the fact that the sign of central
Lyapunov exponent for any f ∈ U is opposite to the sign of the central Lyapunov
exponent of its linearization (see section 3 for definition) f∗. Then, the following
result actually guarantees the proof of Theorem A.

Theorem C. Let f : T3 → T3 be a volume preserving, DA diffeomorphism.
Suppose its linearization A has the splitting TAM = Esu ⊕Ewu ⊕Es (su and wu
represents strong unstable and weak unstable.) If f has λc(x) < 0 for Lebesgue
almost every point x ∈ T3, then volume has atomic disintegration on F cf , in fact
the disintegration is mono atomic.
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1.1. Comments on the results and the structure of the paper. The dif-
feomorphisms in U are constructed isotopic to Anosov linear diffeomorphisms on
T3. By a Hammerlindl [10] result, partially hyperbolic diffeomorphisms on T3 are
leaf conjugated to their linearization one and hence the central foliation of any
g ∈ U is minimal.

As we mentioned before, any g ∈ U satisfies the hypothesis of Theorem C and
consequently the disintegration of Lebesgue measure along the central foliation is
mono-atomic. The mono-atomicity implies that the partition into central leaves
is equivalent to the partition into single points and hence it is measurable. So,
we get minimal and measurable foliation.

And finally, the key point in the proof of Theorem C is to show that under the
hypothesis of the theorem, we get atomic disintegration. The technical part of
the proof of Theorem C is similar to the arguments of [19].

The paper is organized as following: In sections 2 and 3 we review some pre-
liminary results in abstract measure theory and partially hyperbolic dynamics.
In section 4.1 we recall an open set of partially hyperbolic diffeomorphisms which
satisfy the hypothesis of Theorem C and give the example claimed in Theorem
A. Finally we prove Theorems B and C in Section 5. The proof of Theorem A
comes directly from Theorems C and B.
Acknowledgement. We would like to thank an anonymous referee for a thor-
ough reading of the paper and many interesting suggestions.

2. Measurable partitions and disintegration of measures

Let (M,µ,B) be a probability space, where M is a compact metric space, µ
a probability measure and B the borelian σ-algebra. Given a partition P of M

by measurable sets, we associate the probability space (P , µ̃, B̃) by the following
way. Let π : M → P be the canonical projection, that is, π associates a point x
of M with the partition element of P that contains it. Then we define µ̃ := π∗µ

and B̃ := π∗B.

Definition 2.1. Given a partition P. A family {µP}P∈P is a system of condi-
tional measures for µ (with respect to P) if

i) given φ ∈ C0(M), then P 7→
∫
φµP is measurable;

ii) µP (P ) = 1 µ̃-a.e.;

iii) if φ ∈ C0(M), then

∫
M

φdµ =

∫
P

(∫
P

φdµP

)
dµ̃.

When it is clear which partition we are referring to, we say that the family
{µP} disintegrates the measure µ.

Proposition 2.2. [7, 18] If {µP} and {νP} are conditional measures that disin-
tegrate µ, then µP = νP µ̃-a.e.
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Corollary 2.3. If T : M → M preserves a probability µ and the partition P,
then T∗µP = µT (P ), µ̃-a.e.

Proof. It follows from the fact that {T∗µP}P∈P is also a disintegration of µ. �

Definition 2.4. We say that a partition P is measurable (or countably generated)
with respect to µ if there exist a measurable family {Ai}i∈N and a measurable set
F of full measure such that if B ∈ P, then there exists a sequence {Bi}, where
Bi ∈ {Ai, Aci} such that B ∩ F =

⋂
iBi ∩ F .

Proposition 2.5. Let (M,B, µ) a probability space where M is a compact metric
space and B is the Borel sigma-algebra. If P is a continuous foliation of M by
compact measurable sets, then P is a measurable partition.

