QUOTIENT CURVES OF THE SUZUKI CURVE

MASSIMO GIULIETTI, GÁBOR KORCHMÁROS, AND FERNANDO TORRES

Abstract. A systematic study of the genera and plane models of quotient curves of the Suzuki curve $y^{2s+1} - y = x^{2s}(x^{2s+1} - x)$, $s \in \mathbb{N}$, is carried out.

1. Introduction

Throughout, let $K = \mathbb{F}_q$ be the finite field of order q and \bar{K} its algebraic closure. For a projective, geometrically irreducible, non-singular algebraic curve defined over K (or simply, a curve over K) of genus $g > 0$, the inequality $|\#\mathcal{X}(K) - (q + 1)| \leq 2g\sqrt{q}$ is the Hasse-Weil bound on the number of its K-rational points. For possible applications to coding theory [13], [31], [9], correlations of shift register sequences [22], exponential sums [25], or finite geometry [19] one is often interested in those curves with “many rational points”. For q a square, the Hermitian curve over $K : Y\sqrt{q}Z + YZ\sqrt{q} = X\sqrt{q} + 1$ attains the Hasse-Weil upper bound; that is to say, it is a maximal curve (see e.g. [31, VI.3.6]).

Let $N_q(g)$ denote the maximum number of K-rational points on a curve of genus g; see Section 7 for further information. A curve over \bar{K} of genus g whose number of rational points coincides with $N_q(g)$ is called optimal. There are three outstanding families of such curves, namely the curves (of positive genus) arising as Deligne-Lusztig varieties of dimension one (DLC); these families are characterized by the following data regarding their number of K-rational points, genus and automorphism group over \bar{K} (which actually coincides with the automorphism group over K); see [5, Sect. 11], [14], [27], [15].

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of rational points</th>
<th>Genus</th>
<th>Automorphism group</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: q square</td>
<td>$\sqrt{q}^s + 1$</td>
<td>$\sqrt{q}(\sqrt{q} - 1)/2$</td>
<td>$PGU(3, q)$</td>
</tr>
<tr>
<td>II: $q = 2q_0^2 > 2$</td>
<td>$q^2 + 1$</td>
<td>$q_0(q - 1)$</td>
<td>$Sz(q)$</td>
</tr>
<tr>
<td>III: $q = 3q_0^2 > 3$</td>
<td>$q^3 + 1$</td>
<td>$3q_0(q - 1)(q + q_0 + 1)/2$</td>
<td>$R(q)$</td>
</tr>
</tbody>
</table>

In addition, the enumerator $L(t)$ of their Zeta function is known (loc. cit.). In the table above $PGU(3, q), Sz(q)$ and $R(q)$ stand for the projective unitary group of degree three, the Suzuki group, and the Ree group over K respectively. The genus, the number of rational points, and the automorphism group of a Hermitian curve coincide with those of a DLC of type I. It turns out that the number of rational points and the genus are the essential data to characterize both Hermitian curves and DLC of type II; see [28], [6, Sect. 3]. (A similar statement for the DLC of type III seems to be unknown.) Motivated by the optimality of a DLC \mathcal{X} and Serre’s remark (cf. [21, Prop. 6], [1, Prop. 5]), see Section

Keywords: Finite field, Suzuki group, Quotient curve, Curves with many rational points.

here, one expects to obtain curves with many rational points from curves \(\tilde{X} \) that are \(K \)-covered by \(X \). Having in mind applications it is also important to have such curves in a form as explicit as possible. If \(X \) is the Hermitian curve over \(K \), then \(L(t) = (\sqrt{q^2t + 1})^{2g} \) with \(g = \sqrt{q^2} - 1 \); see e.g. [31, V.1.15]. Thus by the aforementioned Serre’s remark, the number of \(K \)-rational points of \(\tilde{X} \) also attains the Hasse-Weil upper bound.

In particular, by means of quotient curves of \(X \), the genus and plane models of a huge number of maximal curves were found; see e.g. [7], [3] and [4].

The aim of this paper is to investigate quotient curves of the DLC of type II; such a curve will be called the Suzuki curve (over \(K \)) and will be denoted by \(S \). The case of curves of Type III was investigated by Cakcak and Ozbudak [2].

From now on, \(q_0 := 2^s \) with \(s \geq 1 \), and \(q := 2q_0^2 \). The enumerator of the Zeta function of \(S \) is the polynomial \(L(t) = (qt^2 + 2q_0t + 1)^g \), with \(g = q_0(q - 1) \); see e.g. [14, Prop. 4.3]. Thus the number of \(K \)-rational points of a curve \(\tilde{S} \) of genus \(\tilde{g} \) which is \(K \)-covered by \(S \) is given by (cf. Section 3)

\[
\#\tilde{S}(K) = q + 2q_0\tilde{g} + 1.
\]

This value is in the interval from which the entries of the tables of curves with many rational points are taken for \(\tilde{g} \leq 50 \), \(q \leq 128 \) in van der Geer and van der Vlugt tables [8]. In Sections 4 and 5 we obtain an exhaustive list of tame quotient curves of \(S \), namely quotients arising from subgroups of Aut(\(S \)) of odd order: indeed, we compute the genus as well as exhibit a plane model for such curves. In Section 6 we consider non-tame quotient curves of \(S \), namely quotient arising from subgroups of Aut(\(S \)) of even order; here we cannot produce a complete list as in the odd case because the Suzuki group contains a huge number of pairwise non-isomorphic subgroups of even order. Our contribution consists in proving the existence of non-tame quotient curves of \(S \); for some of these curves we also provide a plane equation. A concrete application of our results provide new entries in the tables [8]: let \(q = 32 \) and \(r = 5 \); from Theorems 5.1(2) and 6.10(2) we have \(N_{32}(24) \geq 225 \) and \(N_{32}(10) \geq 113 \) respectively; cf. Section 7.

The approach employed in this paper is similar as in [3] and [4]: a concrete realization of \(S \) in \(\mathbb{P}^4 \) is stated via a very ample complete linear series obtained from the enumerator of its Zeta function (cf. Section 3); this embedding is such that \(S_\mathbb{Z}(q) \) acts linearly on \(S \) (cf. Section 2 and Theorem 3.2).

2. Preliminary results on the Suzuki group

In the course of the Introduction we have mentioned that the automorphism group Aut(\(S \)) of the Suzuki curve \(S \) is isomorphic to the Suzuki group \(S_\mathbb{Z}(q) \). We summarize those results on the structure of \(S_\mathbb{Z}(q) \) which play a role in the present work. For more details, the reader is referred to [20, Chap. XI.3], [33], [12, Chap. 17] and [23].

In Section 3 we will show that the curve \(S \) can be embedded in \(\mathbb{P}^4 \) (Theorem 3.1); this raises the problem of exhibit \(S_\mathbb{Z}(q) \) as a subgroup of automorphisms of \(\mathbb{P}^4 \). We start from a well-known concrete realization of \(S_\mathbb{Z}(q) \), namely as a subgroup of the automorphism group Aut(\(\mathbb{P}^3 \)) of \(\mathbb{P}^3 \) (loc. cit.). Let \(\tilde{T} := \{T_{a,c} : a, c \in K \} \) and \(\tilde{N} := \{N_d : d \in K^*\}, \)
where $T_{a,c}$ and N_d are the elements of $\text{Aut}(\mathbb{P}^3)$ defined respectively by the matrices
\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
am & 1 & 0 & 0 \\
c & a^{2q_0 + 2} + ac + c^{2q_0} & a^{2q_0 + 1} + c & a & 1
\end{pmatrix},
\quad \text{and} \quad
\begin{pmatrix}
d^{-q_1 - 1} & 0 & 0 & 0 \\
0 & d^{-q_1} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & d^{q_1 + 1}
\end{pmatrix}.
\]
In addition, let $W \in \text{Aut}(\mathbb{P}^3)$ be defined by the matrix
\[
\begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}.
\]
Then the Suzuki group $Sz(q)$ can be assumed as the subgroup of $\text{Aut}(\mathbb{P}^3)$ generated by $\widetilde{T}, \widetilde{N}$ and W. Next consider the homomorphism of groups
\[
L : Sz(q) \to \text{Aut}(\mathbb{P}^4)
\]
defined on the generators of $Sz(q)$ by $T_{a,c} \mapsto T_{a,c}, N_d \mapsto N_d, W \mapsto W$, where the images are defined respectively by the matrices:
\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
am & 1 & 0 & 0 \\
c & a^{q_1 + 1} + c^{q_1} & a^{q_1} & 1 & 0 \\
(a^{q_1} + 1 + c^{q_1}) & c & a^{2q_1} & 0 & 1 & 0 \\
(a^{2q_1 + 2} + ac + c^{2q_1}) & a^{2q_1 + 1} + c & 0 & a & 1
\end{pmatrix},
\quad \text{and} \quad
\begin{pmatrix}
d^{-q_1 - 1} & 0 & 0 & 0 & 0 \\
0 & d^{-q_1} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & d^{q_1} & 0 & 0 \\
0 & 0 & 0 & d^{q_1 + 1} & 0
\end{pmatrix}.
\]
Let $\widetilde{T} := L(\widetilde{T}), \widetilde{N} := L(\widetilde{N})$ and $W := L(W)$. Then, as $Sz(q)$ is simple (loc. cit.), we can assume that $Sz(q)$ is the subgroup of $\text{Aut}(\mathbb{P}^4)$ generated by $\widetilde{T}, \widetilde{N}$ and W. Some other basic properties of the Suzuki group that we shall need are the following (loc. cit.):

(2.1) A cyclic subgroup of $Sz(q)$ of order $r > 1$, r a divisor of $q - 1$, is conjugate in $Sz(q)$ to the subgroup $\{N_d \in \tilde{N} : d \in K, d^r = 1\};$

(2.2) Up to conjugacy there exist two cyclic subgroups of $Sz(q)$, S_1 and S_{-1}, of order $q + 2q_0 + 1$ and $q - 2q_0 + 1$ respectively. Such subgroups are called the Singer subgroups of $Sz(q)$. Also, their action on the K-rational points of $\pi(S)$, where π is the morphism defined in (3.6), is semiregular;

(2.3) The subgroup \widetilde{T} has exponent 4; that is to say, the maximum order of its elements is 4. Its center is an elementary abelian group of order q, say \widetilde{T}_2, whose elements are those of order 2 of T. Furthermore, the normaliser of \widetilde{T} in $Sz(q)$ acts transitively on \widetilde{T}_2;

(2.4) The cyclic subgroups of $Sz(q)$ of order 4 are pairwise conjugate in $Sz(q)$;
(2.5) A subgroup of $S_z(q)$ of order 2^v, $r, v > 1$, r a divisor of $q - 1$, is conjugate in $S_z(q)$ to a subgroup of $\tilde{T}\tilde{N}$. The order of a non-trivial element in $\tilde{T}\tilde{N}$ is either a 2-power or a divisor of $q - 1$ according as it belongs to \tilde{T} or not;

(2.6) A subgroup of $S_z(q)$ of order $2r$, $r > 1$ a divisor of $q - 1$, is conjugate in $S_z(q)$ to a subgroup of $N_{S_z(q)}(\tilde{N})$, the normalizer of \tilde{N} in $S_z(q)$. The subgroup $N_{S_z(q)}(\tilde{N})$ is dihedral with $2(q - 1)$ elements.