Proof. This proposition has been proved in a preprint by Avila, Viana and Wilkin-
son. We put the argument for the sake of completeness. Let {xi} be a countable
dense subset of M. For each xi and n ≥ 1, define V (xi, n) as the points z ∈ M
such that Pz intersects the closed ball of radius 1

n
around xi. It is easy to see that

V (xi, n) is closed and hence measurable. Here we use the continuity of foliation.
By definition V (xi, n) is a saturated subset, i.e it contains the whole leaves of its
points. For any two different leaves Px and Py. Take a large n and xi such that Px
intersects the closed ball B(xi,

1
n
). By compactness of leaves, if n is large enough

( 2
n

is smaller than the distance between the leaves) then B(xi,
1
n
) ∩ Py = ∅. �

Theorem 2.6 (Rokhlin’s disintegration [18]). Let P be a measurable partition
of a compact metric space M and µ a borelian probability. Then there exists a
disintegration by conditional measures for µ.

In general the partition by the leaves of a foliation may be non-measurable. It
is for instance the case for the stable and unstable foliations of a linear Anosov
diffeomorphism. Therefore, by disintegration of a measure along the leaves of
a foliation we mean the disintegration on compact foliated boxes. In principle,
the conditional measures depend on the foliated boxes, however, two different
foliated boxes induce proportional conditional measures. See [1] for a discussion.
We define absolute continuity of foliations as follows:

Definition 2.7. We say that a foliation F is absolutely continuous if for any
foliated box, the disintegration of volume on the segment leaves have conditional
measures equivalent to the Lebesgue measure on the leaf.

Definition 2.8. We say that a foliation F has atomic disintegration with respect
to a measure µ if the conditional measures on any foliated box are a sum of Dirac
measures.

Although the disintegration of a measure along a general foliation is defined in
compact foliated boxes, it makes sense to say that the foliation F has a quantity
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k0 ∈ N atoms per leaf. The meaning of “per leaf” should always be understood
as a generic leaf, i.e. almost every leaf. That means that there is a set A of
µ-full measure which intersects a generic leaf on exactly k0 points. Let’s see that
this implies atomic disintegration. Definition 2.1 shows that it only make sense
to talk about conditional measures from the generic point of view, hence when
restricted to a foliated box B, the set A ∩B has µ-full measure on B, therefore
the support of the conditional measure disintegrated on B must be contained on
the set A. This implies atomic disintegration.

It is well worth to remark that the weight of an atom for a conditional measure
naturally depends on the foliated box, but the fact that a point x is atom or
not is independent of the foliated box where we disintegrate a measure and by
Corollary 2.3 the set of atoms is invariant under the dynamics. For a more detailed
discussion about dependence of disintegration to the foliated box see Lemma 3.2
of [1].

3. Partial hyperbolicity and disintegration of volume

Let f be a partially hyperbolic diffeomorphism with

TM = Es ⊕ Ec ⊕ Eu.

The subbundles Es and Eu integrate into f -invariant foliations, respectively the
stable foliation, F s, and the unstable foliation, Fu. These foliations are absolutely
continuous. A set of full volume measure on M must intersect almost every leaf
of F s (or Fu) in a set of full Lebesgue measure of the leaf. Although the absolute
continuity of F s and Fu are mandatory for a (general) C2 partially hyperbolic
diffeomorphism, this is not the case for the center foliation F c (it is not even true
that there will exist such a foliation, but by [6] for all absolute partially hyperbolic
diffeomorphisms of T3 the center foliation exists). The center foliation might
not be absolutely continuous, at least this is, in general, expected to happen
for diffeomorphisms which preserves volume (see [20], [14], [9], [21], [2]). For
many examples (some of them described below) the center foliation has atomic
disintegration. In principle for a general partially hyperbolic diffeomorphism the
geometric structure of the support of disintegration measures is not clear.

There exist essentially three known category of partially hyperbolic diffeomor-
phisms on three-dimensional manifolds (see conjecture of Pujals in [4] and new
results of Hammerlindl-Potrie [12]).

Any A ∈ SL(3,Z) with at least one eigenvalue with norm larger than one,
induces a linear partially hyperbolic diffeomorphism on T3. Conversely for any
partially hyperbolic diffeomorphism f on T3, there exist a unique linear diffeomor-
phism A, such that A induces the same automorphism as f on the fundamental
group π1(T3).