(2.7) A subgroup of $S_z(q)$ of order $2r$, $r > 1$ a divisor of $q \pm 2q_0 + 1$, is conjugate in $S_z(q)$ to a subgroup of the (unique) dihedral group of $S_z(q)$ which comprises $S_{\pm 1}$.

(2.8) A subgroup of $S_z(q)$ of order $4r$, $r > 1$ a divisor of $q \pm 2q_0 + 1$, is conjugate in $S_z(q)$ to a subgroup of $N_{S_z(q)}(S_{\pm 1})$, the normalizer of $S_{\pm 1}$ in $S_z(q)$. The subgroup $N_{S_z(q)}(S_{\pm 1})$ has $4(q \pm 2q_0 + 1)$ elements.

(2.9) Set $\tilde{q} := 2^{2q+1}$. A necessary and sufficient condition for $S_z(q)$ to contain a subgroup isomorphic to $S_z(\tilde{q})$ is that \tilde{q} be a divisor of q such that $2\tilde{s} + 1$ divides $2s + 1$. For every such divisor, $S_z(q)$ has exactly one conjugacy class of subgroups isomorphic to $S_z(\tilde{q})$.

(2.10) Any non-trivial subgroup of $S_z(q)$ is conjugate in $S_z(q)$ to one of the above subgroups.

3. Preliminary results on the Suzuki curve

Let S be the Suzuki curve over K ($q = 2q_0^2 > 2$) and $\pi : S \to \mathcal{S}$ a K-covering of curves over K. Let $L(t)$ and $L_{\mathcal{S}}(t)$ be the enumerator of the Z-function (over K) of S and \mathcal{S} respectively. An observation due to Serre states that $L_{\mathcal{S}}(t)$ divides $L(t)$ (see [21, Prop. 6], [1, Prop. 5]). As $L(t) = (qt^2 + 2q_0t + 1)^{g}$, where g is the genus of S (see [14, Prop. 4.3], [27]), we have $L_{\mathcal{S}}(t) = (qt^2 + 2q_0t + 1)^{\tilde{g}}$, \tilde{g} being the genus of \mathcal{S}. In particular, the number of \mathbb{F}_{q^r}-rational points of \mathcal{S}, $r \in \mathbb{N}$, can be computed as follows (see e.g. [31, V.1.15])

\[(3.1) \quad \#\mathcal{S}(\mathbb{F}_{q^r}) = q^r + 1 - [(1 + i)^r + (1 - i)^r](-q_0)^r \tilde{g},\]

where $i = \sqrt{-1}$. Notice that \mathcal{S} is maximal over \mathbb{F}_{q^4}. Next we describe a plane model of S which will be the starting point towards the proof of our results. Hansen and Stichtenoth [16] noticed that the number of K-rational points and the genus of the non-singular model over K of the plane curve

\[(3.2) \quad y^q + y = x^{q_0}(x^q + x) \quad (q = 2q_0^2 > 2)\]

are $q^2 + 1$ and $q_0(q - 1)$ respectively. Therefore by [6, Sect. 3], we may assume that S is the non-singular model of (3.2). We recall that Henn [18] exhibited this curve as an example of a curve whose number of automorphisms exceeds the Hurwitz upper bound $84(q - 1)$ valid in zero characteristic.

Now we introduce a geometric invariant (over K) on the curve S. Among other properties, this invariant will allow us to consider S as an embedded curve in \mathbb{P}^4 in such a way that $S_z(q)$ will act linearly on S; see Theorem 3.2. Let $h(t) := t^{2q}L(t^{-1})$ with $L(t)$ as above. This polynomial is the characteristic polynomial of the Frobenius morphism Φ over K on the Jacobian J of S; this morphism is induced by the Frobenius morphism Φ over K on S. It turns out that Φ is semi-simple (see e.g. [26, p. 251]) and thus
We can state this property by using divisors on S; to do that
we use the fact that $f \circ \Phi = \Phi \circ f$, where $f : S \to J$, $P \mapsto [P - P_0]$, is the natural
morphism that maps $P_0 \in S(K)$ to $0 \in J$. Therefore, for $P \in S$ and $P_0 \in S(K)$ the
following linear equivalence on S holds true:

$$qP + 2q_0 \Phi(P) + \Phi^2(P) \sim (q + 2q_0 + 1)P_0.$$

This motivates the definition of the following complete linear series on S:

$$D = D_S := |(q + 2q_0 + 1)P_0|.$$

The equivalence (3.3) shows that the definition of D is independent of the K-rational point
P_0, and that $q + 2q_0 + 1$ belongs to the Weierstrass semigroup $H(P)$ at any K-rational
point $P \in S$. We subsume two important properties of D:

Theorem 3.1.
(1) ([16, Prop. 1.5]) The dimension of D is four;
(2) The linear series D is very ample.

Proof. (1) Let $P \in S(K)$, and $i \in \mathbb{N}$ such that $n_i = q + 2q_0 + 1 \in H(P)$; by (3.3) we have
to show that $i = 4$. Let $x, y : S \to \mathbb{P}^1$ be the K-rational functions on S which define its
plane model (3.2). We have that x is unramified in \mathbb{P}^1 but at ∞. Over $x = \infty$ there is
just one point, say $P_0 \in S$, which is, in particular, K-rational. It turns out that

$$\text{div}_\infty(x) = qP_0, \quad \text{and} \quad \text{div}_\infty(y) = (q + q_0)P_0.$$

Let us put

$$z := x^{2q_0 + 1} + y^{2q_0}.$$

By (3.2) the functions x and z satisfy

$$z^q + z = x^{2q_0}(x^q + x);$$

therefore, $\text{div}_\infty(z) = (q + 2q_0)P_0$ and so $H(P_0)$ contains the semigroup H generated by
$q, q + q_0, q + 2q_0$ and $q + 2q_0 + 1$. After some computations, one shows that $\#(\mathbb{N} \setminus H) = q_0(q - 1)$ (see e.g. [16, Appendix]); thus $H(P_0) = H$ and so $i = 4$.

(2) Let $\pi : S \to \mathbb{P}^4$ be the morphism defined by D. We show that π separates points
and separates tangent vectors; cf. [17, p. 308]. To see the former condition, it is enough to
show that π is injective. Assume $\pi(P) = \pi(Q)$. Then the linear equivalence (3.3) implies
$\{P, \Phi(P), \Phi^2(P)\} = \{Q, \Phi(Q), \Phi^2(Q)\}$. We find that $\Phi^3(P) = P$ and $\Phi^3(Q) = Q$; thus
$P = Q$ since $S(F_{q^3}) = S(K)$ by (3.1). To prove the latter condition we use some facts
concerning Weierstrass point theory; our reference is Stöhr-Voloch paper [32]. We have
to show that the first positive element $j_1 = j_1(P)$ of the (D, P)-order sequence equals 1,
or equivalently that there exists $D' \in D$ such that $v_P(D') = 1$. If $P \notin S(K)$, $j_1 = 1$ by
(3.1) and (3.3); otherwise, let $n_1 < n_2 < n_3 < n_4 = q + 2q_0 + 1$ be the first four positive
elements of $H(P)$. Then $j_1 = n_4 - n_3$. and it is enough to show that $n_3 = q + 2q_0$ (\ast).
(Observe that (\ast) already holds true for the point P_0 over $x = \infty$.) As a matter of fact,
property (\ast) was proved in [6, p. 43] and the proof of the theorem is complete. \hfill \square

In order to study the concrete realization of S in \mathbb{P}^4 we use the K-rational morphism

$$\pi := (1 : x : y : z : w),$$
where \(x, y, z \) are as above and \(w \) is a \(K \)-rational function such that \(\text{div}_\infty(w) = (q + 2q_0 + 1)P_0 \). We may assume
\[
(3.7) \quad w := xy^{2q_0} + z^{2q_0}.
\]
In fact, Eqs. (3.2) and (3.5) imply the following relation among the functions \(x, y \) and \(w \):
\[
w^q + w = y^{2q_0}(x^q + x),
\]
whence \(\text{div}_\infty(w) = (q + 2q_0 + 1)P_0 \). Next we shall point out some relations describing \(y, w \) as functions depending on \(x \) and \(z \) only. By raising (3.4) to the power \(q_0 \) and using Eq. (3.2) we obtain:
\[
(3.8) \quad y = x^{q_0 + 1} + z^{q_0};
\]
from (3.7), (3.8) and Eq. (3.5):
\[
(3.9) \quad w = x^{2q_0 + 2} + xz + z^{2q_0}.
\]
Therefore \(S \) can be assumed to be the locus in \(\mathbb{P}^4 \) defined by the set of points
\[
(3.10) \quad P_{(a,c)} := (1 : a : b : c : d), \quad \text{and} \quad A_4 := \pi(P_0) = (0 : 0 : 0 : 0 : 1),
\]
with \(x = a \in \bar{K}, \ z = c \in \bar{K} \) satisfying Eq. (3.5), and \(y = b \) and \(w = d \) defined by (3.8) and (3.9) respectively. Now we show that the concrete realization of the Suzuki group \(Sz(q) \) established in Section 2 coincides with \(\text{Aut}(S) \).

Theorem 3.2. The isomorphic image of \(Sz(q) \) in \(\text{Aut}(\mathbb{P}^4) \) stated in Section 2 acts linearly on \(S \).

Proof. By (3.10) and the definition of \(\bar{T}, \bar{N} \) and \(W \) (cf. Section 2) it follows that each element of the isomorphic image of \(Sz(q) \) in \(\text{Aut}(\mathbb{P}^4) \) acts linearly on \(S \). \(\square \)

Remark 3.3. If in (3.10) we only consider the points corresponding to \(a, c \in K \) together with the point \(A_4 \), we obtain the so-called Suzuki-Tits ovoid (cf. [33]); this was already noticed by Cossidente [6, Appendix].

4. **Quotient curves arising from subgroups of a cyclic subgroup of \(\text{Aut}(S) \) of order \(q - 1 \)**

For a divisor \(r > 1 \) of \(q - 1 \), let \(U \) be a cyclic subgroup of \(\text{Aut}(S) \) of order \(r \). As mentioned in (2.1), \(U \) is unique up to conjugacy, and we may assume \(U = \{ N_d \in \bar{N} : d \in K, d^r = 1 \} \). Let \(\bar{S} = S/U \) denote the quotient curve of \(S \) by \(U \), and \(\bar{g} \) its genus. The objective of this section is to prove the following theorem. Let \(s \in \mathbb{N} \) such that \(q_0 = 2^s \), and set
\[
(4.1) \quad f(t) := 1 + \sum_{i=0}^{s-1} t^{2^i(q_0+1)-(q_0+1)}(1 + t)^{2^i}.
\]

Theorem 4.1. With the notation above,

1. \(\bar{g} = \frac{1}{2}q_0(q-1) \);
2. The following curve is a plane model over \(K \) of \(\bar{S} \):
\[
V^{\frac{1}{2}(q-1)} f(U) = (1 + U^{q_0})(U^{q-1} + V^{\frac{1}{2}(q-1)}).
\]
We need some preliminary results. Consider the morphism
\[\phi := (x : y : z) : S \to C := \phi(S) \subseteq \mathbb{P}^2. \]

The results in Claims 4.2, 4.3, 4.4 and Lemma 4.5 below will show that \(C \) is a plane model over \(K \) of \(S \).

Claim 4.2.
1. The divisor defined by \(\phi \) is given by \(E = -A_0 + (q + 2q_0)A_4 \);
2. The morphism \(\phi \) is birational so that \(C \) is a curve of degree \(q + 2q_0 - 1 \).

Proof.
1. By Eqs. (3.2), (3.5) and the fact that \(x : S \to \mathbb{P}^1 \) is unramified but at \(\infty \), where it is totally ramified,
\[
\text{div}(x) = A_0 + D_1 - qA_4, \\
\text{div}(y) = (q_0 + 1)A_0 + D_2 - (q + q_0)A_4, \quad \text{and} \\
\text{div}(z) = (2q_0 + 1)A_0 + D_3 - (q + 2q_0)A_4.
\]
with \(D_1 = \sum P_{(0,y^{q_0})}, y^{q-1} = 1; D_2 = \sum P_{(x,x^{2q_0+1})}, x^{q-1} = 1 \) and \(D_3 = \sum P_{(x,0)}, x^{q-1} = 1. \)

We have then \(E = -A_0 + (q + 2q_0)A_4 \).

2. For a generic point \(P_{(a,c)} \in S \) we show \#\(\phi^{-1}(\phi(P_{(a,c)})) = 1 \). Let \((x/y, z/y) = (a/b, c/b) \). By (3.8),
\[a^{q_0+1}y^{q_0} + bc^{q_0}y^{q_0-1} + b^{q_0+1} = 0, \]
and after some computations one realizes that \(y = b \) is the only solution of this equation such that \(P_{(x,z)} \in S \). \(\square \)

Let \((X : Y : Z) \) be projective coordinates for \(\mathbb{P}^2 \) and assume that \(Y = 0 \) is the line at infinity. We look for the equation \(f_1(X, Z) = 0 \) that defines the plane curve \(C \) above. The intersection divisor of \(Y \) and \(C \) is codified by the divisor \(\phi^*(Y) := \text{div}(y) + E = q_0A_0 + D_2 + q_0A_4 \); cf. Claim 4.2 and (4.2). This means that the line \(Y \) intersects \(C \) at \(q + 1 \) points, \(q_0 \) being the order of contact at both \(\phi(A_0) \) and \(\phi(A_4) \). Thus the term of degree \(q + 2q_0 - 1 \) of \(f_1(X, Z) \) can be assumed to be \((XZ)^{q_0}(X^{q-1} + Z^{q-1}) \) and hence the defining equation of \(C \) will be of type
\[f_1(X, Z) = f_2(X, Z) + (f_3(X, Z) + (XZ)^{q_0})(X^{q-1} + Z^{q-1}), \]
with \(\deg(f_2(X, Z)) < q + 2q_0 - 1 \), and \(\deg(f_3(X, Z)) < 2q_0 \). Now each \(N_d \in \hat{N} \) induces an automorphism on \(C \) by means of \((X : Y : Z) \mapsto (dX : d^{q_0+1}Y : d^{2q_0+1}Z) \). Thus there exists \(e \in \hat{K}^* \) such that \(f_1(X, Z) = ef_1(d^{-q_0}X, d^{q_0}Z) \); we have then \(e = 1 \) by looking at the higher degree term of \(f_1(X, Z) \). Furthermore, \(f_2(X, Z) = \sum_{i,j} a_{i,j}X^iZ^j, a_{i,j} = a_{i,j}d^{j-i} \).
Suppose that \(a_{i,j} \neq 0 \), so that \(d^{j-i} = 1 \). Therefore \((q - 1) \) divides \((j - i) \) whenever \(d \) is a primitive element of \(K^* \); thus either \(j = i, j = i + q - 1 \), or \(i = j + q - 1 \). Write
\[
f_1(X, Z) = f_2(X, Z) + X^{q-1} \sum_{i,j; i \neq j} a_{i,j}X^jZ^j + Z^{q-1} \sum_{i,j; i \neq j} a_{i,j}XZ^i.
\]
On the other hand, the automorphism \(W \) of \(S \) (cf. Section 2) induces an automorphism on \(C \) via \((X : Y : Z) \mapsto (Z : Y : X) \). Thus \(a_{i,j} = a_{j,i} \) and so
\[
f_1(X, Z) = \tilde{f}_2(XZ) + (\tilde{f}_3(XZ) + (XZ)^{q_0})(X^{q-1} + Z^{q-1}),
\]
where \(\tilde{f}_2(t) \) and \(\tilde{f}_3(t) \) are polynomials of degree at most \(q + q_0 - 1 \) and \(q_0 - 1 \) respectively.
Claim 4.3. $\deg(\tilde{f}_2(t)) = (q - 2)/2$.

Proof. For the line $L : X + Z = 0$, we compute $\phi^*(L)$ which is equal to $\text{div}_0(x + z) - A_0$ by Claim 4.2(1). Let $P := P_{a,a}$ be a zero of $x + z$ so that

$$(x + z)^q + (x + z) = (x + a)^{q+2q_0} + (a^{2q_0} + 1)(x + a)^q + (x + a)^{2q_0 + 1} + (a^q + a)(x + a)^{2q_0} + (a^{2q_0} + 1)(x + a).$$

Since $x + a$ is a local parameter at P, the valuation of $x + z$ at P is equal to either $2q_0 + 1$ or 1 according to $a = 1$, or $a \in K \setminus \{1\}$ respectively. Thus

$$\phi^*(L) = (2q_0 + 1)P_{(1,1)} + \sum_{x \not\in K \setminus \{0,1\}} P_{(x,x)}$$

and hence $\deg(\tilde{f}_2(t^2)) = q - 2$ as $\phi(P_{(1,1)})$ belongs to the line at infinity. \hfill \Box

Next we determine the explicit expression for $\tilde{f}_2(t)$ and $\tilde{f}_3(t)$, namely we show that $\tilde{f}_2(t) = f(t)$ and $\tilde{f}_3(t) = 1$.

Claim 4.4. (1) There exists $e \in K^*$ such that $ef(t) = \tilde{f}_2(t)$, where $f(t)$ is the polynomial defined in (4.1);

(2) $\tilde{f}_3(t) = 1$, and $e = 1$.

Proof. (1) We shall show that $f(t)$ and $\tilde{f}_2(t)$ have $(q - 2)/2$ common roots in K. Let $a \in K$; after some computations we have

$$(a^{2q_0 - 1})^{q_0} f(a^{2q_0 - 1}) = \text{Tr}_{K|\mathbb{F}_2}(a).$$

Since the map $a \mapsto a^{2q_0 - 1}$ is a bijection on K, the set of roots of $f(t)$ consists precisely of the $(q - 2)/2$ elements of the set

$$\{a^{2q_0 - 1} : \text{Tr}_{K|\mathbb{F}_2}(a) = 0, a \neq 0\}.$$

Now by (*) this set is invariant by the quadratic map $a \mapsto a^2$, and hence their elements are precisely the roots of $\tilde{f}_2(t)$.