Let f : T3 → T3 be a partially hyperbolic diffeomorphism. Consider f∗ : Z3 →
Z3 the action of f on the fundamental group of T3. f∗ can be extended to R3
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and the extension is the lift of a unique linear automorphism A : T3 → T3 which
is called the linearization of f. It can be proved that A is a partially hyperbolic
automorphism of torus ([5]). A. Hammerlindl proved that f is (central) leaf
conjugated to f∗. This means that there exist an homeomorphism H : T3 → T3

such that H sends the central leaves of f to central leaves of f∗ and conjugates
the dynamics of the leaf spaces.

We have just defined derived from Anosov (DA diffeomorphism). The other
two known classes of partially hyperbolic diffeomorphisms are the skew-product
type and perturbations of time-one map of Anosov flows.

3.1. Disintegration of volume along central foliation. Let B := A × Id

where A :=

(
2 1
1 1

)
. Then arbitrarily close to B : T3 → T3 there is an open set

of partially hyperbolic diffeomorphisms g such that g is ergodic and there is an
equivariant fibration π : T3 → T2 such that the fibers are circles, π ◦ g = B ◦ π.
And g has positive central Lyapunov exponent, hence the central foliation is not
absolutely continuous. In Ruelle and Wilkinson’s paper [19], we see that there
exist S ⊂ T3 of full volume and k ∈ N such that S meets every leaf in exactly
k points. In Shub and Wilkinson’s example [21] the fibers of the fibration are
invariant under the action of a finite non-trivial group and consequently in their
example the number of atoms cannot be one.

For the perturbation of a time-one map of the geodesic flow for a closed neg-
atively curved surfaces (which is an Anosov flow), it was shown by A. Avila, M.
Viana and A. Wilkinson [1] that F c has atomic disintegration or it is absolutely
continuous. We emphasize that the key property for the diffeomorphisms near to
time-one map of Anosov flow is that they are partially hyperbolic and moreover
all center leaves are fixed by the dynamics. This implies that in the atomic case,
the disintegrated measures do have countably (infinite) many atoms. Indeed, if
f is such a partially hyperbolic diffeomorphism f(F c(x)) = F c(x) and for any a
atom, fn(a), n ∈ Z are atoms of the disintegration of volume along unbounded
leaves of F c.

For a large class of skew-product diffeomorphisms, Avila-Viana and Wilkinson
announced that they can prove an analogous result, i.e atomicity versus absolute
continuity.

It is interesting to emphasize that (conservative) derived from Anosov (DA)
diffeomorphisms on T3 show a feature that is not, so far, shared with any other
known partially hyperbolic diffeomorphisms on dimension three, it admits all
three disintegration of volume on the center leaf, namely: Lebesgue, atomic, and,
by a recent result of R. Varão [24], they can also have a disintegration which is
neither Lebesgue nor atomic.
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More precisely, R. Varão [24] showed that there exist Anosov diffeomorphisms
with non-absolutely continuous center foliation which does not have atomic dis-
integration.

Here we show a new behavior for DA diffeomorphisms (which are not Anosov)
on T3, and that is the existence of atomic disintegration (Theorem C). This
behavior can be verified for an open class of diffeomorphisms found by Ponce-
Tahzibi in [17].

We mention that the examples of non-absolutely continuous weak foliation
of Anosov diffeomorphisms was known by Saghin-Xia [20] and A. Gogolev [9].
Baraviera-Bonatti [2] also exhibited non-absolutely continuous central foliation
for partially hyperbolic diffeomorphisms close to Anosov geodesic flows. We are
introducing examples of non-Anosov DA diffeomorphisms with non-absolutely
continuous central foliation. In fact we prove that the Lebesgue measure has
atomic disintegration along central foliation. The novelty in our example is that,
the sign of central Lyapunov exponent of a partially hyperbolic diffeomorphism
is opposite to the sign of central Lyapunov exponent of its linearization. It is not
known whether the disintegration of the Lebesgue measure can be atomic in the
case of Anosov diffeomorphisms.