(2) By (1), we have

$$ef(\xi, \zeta) = (\tilde{f}_3(\xi, \zeta) + (\xi, \zeta)^{q_0})(\xi^{q_0} + \zeta^{q_0}),$$

where $\xi := x/y$ and $\zeta := z/y$. We use local power series computations at the point A_0, where x is a local parameter; by dots we mean terms of higher degree. From Eqs. (3.2) and (3.5) $\xi = x^{-q_0} + x^{q-q_0+1} + \ldots$ and $\zeta = x^{q_0} + x^{q'} + \ldots$, where $q' > q + q_0 - 1$; thus $\xi \zeta = 1 + x^{q-1} + \ldots$. By the definition of $f(t)$, $f = 1 + x^{q-1} + \ldots$. Write $\tilde{f}_3(t) = a_0 + a_k x^m + a_{m+1} x^{m+1} + \ldots$, and suppose that $m = 2^nk \geq 1$ and $a_m \neq 0$. Then $\tilde{f}_3 = a_0 + a_m(1 + x^{q-1} + \ldots)^{2n} + \ldots$, and by comparing powers of x (via (**)) we must have $(q - 1)2^n - q_0(q - 1) = 0$ which is a contradiction as $2^n < q_0$. Thus (**)) becomes

$$e(1 + x^{q-1} + \ldots) = ef(\xi, \zeta) = (a_0 + 1 + x^{(q-1)q_0} + \ldots)(x^{-(q-1)q_0} + \ldots)$$

and so $a_0 = 1$, and $e = 1$. \hfill \Box

We summarize the results above in the following.
Lemma 4.5. The Suzuki curve S admits a plane model over K defined by
$$f_1(X, Z) := f(XZ) + (1 + (XZ)^q)(X^{q-1} + Z^{q-1}),$$
where $f(t)$ is the polynomial given in (4.1).

Proof of Theorem 4.1. The genus \tilde{g}: It is straightforward to check that U has exactly two fixed points on S, namely $A_0 := (1:0:0:0:0)$ and $A_4 = (0:0:0:0:1)$. Since \tilde{S} is a tame quotient curve, the Riemann-Hurwitz genus formula gives $2q_0(q - 1) - 2 = r(2\tilde{g} - 2) + 2(r - 1)$, whence the result follows.

The plane equation: Let \tilde{C} be the absolutely irreducible plane curve over K whose function field is $K(XZ, Z^r)$. By the definition of N_d, $K(XZ, Z^r) \subseteq K(X, Z)^U$ (\ast). On the other hand, from the definition of $f_1(X, Z)$ in Lemma 4.5, $[K(X, Z) : K(XZ, Z^r)] = [K(XZ, Z) : K(XZ, Z^r)] = r$ and thus equality holds in (\ast). Taking $U := XZ$ and $V := Z^r$ we obtain the required equation for \tilde{C}, which is clearly a plane model of \tilde{S}. □

Remark 4.6. The geometric meaning of the proof of Lemma 4.5 emerges from the fact that the automorphisms N_d and W of S preserve the line L in \mathbb{P}^4 that joins the points A_0 and A_4. Indeed, the morphism ϕ above have been chosen to be the morphism associated to the 2-dimensional linear series cut out on S by hyperplanes through L.

Remark 4.7. The curve \tilde{S} in Theorem 4.1 is a covering of the hyperelliptic curve $vf(u) = (1 + u^{q_0})(u^{q-1} + v^2)$ of genus \tilde{g}_0; by replacing v by $(1 + u^{q_0})v/\tilde{f}(u)$, such a hyperelliptic curve can be defined by
$$v^2 + v = \frac{(u + 1)^{q_0}u^{q/2}}{\tilde{f}(u)}.$$

5. Quotient curves arising from the subgroups of the Singer subgroups of $\text{Aut}(S)$

Let S_1 and S_{-1} denote the Singer subgroups of $\text{Aut}(S)$ whose orders are $q + 2q_0 + 1$ and $q - 2q_0 + 1$ respectively; cf. (2.2). For a subgroup \mathcal{U} of either S_1 or S_{-1}, denote by $\tilde{S} = S/\mathcal{U}$ the quotient curve of S by \mathcal{U}, and \tilde{g} its genus. The aim of this section is to prove the following theorem. Let $s \in \mathbb{N}$ such that $q_0 = 2^s$, and set

$$(5.1) \quad \tilde{f}(t) := 1 + \sum_{i=0}^{s-1} t^{2q_0}(1 + t)^{2i(q_0+1) - q_0} + t^{q/2}.$$

Theorem 5.1. With the notation above,

1. If \mathcal{U} is a subgroup of S_1 of order $r > 1$, then $\tilde{g} = \frac{1}{r}(q + 2q_0 + 1)(q_0 - 1) + 1$ and a plane model over \mathbb{F}_{q^4} of \tilde{S} is given by
$$V^\frac{1}{r}(q + 2q_0 + 1) \tilde{f}(U) = U^{q + 2q_0 + 1} + V^\frac{1}{r}(q + 2q_0 + 1);$$

2. If \mathcal{U} is a subgroup of S_{-1} of order $r > 1$, then $\tilde{g} = \frac{1}{r}(q - 2q_0 + 1)(q_0 + 1) - 1$ and a plane model over \mathbb{F}_{q^4} of \tilde{S} is given by
$$bV^\frac{1}{r}(q - 2q_0 + 1) \tilde{f}(U) = (U^{q_0 - 1} + U^{2q_0 - 1})(U^{q - 2q_0 + 1} + V^\frac{1}{r}(q - 2q_0 + 1)),$$

where $\tilde{f}(t), f(t)$ are the polynomials defined in (5.1) and (4.1) respectively, and $b := \lambda^{q_0} + \lambda^{q_0 - 1} + \lambda^{-q_0} + \lambda^{-(q_0 - 1)}$ with $\lambda \in \mathbb{F}_{q^4}$ of order $q - 2q_0 + 1$.

To work out a plane model for \mathcal{S}, we use the same approach as in Section 4. In particular, we write out appropriate plane models of \mathcal{S}; see Lemmas 5.5 and 5.7 below. We obtain these results through Claims 5.2, 5.3, 5.4 and Claim 5.6 respectively.

To begin with we look for a suitable birational morphism

$$\phi = (h_0 : h_1 : h_2) : \mathcal{S} \to \mathcal{C} := \phi(\mathcal{S}) \subseteq \mathbb{P}^2$$

of degree $q+2q_0+1$, or $q+2q_0-1$ with $h_0, h_1, h_2 \in \mathcal{L}((q+2q_0+1)P_0) = \langle 1, x, y, z, w \rangle$, where x, y, z and w are the rational functions on \mathcal{S} defined in (3.2), (3.4) and (3.7) respectively. Let $\lambda \in \mathbb{F}_{q^4}$ be an element of order $q \pm 2q_0 + 1$ and set

$$b := \begin{cases}
\lambda^{q_0} + \lambda^{q_0+1} + \lambda^{-q_0} + \lambda^{-(q_0+1)} & \text{if } \lambda \text{ has order } q + 2q_0 + 1; \\
\lambda^{q_0} + \lambda^{q_0-1} + \lambda^{-q_0} + \lambda^{-(q_0-1)} & \text{if } \lambda \text{ has order } q - 2q_0 + 1.
\end{cases}$$

Notice that $b^q - 1 = 1$. Let

$$\mu := \frac{\lambda + \lambda^{-1}}{b},$$

so that $\mu^{q^2-1} = 1$. Choose h_1 and h_2 with the following properties:

- $v_{A_4}(h_1) = v_{A_4}(h_2) = -(q + 2q_0 + 1)$;
- Let $P = P_{(a,c)} \in \mathcal{S}$. We have $a = \mu$ whenever $h_1(P) = h_2(P) = 0$.

Set

$$h_0 := b^{q_0-1}x + y + b^{q_0-1}$$

in such a way that ϕ is birational, cf. (5.5) below. Let E be the divisor defined by ϕ. Then $v_{A_4}(E) = q + 2q_0 + 1$, and the base points of the linear series associated to ϕ are the common zeroes of h_0, h_1 and h_2.

Claim 5.2. We have

$$E = \begin{cases}
(q + 2q_0 + 1)A_4 & \text{if } \lambda^{q+2q_0+1} = 1, \\
-P_{(\mu,\mu^{q}c)} - P_{(\mu,\mu^{q}+b)} + (q + 2q_0 + 1)A_4 & \text{if } \lambda^{q-2q_0+1} = 1.
\end{cases}$$

In particular, the plane curve \mathcal{C} above has degree $q + 2q_0 + 1$, or $q + 2q_0 - 1$.