4. “Pathological” Examples of Derived from Anosov
Diffeomorphisms

4.1. “Pathological” example. As we remarked before, in Theorem C, one of
the hypothesis is that the center Lyapunov exponent of the diffeomorphism f
and of its linearization A have opposite sign. In paper [17], the authors found
an open set of partially hyperbolic diffeomorphisms isotopic to linear Anosov
diffeomorphisms satisfying the required hypothesis of Theorem C. This opposite
behavior in the asymptotic growth (manifested by the sign of Lyapunov exponent)
which is a local issue contrasts with the compatible behavior in the large scale
between f and its linearization and makes the example pathological.

Let us explain what we mean by the similar behavior (see [11], Corollary 2.2):
From now on we work on the universal covering and lift f and A to R3. For each
k ∈ Z and C > 1 there is an M > 0 such that for all x, y ∈ R3,

‖x− y‖ > M ⇒ 1

C
<
‖f̃k(x)− f̃k(y)‖
‖Ak(x)− Ak(y)‖

< C. (4.1)

Let us briefly recall the construction of [17]: Start with the family of linear
Anosov diffeomorphisms fk : T3 → T3 induced by the integer matrices:

Ak =

 0 0 1
0 1 −1
−1 −1 k

 , k ∈ N.
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This family of Anosov diffeomorphisms has two important characteristics that
justify our choice. Denote by λsk, λ

c
k, λ

u
k the three Lyapunov exponents of Ak with

λsk < λck < λuk and, for each k, denote by Es
k, E

c
k, E

u
k the stable, central and

unstable fiber bundles with respect to Ak. Then an easy calculation shows that

λsk → −∞, λck → 0−, λuk →∞,
as k →∞. Moreover, Es

k, E
c
k, E

u
k converge to the canonical basis.

Using a Baraviera-Bonatti [2] perturbation method, for large k the authors
managed to construct small perturbation of fk and obtain partially hyperbolic
diffeomorphisms gk such that the central Lyapunov exponent of gk is positive.

By taking the family g−1
k we obtain partially hyperbolic diffeomorphisms with

negative center exponent and isotopic to Anosov diffeomorphism with weak ex-
panding subbundle. In fact any f := g−1

k satisfy the desired properties. Moreover,
there is an open subset U around f such that any g ∈ U share the same prop-
erty, i.e the central Lyapunov exponent of g is negative but its linearization has
expanding central bundle.

This family of diffeomorphisms fulfills the hypothesis required in Theorems C.

5. Proof of results

Let f be DA diffeomorphism defined as above, then by [8] we know that f is
semi-conjugated to its linearization by a function h : T3 → T3, h ◦ f = A ◦ h. It
follows from [23] that F c(A) = h(F c(f)). Moreover, there exists a constant K ∈ R
such that if h̃ : R3 → R3 denotes the lift of h to R3 we have ‖h̃(x)− x‖ ≤ K for
all x ∈ R3.

Definition 5.1. A foliation F defined on a manifold M is quasi-isometric if the

lift F̃ of F to the universal cover of M has the following property: There exist

positive constants Q,Q
′

such that for all x, y in a common leaf of F̃ we have

dF̃(x, y) ≤ Q||x− y||+Q
′
,

where dF̃ denotes the Riemannian metric on F̃ and ‖x − y‖ is the distance on
the universal cover.

Remark 5.2. In this paper the leaves of foliations under consideration are C1 and
tangent to a continuous subbundle and consequently after a change of constants
we can assume Q

′
= 0 in the above definition.

For absolute partially hyperbolic diffeomorphisms on T3 the stable, unstable
and central foliations are quasi isometric in the universal covering R3 [6, 10].
Firstly we prove Theorem B.

Proof of Theorem B. Let h : T3 → T3 be the semi-conjugacy between f and
its linearization A, hence h◦f = A◦h. We can assume that A has two eigenvalues
larger than one, otherwise we work with f−1.
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Let {Ri} be a Markov partition for A, and define R̂i := h−1(Ri). We claim
that

V ol

(⋃
i

int R̂i

)
= 1. (5.1)

Indeed, first look at the center direction of A. For simplicity we consider the
center direction as a vertical foliation. This means that the rectangle Ri has two
types of boundaries, the one coming from the extremes of the center foliation and
the lateral ones. We call ∂cRi the boundary coming from these extremes of the
center foliation, i.e

∂cRi =
⋃
x∈Ri

∂(F cx ∩Ri).

Since h takes center leaves to center leaves, we conclude that the respective bound-
ary for the R̂i sets is ∂cR̂i = h−1(∂cRi), and since

⋃
i ∂cRi is an A-invariant set,⋃

i ∂cR̂i is a forward f -invariant set. By ergodicity of f it follows that
⋃
i ∂cR̂i

has zero or full measure. Since the volume of the interior cannot be zero, then
the volume of

⋃
i ∂cR̂i cannot be one. Therefore it has zero measure. Since f is

dynamicaly coherent and h sends each of the invariant foliations ( center-stable
and center-unstable) to the respective invariant foliations of A, that implies that

the lateral boundaries of the R̂i are inside a finite number of center-stable and
center-unstable leaves of f , hence it also has zero volume. We have avoided the
boundary points as there may exist ambiguity to which element of partition these
points belong.

By (5.1) we can consider the partition P̂ = {F cR(x) : x ∈ R̂i for some i}
where F cR(x) denotes the connected component of F cf (x) ∩ R̂(x) which contains
x in its interior. Thus we can consider the Rokhlin disintegration of volume on
the partition P̂ . Denote this system of measures by {mx}, so that each mx is
supported in F cf (x).

Lemma 5.3. There is a natural number α0 ∈ N, such that for almost every point,
F cR(x) contains exactly α0 atoms.

Proof. The semi-conjugacy h sends center leaves of f to center leaves of A. Also,
the points of the interior of the R̂i satisfy that f(F cR(x)) ⊃ F cR(f(x)), which just
comes from the Markov property of the rectangles Ri. We claim that

f∗mx ≤ mf(x)

on F cR(f(x)). In fact, since f preserves volume if we normalize the measures f∗mx

on f(F cR(x)) ∩ F cR(f(x)) they become a disintegration of volume on f(F cR(x)) ∩
F cR(f(x)), but mf(x) are also a disintegration of volume on f(F cR(x))∩F cR(f(x)).
Hence, f∗mx = f∗mx(f(F cR(x))∩F cR(f(x)))mf(x). And because the normalization
constant f∗mx(f(F cR(x))∩F cR(f(x))) is smaller or equal to one we get the above
inequality.
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Given any δ ≥ 0 consider the set Aδ = {x ∈ T3 | mx({x}) > δ}, that is, the
set of atoms with weight at least δ. If x ∈ Aδ then

δ < mx({x}) = f∗mx({f(x)}) ≤ mf(x)({f(x)}).
Thus f(Aδ) ⊂ Aδ, and by the ergodicity of f we have that V ol(Aδ) is zero or

one, for each δ ≥ 0. Note that V ol(A0) = 1 and V ol(A1) = 0. Let δ0 be the
critical point for which V ol(Aδ) changes value, i.e, δ0 = sup{δ : V ol(Aδ) = 1}.
This means that all the atoms have weight δ0. And due to the assumption of
atomic disintegration, the value of δ0 has to be a strictly positive number. Since
mx is a probability we have an α0 := 1/δ0 number of atoms as claimed. �

Lemma 5.4. There is only finitely many atoms on almost every center leaf.

Proof. Suppose we have infinitely many atoms on each center leaf. Let β ∈ R
be a large number (for instance much bigger than KQ where K is the distance
between h and the identity map and Q is the quasi isometric constant in the
definition 5.1). Since we have a finite number of R̂i, from the previous Lemma,
we know that there is a number τ ∈ R for which every center segment of size
smaller then β must contain at most τ atoms. But, since on each center leaf there
are infinity many atoms, take a segment of leaf big enough so that it contains
more then τ atoms. Iterate this segment backwards and it will eventually be
smaller than β but containing more than τ atoms. Indeed,

h ◦ f−n = A−n ◦ h
‖h(f−n(x))− h(f−n(y))‖ = ‖A−n(h(x))− A−n(h(y))‖

≤ e−nλ
wu(A)‖h(x)− h(y)‖

As h is at a distance K to identity we have

‖f−n(x)− f−n(y)‖ ≤ e−nλ
wu(A)‖h(x)− h(y)‖+K ≤ β

Q

So, finally by quasi isometric property

dc(f
−n(x), f−n(y)) ≤ β.