Proof. Let $P_{(a,c)} \in \mathcal{S}$ be a common zero of h_0, h_1 and h_2 with $a = \mu$ and $c \in \bar{K}$ defined via Eq. (3.5). If $\bar{c} := c/b$, then $b(\bar{c}^q + \bar{c}) = \mu^{2q}(\mu^q + \mu)$; now taking into consideration (3.8) and the definition of h_0, we conclude that \bar{c} is a solution of the system

$$(5.2) \quad b^{q_0}T^{q_0} + b^{q_0-1}T = b^{q_0-1}\mu + \mu^{q_0+1}, \quad b(T^q + T) = \mu^{2q}(\mu^q + \mu).$$

From the definition of b it follows that \bar{c} must be a root of the quadratic equation

$$T^2 + T = (\mu/b)^2.$$

It turns out that the solutions of this equation are $t := \mu\lambda^q/b$, and $t + 1$ since

$$\lambda^{2q} + b^2 \frac{\lambda^q}{\lambda + \lambda^{-1}} + 1 = 0.$$

It is straightforward to check that t and $t + 1$ satisfy (5.2) if and only if $\lambda^{q-2q_0+1} = 1$, and the proof is complete. \qed
Assume that \(\lambda \) has order \(q + 2q_0 + 1 \). Let \((X : Y : Z)\) be projective coordinates of \(\mathbb{P}^2 \) and assume that \(X = 0 \) is the line at infinity. We look for an equation \(f_1(Y, Z) = 0 \) for the plane curve \(C \). The intersection divisor of \(X \) and \(C \) is codified by \(\phi^*(X) = \text{div}(h_0) + E = \text{div}_0(h_0) + A_4 \) by the previous claim. Let \(\mathbf{B} := \mathbf{T}_{0, b} \circ \mathbf{W} \in \text{Aut}(\mathcal{S}) \). Thus \(\mathbf{B} \) is defined by the matrix (cf. Section 2)

\[
\begin{pmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & b^{q_0} \\
0 & 1 & 0 & 0 & b \\
1 & 0 & 0 & b & b^{2q_0}
\end{pmatrix}
\]

We shall prove that the points \(\mathbf{B}^i(A_0) (i = 2, \ldots, q + 2q_0 + 1) \) are zeroes of \(h_0 \). To see this, we apply induction on \(i \); indeed, it is enough to show that \(h_0(\mathbf{B}^2(A_0)) = 0 \), which is a straightforward computation. On the other hand, \(\mathbf{B}(A_0) = A_4 \) and so the aforementioned points are precisely the zeroes of \(h_0 \) (recall that \(\deg(h_0) = q + 2q_0 + 1 \)); thus

\[
\phi^*(X) = \sum_{i=1}^{q+2q_0+1} \mathbf{B}^i(A_0).
\]

To see the significance of this computations on \(\mathcal{C} \) we have to compute \(\phi(\mathbf{B}^i(A_0)) \), \(i = 1, \ldots, q + 2q_0 + 1 \). At this point we choose concrete rational functions \(h_1 \) and \(h_2 \) on \(\mathcal{S} \). Let \(\lambda \in \mathbb{F}_{q^4} \) be of order \(q + 2q_0 + 1 \) and \(\mathbf{M} \) the automorphism of \(\mathbb{P}^4 \) defined by the matrix:

\[
\mathbf{M} := \begin{pmatrix}
0 & b^{q_0-1} & 1 & b^{q_0-1} & 0 \\
\mu & 1 & 0 & \lambda & \lambda \mu \\
\mu^q & 1 & 0 & \lambda^q & \lambda^q \mu^q \\
\mu & 1 & 0 & \lambda^{-1} & \lambda^{-1} \mu \\
\mu^q & 1 & 0 & \lambda^{-q} & \lambda^{-q} \mu^q
\end{pmatrix}.
\]

A straightforward computation shows that

\[
\mathbf{M} \mathbf{B} \mathbf{M}^{-1} = \Lambda,
\]

where

\[
\Lambda := \begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \lambda & 0 & 0 & 0 \\
0 & 0 & \lambda^q & 0 & 0 \\
0 & 0 & 0 & \lambda^{-1} & 0 \\
0 & 0 & 0 & 0 & \lambda^{-q}
\end{pmatrix}.
\]

We observe that the first row of \(\mathbf{M} \) defines \(h_0 \), and we define now \(h_1 \) and \(h_2 \) by using the second and fourth row respectively; that is to say,

\[
h_1 := \mu + x + \lambda z + \lambda \mu w, \quad \text{and} \quad h_2 := \mu + x + \lambda^{-1} z + \lambda^{-1} \mu w.
\]

In particular, the Suzuki curve is birationality equivalent over \(\mathbb{F}_{q^4} \) to \(\mathcal{C} = \phi(\mathcal{S}) \) since \(\mathbf{M} \in \text{Aut}(\mathbb{P}^4) \) is defined over \(\mathbb{F}_{q^4} \). From (5.4),

\[
\mathbf{B}^i(A_0) = \mathbf{M}^{-1}(0 : \lambda^i \mu : \lambda^q \mu^q : \lambda^{-i} \mu : \lambda^{-iq} \mu^q)
\]
and hence $\phi(B^i(A_0)) = (0 : \lambda^i : \lambda^{-i})$, $i = 1, \ldots, q + 2q_0 + 1$. Thus we may assume that C is defined by

$$f_1(Y, Z) = f_2(Y, Z) + (Y^{q+2q_0+1} + Z^{q+2q_0+1}),$$

being $f_2(Y, Z)$ a polynomial of degree at most $q + 2q_0$. To normalize $f_2(Y, Z)$ we use the fact that the automorphism B above induces an automorphism on C via $(X : Y : Z) \mapsto (X : \lambda^{-1}Y : \lambda Z)$; then we proceed as in the proof of Lemma 4.5 to conclude that

$$f_2(Y, Z) = \tilde{f}_2(Y Z),$$

where $\tilde{f}_2(t)$ is a polynomial of degree less than $(q + 2q_0 + 1)/2$.

Claim 5.3. $\deg(\tilde{f}_2(t)) = q/2$.

Proof. Consider the line $L : Y + \lambda^2 Z = 0$; since $\lambda^2 h_2 + h_1 = (\lambda^2 + 1)(x + \mu)$, $\phi^*(L) = \text{div}(x + \mu) + E = \text{div}_0(x + \mu) + (2q_0 + 1)A_4$ (cf. (4.2) and Claim 5.2). Thus $\deg(\tilde{f}_2(t^2)) = q$ as $\phi(A_4) \in X$.

Claim 5.4. The polynomial $\tilde{f}(t)$ in (5.1) coincides with $\tilde{f}_2(t)$.

Proof. We show that both polynomials $\tilde{f}(t)$ and $\tilde{f}_2(t)$ have $q/2$ different common roots. After some computations, for $a \in K$

$$(1 + a^{2q_0-1})^{q_0}\tilde{f}(a^{2q_0-1}) = 1 + \text{Tr}_{K/F_2}(a);$$

thus the set of roots of $\tilde{f}(t)$ is given by

$$\{a^{2q_0-1} : a \in K, \; \text{Tr}_{K/F_2}(a) = 1\}.$$

Now we compute the roots of $\tilde{f}_2(t)$. By the proof of Claim 5.3, such roots arise from the points $(1 : Y : Z) \in C$ with $Y = \lambda^2 Z$. We have

$$(1 : Y : Z) = (1 : \lambda B(z)^{2q_0-1} : \lambda^{-1}B(z)^{2q_0-1}),$$

where

$$B(z) := z^{q_0} + z + \frac{\mu}{b} + \frac{\mu^{2q_0+1}}{b^{q_0}}$$

with z such that $b(z^q + z) = \mu^{2q_0}(\mu^q + \mu)$. Therefore $a \in K$ is a root of $\tilde{f}_2(t)$ if and only if $a = B(z)^{2q_0-2}$, z being as in (*). Now $B(z) \in K$, and by using the fact that the map $a \mapsto a^{2q_0-1}$ is a bijection on K, and that the set of roots of $\tilde{f}(t)$ is invariant under the map $b \mapsto b^2$, we conclude that there exists $e \in \tilde{K}$ such that $\tilde{f}(t) = e\tilde{f}_2(t)$. Now $\phi(P_{(\mu-1,\lambda^{-1})}) = (1 : 0 : \lambda^{-1})$ and we have $e = 1$.

We have then proved the following lemma.

Lemma 5.5. The Suzuki curve S admits a plane model over F_{q^4} defined by

$$f_1(Y, Z) = \tilde{f}(Y Z) + (Y^{q+2q_0+1} + Z^{q+2q_0+1}),$$

where $\tilde{f}(t)$ is as in (5.1).
Now let $\lambda \in \mathbb{F}_{q^4}$ be of order $q-2q_0+1$. We compute the intersection divisor of X and C. By (4.2) and Claim 5.2

$$\phi^*(X) = \text{div}(h_0) + E = \text{div}_0(h_0) - P_1 - P_2 + A_4,$$

where $P_1 := P_{(\mu, \lambda^q \mu)}$ and $P_2 := P_{(\mu, \lambda^q \mu + b)}$; by arguing as in the proof of the previous lemma, we check that the points $B^i(A_0)$ ($i = 2, \ldots, q - 2q_0 + 1$) are zeroes of h_0; thus, up to multiplicity, there are $4q_0$ zeroes of h_0 missing. By the definition of h_0, Eqs. (3.2) and (3.5) we have

$$h_0^3 + h_0 = (x^q + x)(b^{q_0-1} + x^{q_0} + b^{q_0-1}x^{2q_0})$$

$$= [(x + a)^q + (x + a) + a^q + a][(x - a)^{q_0} + b^{q_0-1}(x + a)^{2q_0} + b^{q_0} + a^{q_0} + b^{q_0-1}a^{2q_0}],$$

$P_{(a,c)}$ being a zero of h_0. Since $\mu \not\in K$, it follows that $v_{P_1}(h_0) = v_{P_2}(h_0) = q_0$. Now by using the system (5.2) with μ^{-1} instead of μ we find the remaining two zeros of h_0, namely $P_3 := P_{(\mu^{-1}, \lambda^q \mu^{-1})}$, and $P_4 := (\mu^{-1}, \lambda^q \mu^{-1} + b)$; moreover, $v_{P_3}(h_0) = v_{P_4}(h_0) = q_0$ and hence

$$\phi^*(X) = (q_0 - 1)P_1 + (q_0 - 1)P_2 + q_0P_3 + q_0P_4 + \sum_{i=1}^{q-2q_0+1} B^i(A_0).$$

Next we compute the intersection divisor of X and C: we have

$$X \cdot C = \sum_{i=1}^{q-2q_0+1} (0 : \lambda^i : \lambda^{-i}) + (2q_0 - 1)Q_1 + (2q_0 - 1)Q_2,$$

where $Q_1 := \phi(P_1) = \phi(P_4) = (0 : 1 : 0)$ and $Q_2 := \phi(P_2) = \phi(P_3) = (0 : 0 : 1)$ (the last two computations follow from (4.2) and the fact that $h_1 = \lambda^2h_2 + (\lambda^2 + 1)(x + \mu)$). Then we may assume

$$f_1(Y, Z) = f_2(Y, Z) + (f_3(Y, Z) + (YZ)^{2q_0-1})(Y^{q-2q_0+1} + Z^{q-2q_0+1}),$$

where $\deg(f_2(Y, Z)) < q + 2q_0 - 1$ and $\deg(f_3(Y, Z)) < 4q_0 - 2$. Now by using the action of the automorphisms on C induced by B and $W \circ B \in \text{Aut}(S)$ via $(X : Y : Z) \mapsto (X : \lambda Y : \lambda^{-1}Z)$ and $(X : Y : Z) \mapsto (X : Z : Y)$ respectively, we can further assume that $f_2(Y, Z) = \tilde{f}_2(YZ)$ and $f_3(Y, Z) = \tilde{f}_3(YZ)$ with $\tilde{f}_2(t), \tilde{f}_3(t) \in \mathbb{F}_{q^4}[t]$.