The above contradiction implies that the number of atoms can not be infinite
and now we proceed as in the previous case.

�

Lemma 5.5. The disintegration of the Lebesgue measure along the central leaves
is mono-atomic, i.e there is just one atom per leaf.

Proof. We have a finite number of atoms on each center leaf and since the center
foliation is an oriented foliation we may talk about the first atom. If the function
f preserves orientation along the center direction then the set of first atom of
all generic leaves is an invariant set with positive measure, therefore it has full
measure. If f reverses orientation, then the set of first and last atoms of all generic
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leaves is an invariant set with positive measure, therefore it has full measure. This
means that almost every leaf has exactly one atom or almost every leaf has exactly
two atoms.

Assume that almost every center leaf has exactly two atoms. Since the set
of first atoms is invariant by f 2 then f 2 is not ergodic. By a Theorem of
Hammerlindl-Ures [13] there exist a homeomorphism h : T3 → T3 mapping cen-
ter (stable, unstable) leaves of f 2 onto center (stable, unstable) leaves of A2 and
conjugating f 2 and its linearization A2 : T3 → T3, that is

A2 ◦ h = h ◦ f 2.

It is well known that if we require h to be homotopic to identity then such
conjugacy is unique. Thus the homeomorphism h also conjugates f and A,

A ◦ h = h ◦ f.

Consider Ak the set of points x such that the distance between two atoms on
the central leaf passing through x is less than k. for large k the measure of Ak
is positive and almost every point of Ak returns to it infinitely many time. Take
such x ∈ Ak and a, b ∈ F c(x) the two atoms of the disintegration. By invariance
fni(a), fni(b) are atoms on F c(fni(x)). Taking fni(x) ∈ Ak, on one hand we have
that d(fni(a), fni(b)) ≤ k. On the other hand

d(Ani(h(a)), Ani(h(b))) = d(h(fni(a)), h(fni(b))).

As h is injective and the first hand side of the above equation goes to infinity, we
get a contradiction.

�

The above Lemma concludes the proof of the Theorem B. �

Problem 1. Is there any ergodic invariant measure µ with disintegration having
more than one atom on leaves?

Remark 5.6. We emphasize that the unique issue to generalize Theorem B for
any ergodic invariant measure (not just volume) is that we used the fact that the

boundary of R̂i has zero volume.

We note once again that since the work of Ponce-Tahzibi [17] assures that
the set of DA diffeomorphisms satisfying the hypothesis of the next theorem is
non-empty, we prove that these diffeomorphisms have atomic disintegration.

5.1. A Glimpse of Pesin Theory. Before presenting the proof of Theorem
C, we recall some basic notions of Pesin theory. Let f : T3 → T3 a partially
hyperbolic diffeomorphism with splitting

TM = Es ⊕ Ec ⊕ Eu.



MINIMAL YET MEASURABLE FOLIATIONS 13

Call Λ the set of regular points (See [25]) of f , that is, the set of points x ∈ T3

for which in particular the Lyapunov exponents are well defined. Then, for each
x ∈ Λ we define the Pesin-stable manifold of f at x as the set

W s(x) =

{
y : lim sup

n→∞

1

n
log d(fn(x), fn(y)) < 0

}
.

The Pesin-stable manifold is an immersed sub manifold of T3. Similarly we
define the Pesin-unstable manifold at x, W u(x), using f−1 instead of f in the
definition.

It is clear that for a partially hyperbolic diffeomorphism W s(x) contains the
stable leaf F s(x). In Theorem C we assume that the central Lyapunov exponent
is negative and consequently the Pesin-stable manifolds are two dimensional. By
Wc(x) we denote the intersection of the Pesin stable manifold W s(x) of x with
the center leaf F cf (x) of x. These manifolds depends only measurable on the base
point x, as it is proved in the Pesin theory. However, there is a filtration of the
set of regular points by Pesin blocks: Λ =

⋃
l∈N Λl such that each Λl is a closed

(not necessarily invariant) subset and x→Wc(x) varies continuously on each Λl

(see [3] for more properties and structure of these sets).
A key property used in the proof of Theorem C is the uniform contraction

locally around points in a Pesin block:

Lemma 5.7. (see chapter 7 of [3]) There exists C > 0, λ < 1 and rl > 0 such
that for any x ∈ Λl (Pesin block)

d(fn(x), fn(y)) ≤ Cλnd(x, y)

for any y ∈ W s
rl

(x). Here W s stands for the Pesin stable manifold and d is the
induced distance.

Proof of Theorem C. To begin, we prove that the size of the weak stable
manifolds Wc(x) is uniformly bounded from above for x belonging to the regular
set. In particular this enables us to prove that the partition (mod-0) by Wc(x)
is a measurable partition.

Lemma 5.8. The size of {Wc(x)}{x : λc(x)<0} is uniformly bounded from above for
x ∈ Λ. More precisely, the image of Wc(x) by h is a unique point.

Proof. Let f̃ : R3 → R3 and Ã : R3 → R3 denote the lifts of f and A respectively
and h̃ : R3 → R3 the lift of the semi-conjugacy h between f and A. Consider

γ ⊂ W̃c(x), where W̃c(x) is the lift of Wc(x). Thus, γ is inside the intersection

of the center manifold of f̃ and the Pesin-stable manifold of f̃ passing through x.

Let us show that h̃ collapses W̃c(x) to a unique point. If we prove that, it
clearly comes out (from the bounded distance of h to identity that, the size of

Wc(x) is uniformly bounded. Suppose by contradiction that h̃(γ) has more than

one point. By semi-conjugacy h̃(f̃n(γ)) = Ãn(h̃(γ)). As h̃(γ) is a subset of weak
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unstable foliation of Ã for large n the size of Ãn(h̃(γ)) is large. On the other
hand, γ is in the Pesin stable manifold of f and consequently for large n, the size
of f̃n(γ) is very small. As ‖h̃− id‖ ≤ K we conclude that for large n the size of

h̃(f̃n(γ)) can not be very big. This contradiction completes the proof. �

Corollary 5.9. The family {Wc(x)}{x : λc(x)<0} forms a measurable partition.

This corollary uses the same idea of the proof of the Proposition 2.5. However,
that proposition is proved for continuous foliations and we adapt the proof for
the Pesin measurable lamination.

First of all we consider a new partition {Wc(x)} whose elements are the closure

of the elements Wc(x), that is, Wc(x) is a bounded length center segment with
its extremum points. Since h collapses the manifolds Wc(x) of f into points,
two different elementsWc(x) andWc(y) cannot have a common extrema, so that

{Wc(x)} is indeed a partition with compact elements. Let us prove that it is
indeed a measurable partition.

Let {xj}j∈N be a countable dense set of M = T3. For each xj and k, l ∈ N we
define Cl(xj, k) to be the union of Wc(y), y ∈ Λl such that Wc(y) intersects the
closed ball B(xj,

1
k
). By continuity of Wc(.) on Λl we conclude that Cl(xj, k) is

closed and consequently measurable. Indeed, if yn ∈ Cl(xj, k) converges to y then
y ∈ Λl and moreover Wc(y) intersects the closure of B(xj,

1
k
).

Now, we need to separate two weak stable manifolds by means of some Cl(xj, k).
Taking two elements Wc(a) and Wc(b) there exists l ∈ N such that a, b ∈ Λl and
it is enough to take small enough k and some xj such that Cl(xj, k) contains
Wc(a) and not Wc(b). It is easy to see that for each x ∈ Λ we have Wc(x) =⋂
k,l,j Cl(xj, k)∗ where Cl(xj, k)∗ is either Cl(xj, k) or T3 \ Cl(xj, k).