Claim 5.6.

1. With $f(t)$ defined in (4.1), there exists $e \in \mathbb{F}_{q^4}$ such that $ef(t) = \tilde{f}_2(t)$;
2. There exists $e' \in \mathbb{F}_{q^4}$ such that $\tilde{f}_3(t) + t^{2q_0-1} = e'(t^{q_0} + t^{2q_0-1})$.

Proof.

1. The proof is similar to that of Claims 4.4 and 5.4.
2. Let $\xi := h_1/h_0$ and $\zeta := h_2/h_0$ be the rational functions on S defining the function field of S. Thus

$$ef(\xi\zeta) = (\tilde{f}_3(\xi\zeta) + (\xi\zeta)^{2q_0-1})(\xi^{q-2q_0+1} + \zeta^{q-2q_0+1}).$$
Let P_1, P_2, P_3 and P_4 be the points in the support of $\phi^*(X)$ (see 5.6). Next we use computations by using the valuation at P_1 to show first that the order of $\tilde{f}_3(t)$ is $q_0 - 1$. By (4.2) we have

$$v_{P_1}(f_3(\xi \zeta) + (\xi \zeta)^{2q_0 - 1}) = (q_0 - 1)(q - 2q_0 + 1),$$

and $v_{P_1}(\xi \zeta) = q - 2q_0 + 1$; thus the assertion on the order of $\tilde{f}_3(t)$ follows. Now for $a \in \bar{K}$ a root of $f_3(t) + t^{2q_0 - 1}$, let \mathcal{C}_a be the conic defined by the equation $YZ = a$. We have $\mathcal{C}_a \cap \mathcal{C} \subseteq X$; otherwise, $f(a) = 0$ by (1), so that \mathcal{C}_a would be a component of \mathcal{C}, which is a contradiction. Let ℓ be a local parameter at $P = P_{(a, b_0)}$; then

$$h_0 = (b^{q_0 - 1}(1 + a^{2q_0}) + a^{q_0})\ell + \ldots$$

$$h_1 = h_1(P_t) + (1 + \lambda(a^{2q_0} + \mu a^{2q_0 + 1} + \mu bc))\ell + \ldots$$

$$h_2 = h_2(P_t) + (1 + \lambda^{-1}(a^{2q_0} + \mu a^{2q_0 + 1} + \mu bc))\ell + \ldots,$$

and it follows that $v_P(\xi \zeta - P) > 0$ for some i and also that $a = 0$ or 1. Then the proof of Claim 5.6 is complete.

We have shown so far that \mathcal{C} can be defined over \mathbb{F}_{q^4} by a polynomial of type

$$(5.7) \quad f_1(Y, Z) = cf(YZ) + ((YZ)^{q_0 - 1} + (YZ)^{2q_0 - 1})(Y^{q_0 - 2q_0 + 1} + Z^{q - 2q_0 + 1}).$$

Finally, we prove that $c = b$; we use local computations at $P_{(0, 0)} \in \mathcal{S}$ via the rational functions $\xi = h_1/h_0$ and $\zeta = h_2/h_0$ (recall that x is a local parameter at that point). By the definition of h_0, h_1 and h_2,

$$(5.8) \quad h_0 = b^{q_0 - 1}x + x^{2q_0 + 1} + \ldots, \quad h_1 = \mu + x + \lambda x^{2q_0 + 1} + \ldots, \quad h_2 = \mu + x + \lambda^{-1}x^{2q_0 + 1} + \ldots,$$

whence

$$\xi = (\mu/b^{q_0 - 1})x^{-1}(1 + \ldots), \quad \zeta = (\mu/b^{q_0 - 1})x^{-1}(1 + \ldots).$$

Now by means of Eq. (5.7) we compare the order at 0 of the local power series

$$c\rho^2\xi\zeta f(\rho^2\xi \zeta), \quad and \quad ((\rho^2\xi \zeta)^{q_0} + (\rho^2\xi \zeta)^{2q_0})(\xi^{q_0 - 2q_0 + 1} + \zeta^{q - 2q_0 + 1})\rho^{q_0 - 2q_0 + 1},$$

where $\rho := b^{-q_0}x^{-1}$. The order at 0 of the former series is $c/b^{2q_0 - 1}$; as far as the last series concerns, it is enough to compute the order at 0 of

$$(\rho^2\xi \zeta)^{q_0}(\xi^{q_0 - 2q_0 + 1} + \zeta^{q - 2q_0 + 1})\rho^{q_0 - 2q_0 + 1}.$$

By (5.8) and some computations

$$\frac{h_1^{q_0 - 2q_0 + 1} + h_2^{q_0 - 2q_0 + 1}}{h_0^{q_0 - 2q_0 + 1}} = \frac{1}{b^{6(q_0 - 1)}}x^{-q_0 + 4q_0 + \ldots};$$

thus we obtain

$$\frac{c}{b^{2q_0 - 1}} = \frac{1}{b^{4q_0 - 2}}b^{6(q_0 - 1)}$$

so that $c = b$. Thus the following holds.

Lemma 5.7. The Suzuki curve \mathcal{S} admits a plane model over \mathbb{F}_{q^4} defined by

$$f_1(Y, Z) = bf(YZ) + ((YZ)^{q_0 - 1} + (YZ)^{2q_0 - 1})(Y^{q_0 - 2q_0 + 1} + Z^{q - 2q_0 + 1}),$$

where $f(t)$, is as in (4.1), and $b = \lambda^{q_0} + \lambda^{q_0 - 1} + \lambda^{-q_0} + \lambda^{-(q_0 - 1)}$ with $\lambda \in \mathbb{F}_{q^4}$ of order $q - 2q_0 + 1$.

Proof of Theorem 5.1. The genus \tilde{g}: By the proof of Claim 5.2, see (5.3) and (5.6) above, we have that the natural morphism $S \rightarrow \tilde{S}$ is either unramified, or totally ramified precisely at four points according as $U \subseteq S_1$, or $U \subseteq S_{-1}$. Then the formula for \tilde{g} is computed by the Riemann-Hurwitz genus formula.

The plane equation: Let \tilde{C} be the absolutely irreducible plane curve over K whose function field is $K(YZ, Z^r)$. By the definition of S_1, $K(YZ, Z^r) \subseteq K(YZ)_{1}$ and thus equality holds in (5). Taking $U := YZ$ and $V := Z^r$ we obtain the required equation for \tilde{C}, which is clearly a plane model of \tilde{S}.

Remark 5.8. Let P_1, P_2, P_3 and P_4 be the points defined in (5.6), and L the line through the points P_1 and P_2. This line is fixed by the automorphism B defined above, and ϕ is the morphism defined by the linear series cut out on S by hyperplanes through L. By the proof of Claim 5.2, (5.3) and (5.6), the natural morphism $S \rightarrow \tilde{S}$ is unramified, or totally ramified at the aforementioned points whenever $U \subseteq S_1$, or $U \subseteq S_{-1}$.

Remark 5.9. The curves in Theorem 5.1 covers a hyperelliptic curve of genus q_0 defined by $v^2 + v = u^{(q+2q_0+1)/2}/f(u)$ in Case (1) and by $v^2 + bv = (1 + u)^{q_0} u^{q/2}/f(u)$ in Case (2).

6. Non-tame quotient curves of the Suzuki curve

In this section we investigate quotient curves of the Suzuki curve S arising from the non-tame subgroups of $\text{Aut}(S)$. Non-tame ramifications together with a huge number of pairwise non-conjugate subgroups of even order (especially 2-subgroups) do not allow us to obtain results as complete as those achieved in Sections 4 and 5. Nevertheless, we manage to compute the degree of the ramification divisor of the respective natural morphism and thus the genus of such curves; in several cases we also provide plane models.

From Section 2, the subgroups of $S_z(q)$ of even order are of the following types, up to conjugacy in $S_z(q)$:

I. Subgroups of \widetilde{T};
II. Subgroups of order $2^r r > 1$, $r > 1$ with r a divisor of $q - 1$;
III. Dihedral subgroups of order $2r$ with $r > 1$ a divisor of $q - 1$;
IV. Subgroups of order $2r$ with $r > 1$ a divisor of $q \pm 2q_0 + 1$;
V. Subgroups of order $4r$ with $r > 1$ a divisors of $q \pm 2q_0 + 1$;
VI. Subgroups isomorphic to $S_z(q)$.

Type I. Let U be a subgroup of \widetilde{T}. We shall compute the genus \tilde{g} of the quotient curve $\tilde{S} = S/U$, by considering the subgroup U_2 of U consisting of the elements of even order together with the identity (a similar problem on the Hermitian curve was considered in [7]). Let u and v be the integers such that $2^u := \#U_2$ and $2^v := \#U$. Recall that $q = 2q_0^2$ and $q_0 = 2^s$, $s \in \mathbb{N}$.