Now, observe that if y is an extremum point ofWc(x) then y cannot have neg-
ative center Lyapunov exponent, otherwise it would be in the interior of Wc(x).

So, the set of extremum points of the elements Wc(x) is inside the set of points
with non negative center Lyapunov exponent, and therefore it has zero measure.
Thus, removing such points, the measurability of the partition {Wc(x)} implies
the measurability of {Wc(x)}, concluding the proof of the corollary.

Lemma 5.10. Disintegration of volume on the measurable partition {Wc(x)} is
atomic.

LetWc(x, r) denote a ball insideWc(x) of radius r. By elementary Pesin theory
we know that

⋃
l≥1 Λl has full Lebesgue measure where Λl are Pesin blocks. Here

we use the fact that for x ∈ Λl the size of Pesin manifold is bounded from below
by rl > 0. For sufficiently large l we have µ(Λl) > 1/2.

AsWc(x) is measurable we consider the disintegration of the Lebesgue measure
into conditional probability measures µx. Since Wc is f -invariant (as both Pesin
maniful and central foliation are invariant.) and f preserves volume, Corollary
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2.3 implies

µf(x) = f∗µx.

Let us define

A :=
⋃

µx(Wc(x)∩Λl)≥1/2

Wc(x)

and it is clear that µ(A) > 0. Consider the set B ⊂ A that consists of points
that return to A infinitely many times. By Poincaré recurrence µ(B) = µ(A).
Let F : B → B be the first return map of f .

Observe that if x ∈ B and F (x) = fn(x) then µfn(x)(Wc(fn(x)) ∩ Λl) ≥ 1/2.
By invariance of Wc we have fn(Wc(x)) =Wc(fn(x)). Using the definition of A,
F (y) = fn(y) for any y ∈ Wc(x) and consequently F (Wc(x)) =Wc(F (x)). As F
preserves volume, Corollary 2.3 implies F∗µx = µF (x).

As the size of Wc(x) is bounded from above for almost all x, we can take m
such that every Wc(x) can be covered by at most m balls of radius rl/2. So for
all x ∈ B we can choose a ball Bc

x of radius rl/2 such that µx(B
c
x) ≥ 1

2m
and

Bc
x ∩ Λl 6= ∅.
Now let Bc

n,x = F n(Bc
F−n(x)) and observe that µx(B

c
n,x) = µF−n(x)(B

c
F−n(x)) ≥

1
2m
. As the size of the stable manifold of x ∈ Λl is larger than rl we conclude that

Bc
n,x is completely inside the Pesin stable manifold and consequently the diameter

of Bc
n,x goes to zero, by a uniform rate due to Lemma 5.7.

We have proved that for all x ∈ B there is a sequence of sets which diameter
is uniformly decreasing and these sets have µx measure uniformly positive. By
taking a subsequence if necessary we can assume that these sets accumulate on
a point. Then, any neighborhood of such point has positive measure uniformly
bounded from bellow, this implies that this point is an atom. Since the set of
atoms is an invariant set with positive volume, the ergodicity of f implies that this
set has full volume, hence µx is a sum of Dirac measures. The ergodicity comes
from Hammerlindl-Ures [13]. Once obtained atomicity we can apply Theorem B
to get one atom per leaf. �

Finally let us use Theorems B and C to complete the proof of Theorem A.
As we mentioned in section 4 there exist an open set U such that any g ∈ U

is volume preserving partially hyperbolic with Anosov linearization g∗ satisfying
the following property: The central Lyapunov exponent of g is negative but the
central bundle of g∗ is expanding. so, g satisfies the hypothesis of Theorem B and
consequently there is a subset of full Lebesgue measure which intersects almost
all center leaves in a unique point. This means that the partition into central
leaves is measure theoretically equivalent to the partition into single points of T3.
This implies measurability of the foliation. The minimality of the central foliation
comes out from the minimality of central foliation of g∗ and the leaf conjugacy
between g and g∗, as we commented in Section 1.1.
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Departamento de Matemática, ICMC-USP São Carlos-SP, Brazil.
E-mail address: tahzibi@icmc.usp.br
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