Theorem 6.1. With the notation above,

$$\tilde{g} = \frac{q_0}{2^{v-u}} \left(\frac{q}{2^u} - 1 \right);$$

in particular, $u \leq 2s + 1$ and $v - u \leq s$.
Proof. The Riemann-Hurwitz formula asserts that

$$2q_0(q - 1) - 2 = 2^v(2\bar{g} - 2) + \deg(R),$$

where R is the associated ramification divisor of the natural morphism $\mathcal{S} \to \mathcal{S}$. Let ℓ be a local parameter at $P \in \mathcal{S}$; we have $v_P(R) = \sum_T i_{T,P}$, where the summation is extended over all $T \in U$ such that $T(P) = P$, and where $i_{T,P} = v_P(T^*(\ell) - \ell)$ (see e.g. [31, III.8.8]). By the definition of $T = T_{a,c}$ (cf. Section 2), $v_P(R) = 0$ for $P \neq A_4$. On the other hand, at the point A_4 the rational function z/w is a local parameter by (4.2); therefore

$$i_{T,A_4} = \begin{cases} 2q_0 + 2, & \text{for } a = 0, \\ 2, & \text{for } a \neq 0. \end{cases}$$

We have that $T \neq 1$ is an element of order 2 for $a = 0$, otherwise its order is 4. Thus the Riemann-Hurwitz above becomes

$$2q_0(q - 1) - 2 = 2^v(2\bar{g} - 2) + (2q_0 + 2)(2^u - 1) + 2(2^u - 2^u),$$

and we obtain the formula for \bar{g}. The numerical conditions follow from the fact that \bar{g} must be a non-negative integer.

In Corollary 6.5 we are going to point out sufficient conditions for the existence of non-tame quotient curves of \mathcal{S} whose genus can be computed via Theorem 6.1. For some cases regarding $v = u$ and $(v, u) = (2, 1)$, we can exhibit a plane model; see Theorem 6.6.

Theorem 6.1 raises the problem of classifying the subgroups of \tilde{T} in terms of their elements of order 2. Such a general problem is computationally beyond our possibility, because \tilde{T} contains a huge number of pairwise non-conjugate subgroups. The following lemma states some (necessary) numerical conditions on u and v.

Lemma 6.2. Let U be a subgroup of \tilde{T} and U_2 the subgroup of its elements of even order. Let 2^v and 2^u be the orders of U and U_2 respectively. Then the following statements hold true:

1. $v \leq 2u$;
2. For every integer u' with $u \leq u' \leq v$ there is a subgroup of U of order $2^{u'}$ containing U_2. In particular, for each integer u' with $2s + 1 \leq u' \leq 4s + 2$, there is a subgroup of \tilde{T} of order $2^{u'}$ containing all elements of \tilde{T} of order 2.

Proof. (1) We consider the homomorphism of groups

$$\Phi = \Phi_U : U \to K, \quad T_{a,c} \mapsto a,$$

where K is equipped with its additive structure. We have $\ker(\Phi) = U_2$ and thus U/U_2 is isomorphic to $\Phi(U)$. As the map $K \to K : a \mapsto a^{2^{q_0+1}}$ is injective, and as $T_{a,c}^2 = T_{0,a2^{q_0+1}}$, we have that $\# \Phi(U) \leq \#U_2$ and hence the assertion.

(2) Since the quotient group U/U_2 is an elementary abelian group, the converse of the Lagrange theorem holds and the first statement follows; for the second statement take $U = \tilde{T}$; cf. (2.3).

Sufficient conditions for the existence of a subgroup U of \tilde{T} with a given subgroup U_2 is ensured by the following lemma. Let Φ_U be the map defined in the proof of Lemma 6.2.
Lemma 6.3. Let \(\mathcal{V} \) be an elementary abelian group of \(\tilde{T} \) of order \(2^u \). Then there exists a subgroup \(\mathcal{U} \) of \(\tilde{T} \) of order \(2^{u+1} \) such that \(\mathcal{U}_2 \) coincides \(\mathcal{V} \);

(2) Let \(v \geq u \geq 0 \) be integers, and \(B \) an additive subgroup of \(K \) of order \(2^u \). If there exists an additive subgroup \(A \) of \(K \) of order \(2^{v-u} \) such that \(A^{2q_0+1} \subseteq B \), then there exists a subgroup \(\mathcal{U} \) of \(\tilde{T} \) of order \(2^v \) such that \(\Phi_{\mathcal{U}}(\mathcal{U}) = A \) and \(\ker(\Phi_{\mathcal{U}}) = \{ T_{0,c} : c \in B \} \) (in particular, \(\ord(\mathcal{U}_2) = 2^v \)).

Proof. (1) Since the normaliser in \(\text{Aut}(S) \) of \(\tilde{T} \) acts transitively on the set of elements of order 2 of \(\tilde{T} \), cf. (2.3), we may assume \(T_{0,1} \not\in \mathcal{V} \). Then the group \(\mathcal{U} \) generated by \(\mathcal{V} \) and \(T_{0,1} \) fulfills the required conditions.

(2) The proof of this assertion is by induction on \(v \geq u \). If \(v = u \), then \(A = \{ 0 \} \) and \(\mathcal{U} := \{ T_{0,c} : c \in B \} \) have the required properties. Suppose now that \(v > u \). As \(A \) is an elementary abelian group, it contains a subgroup \(A_0 \) of index 2, that is of order \(2^{(v-1)-u} \). Since \(A_0^{2q_0+1} \subseteq A^{2q_0+1} \), there is by induction a subgroup \(\mathcal{U}_0 \) in \(\tilde{T} \) of order \(2^{v-1} \) with \(\Phi_{\mathcal{U}_0}(\mathcal{U}_0) = A_0 \) and \(\ker(\Phi_{\mathcal{U}_0}) = \{ T_{0,c} : c \in B \} \). Fix \(T := T_{a,c} \in \tilde{T} \) with \(a \in A \setminus A_0 \) which does not belong to \(\mathcal{U}_0 \) by (*). Let \(\mathcal{U} \) be the subgroup of \(\tilde{T} \) generated by \(\mathcal{U}_0 \) together with \(T \).

To prove that the order of \(\mathcal{U} \) is \(2^v \) we show that \(\mathcal{T}\mathcal{U}_0 = \mathcal{U}_0 \mathcal{T} \). Let \(\mathcal{T} := T_{a_0,c_0} \) be any element of \(\mathcal{U}_0 \). Note that \((\mathcal{T} \circ \mathcal{T}_0)^2 = T_{0,(a+a_0)^2q_0+1} \in \mathcal{U}_0 \). In fact, \((a+a_0)^2q_0+1 \in B \) since \(a+a_0 \in A \), and the claim follows by (**). Now, as \(\tilde{T} \) has exponent 4 and as every element of order two in \(\tilde{T} \) is in the center \(Z(\tilde{T}) \), cf. (2.3), we have

\[
\mathcal{T} \circ \mathcal{T}_0 = \mathcal{T} \circ \mathcal{T}_0(\mathcal{T} \circ \mathcal{T}_0^4 \circ \mathcal{T}^3) = (\mathcal{T} \circ \mathcal{T}_0)^2 \mathcal{T}_0^3 \circ \mathcal{T}^3 = (\mathcal{T} \circ \mathcal{T}_0)^4 \circ \mathcal{T}_0 \circ \mathcal{T} \in \mathcal{U}_0 \mathcal{T}.
\]

Finally, \(\Phi_{\mathcal{U}}(\mathcal{T} \circ \mathcal{T}_0) = \Phi_{\mathcal{U}}(\mathcal{T}) + \Phi_{\mathcal{U}}(\mathcal{T}_0) = a + a_0 \) implies \(\Phi_{\mathcal{U}}(\mathcal{U}) = A \) and \(\ker(\Phi_{\mathcal{U}}) \subseteq \ker(\Phi_{\mathcal{U}_0}) \), and the result follows.

Remark 6.4. Lemma 6.3(1) does not hold true for subgroups \(\mathcal{U} \) of order \(2^{u+\ell} \) with \(\ell > 1 \), as the following example shows. Fix an element \(e \in K \setminus \mathbb{F}_2 \). The set \(\mathcal{V} = \{ T_{0,0}, T_{0,1}, T_{0,e}, T_{0,e+1} \} \) is an elementary abelian subgroup of \(\tilde{T} \) of order \(2^u \) with \(v = 2 \). Assume that there is a subgroup \(\mathcal{U} \) of \(\tilde{T} \) of order \(2^d \) such that \(\mathcal{U}_2 = \mathcal{V} \). Then there are three pairwise distinct non-zero elements \(a_1, a_2, a_3 \in K \) and three elements \(c_1, c_2, c_3 \in K \) such that \(T_{a_i,c_i} (i = 1, 2, 3) \) together with \(T_{0,0} \) form a complete set of representatives of the cosets of \(\mathcal{U}/\mathcal{V} \). Furthermore, \(\Phi_{\mathcal{U}}(\mathcal{U}) = \{ 0, a_1, a_2, a_3 \} \) and \(a_3 = a_1 + a_2 \). On the other hand, we can assume \(a_1 = 1, a_2^{2q_0+1} = e, a_3^{2q_0+1} = e + 1 \) since \(T_{a_i,c_i}^2 = T_{0,a_i^{2q_0+1}} \). Then (*) implies \(a_3^{2q_0} + a_3 = 0 \), a contradiction.

Corollary 6.5. Let \(v \geq u \geq 0 \) integers such that \(v - u \leq s, u \leq 2s + 1 \) and \(v \leq 2u \). Then there exists a non-tame quotient curve of \(S \) whose genus is given by Theorem 6.1 provided that

\[
(6.1) \quad v - u \leq \log_2 (u + 1), \quad \text{or} \quad (v - u)(2s + 1).
\]

Proof. Suppose at first that both \(v - u \leq 2s + 1 \) and \(v - u \leq \log_2 (u + 1) \) hold. For any additive subgroup \(A \) of \(K \) of order \(2^{v-u} \), the additive subgroup \(B' \) of \(K \) generated by all elements in \(A^{2q_0+1} \) has order at most \(2^{2v-u} - 1 \). In fact, \(K \) can be viewed as a vector space over its subfield \(\mathbb{F}_2 \), and the subspace generated by \(A^{2q_0+1} \) has dimension at most \(2^{v-u} - 1 \).
Then there exists an additive subgroup \mathcal{B} of K of order 2^n containing \mathcal{B}', and the claim follows from Lemma 6.3(2).

Now suppose that $(v - u) \mid (2s + 1)$ and $v \leq 2u$. Then \mathbb{F}_{2^u} is a subfield of K. Let \mathcal{B} be any additive subgroup of order 2^n containing the additive group \mathcal{A} of \mathbb{F}_{2^u}.

In some cases we are also able to provide a plane model for $\tilde{S} = S/\mathcal{U}$.

Theorem 6.6. With the notation above, the following hold true:

1. Let $q = \bar{q}^n$ and \mathcal{U} be the elementary abelian subgroup of \tilde{T} consisting of all automorphisms $T_{0,c}$ with $c \in \mathbb{F}_{\bar{q}}$. Then the curve \tilde{S} has genus $\tilde{g} = q_0(\frac{2}{q} - 1)$, and a plane model over K of \tilde{S} is given by

 $$\sum_{i=0}^{n-1} V^q_i = U^{2q_0}(U^q + U);$$

2. For a cyclic subgroup \mathcal{U} of $\text{Aut}(S)$ of order 4, the curve \tilde{S} has genus $\tilde{g} = \frac{1}{4}q_0(q - 2)$, and a plane model over K of \tilde{S} is given by

 $$\sum_{i=0}^{2s} V^{2i} = \sum_{i=0}^{2s} U^{2i} + \sum_{i=0}^{s} \left(\sum_{j=i}^{s} U^{2j} \right) U^{2i} + \sum_{i=s+2}^{2s} \left(\sum_{j=0}^{i-s-2} U^{2j} \right) U^{2i}.\tag{2}$$

Proof. (1) We have $\mathcal{U} = U_2$ and the formula for the genus follows from Theorem 6.1. We consider now the morphism $\phi := (1 : x : z^q + z) : S \to \mathbb{P}^2$; then \tilde{S} is the non-singular model over K of $\phi(S)$ since $\phi^{-1}(\phi(P_{(a,c)})) = \{ P_{(a,c+e)} : e \in \mathbb{F}_{\bar{q}} \}$. To write a plane equation for $\phi(S)$ we use Eq. (3.5) with $U := x$ and $V := z^q + z$ taking into account that $z^q + z = (z^q + z) + (z^q + z)^q + \ldots + (z^q + z)^{q-1}$.

(2) Since the cyclic subgroups of $\text{Aut}(S)$ of order 4 are pairwise conjugate in $\text{Aut}(S)$ (cf. (2.4)), we may assume \mathcal{U} to be generated by $T_{1,0}$. Here U_2 has two elements and the formula for \tilde{g} follows from Theorem 6.6. We consider now the morphism $\phi := (1 : x^2 + x : x^3 + x + z^q + z) : S \to \mathbb{P}^2$. We have that \tilde{S} is the non-singular model over K of $\phi(S)$ since $\phi^{-1}(\phi(P_{(a,c)})) = \{ T_{1,0}^i : i = 1, \ldots, 4 \}$. To write a plane equation for $\phi(S)$ we notice that

$$\sum_{i=0}^{2s} (x^3 + x + z^q + z)^{2i} = \sum_{i=0}^{2s} (x^3 + x)^{2i} + z^q + z;$$

therefore, with $U := x^2 + x$ and $V := x^3 + x + z^2 + z$, by Eq. (3.5),

$$x^q + x = \sum_{i=0}^{2s} (x^2 + x)^{2i},$$

and $x^3 + x = (x^2 + x) + (x^3 + x^2)$:

$$\sum_{i=0}^{2s} V^{2i} = \sum_{i=0}^{2s} U^{2i} + \sum_{i=0}^{2s} (x^2 + x + x^{2q_0}) U^{2i}.\tag{2}$$

Now the claimed equation follows from the relations

$$x^{2i} + x^{2q_0} = \begin{cases}
\sum_{j=1}^{s} (x^2 + x)^{2j} & \text{if } i < s + 1, \\
0 & \text{if } i = s + 1, \\
(\sum_{j=0}^{s-i-2} (x^2 + x)^{2j})^{2q_0} & \text{if } i > s + 1.
\end{cases}$$
Type II. The basic fact here is that, up to conjugacy in $\text{Aut}(\mathcal{S})$, a subgroup \mathcal{U} of $\text{Aut}(\mathcal{S})$ of order 2^vr ($v, r > 1$, $r \mid (q - 1)$) is contained in $\tilde{\text{T}}\tilde{\text{N}}$; moreover, the orders of its elements are known, cf. (2.5).

Theorem 6.7. For a subgroup \mathcal{U} of $\tilde{\text{T}}\tilde{\text{N}}$ of order 2^vr, with $v, r > 1$ and $r \mid (q - 1)$, let the subgroup \mathcal{U}_2 of \mathcal{U} consist of all elements of order 2. If \mathcal{U}_2 has order 2^u, then

$$\tilde{g} = \frac{q_0}{2v-u} \left(\frac{q}{2^u} - 1 \right);$$

in particular, $u \leq 2s + 1$, $v - u \leq s$ and r divides $\frac{q}{2^u} - 1$.

Proof. The Riemann-Hurwitz genus formula states $2q_0(q - 1) - 2 = 2^vr(2\tilde{g} - 2) + \text{deg}(R)$, where R is the ramification divisor of the natural morphism $\mathcal{S} \to \tilde{\mathcal{S}}$. We have to look at the points $P \in \mathcal{S}$ for which there exists $T \in \mathcal{U}$ with $T(P) = P$, and compute $i_{T,P} = v_P(T^*(\ell) - \ell)$, ℓ being a local parameter at P; by (4.2) the only possible fixed point of \mathcal{U} is A_4. By the computation in the proof of Theorem 6.1,

$$\text{deg}(R) = (2q_0 + 2)(2^u - 1) + 2(2^v - 2^u) + \sum i_{T,A_4}$$

where the summation is extended over all the automorphisms $T \in \mathcal{U} \setminus \tilde{T}$ such that $T(A_4) = A_4$; from (4.2) we obtain $i_{T,A_4} = 2$ and the formula for \tilde{g} follows. The numerical conditions follow from the fact that \tilde{g} is a non-negative integer. □

Corollary 6.8. Let $u, v, r > 1$ be integers such that $v \geq u \geq 0$, $u \leq 2s + 1$, $v - u \leq s$ and r a divisor of $(q - 1)$ and $\frac{q}{2^u} - 1$. Then there is a non-tame quotient curve of \mathcal{S} whose genus is given by Theorem 6.7 provided that (6.1) holds true.

Proof. It follows from 6.3(2) and the structure of $\tilde{\text{T}}\tilde{\text{N}}$. □

Type III. The basic fact here is that each subgroup of $\text{Aut}(\mathcal{S})$ of order $2r$, $r > 1$ and $r \mid (q - 1)$, is conjugate to a subgroup of the dihedral subgroup $N_{\text{Aut}(\mathcal{S})}(\mathcal{N})$; cf. (2.6). We show the following.

Theorem 6.9. Let \mathcal{U} be a subgroup of $\text{Aut}(\mathcal{S})$ of order $2r$ with $r > 1$ a divisor of $q - 1$. Then the quotient curve $\tilde{\mathcal{S}} = \mathcal{S}/\mathcal{U}$ has genus $\tilde{g} = \frac{q_0}{2} \left(\frac{q-1}{r} - 1 \right)$, and a plane model over K of $\tilde{\mathcal{S}}$ is given by

$$f(V) = \sum (-1)^{i+j}(i+j-1)! \frac{i!j!}{U^iV^j(1 + V^{q_0})},$$

where the summation is extended over all pairs (i,j) of non-negative integers with $i + 2j = (q - 1)/r$, and $f(t)$ is the polynomial defined in (4.1).

Proof. The genus: The subgroup $N_{\text{Aut}(\mathcal{S})}(\tilde{\mathcal{N}})$ is a dihedral group of order $2(q - 1)$ which comprises $\tilde{\mathcal{N}}$ together with a coset consisting entirely of elements of order 2. Hence \mathcal{U} has $r - 1$ non-trivial elements of odd order and each of the remaining r elements in \mathcal{U} has order 2. Thus, by (4.2), the degree of the ramification divisor of the natural morphism $\mathcal{S} \to \tilde{\mathcal{S}}$ is $(2q_0 + 2)r + 2(r - 1)$ and the result follows from the Riemann-Hurwitz genus formula.
A plane model: Let $\psi := \tilde{\phi} \circ \phi : S \to \mathbb{P}^2$, where ϕ is the morphism defined in Section 4 and $\tilde{\phi}$ is the morphism on $\phi(S)$ defined by $(X : 1 : Z) \mapsto (1 : XZ : X^r + Z^r)$. We claim that \tilde{S} is the non-singular model over K of $\psi(S)$. Since ϕ is birational (see Lemma 4.5), to prove this claim it is enough to check that $\# \tilde{\phi}^{-1}(\tilde{\phi}(P)) = 2r$ for a (generic) point $P = (a : 1 : c) \in \phi(C)$. We have that $(a\tau^{-i} : 1 : c\tau^i), (c\tau^{-i} : 1 : a\tau^i) \in \tilde{\phi}^{-1}(\tilde{\phi}(P))$ ($i = 1, \ldots, r$), where τ is an element of order r in K^*. On the other hand, let $P' = (\tilde{a} : 1 : \tilde{c})$ such that $\tilde{\phi}(P') = \tilde{\phi}(P)$. Then \tilde{a}^r and \tilde{c}^r are the roots of $W^2 + (a^r + c^r)W + a^r c^r = 0$ and whence the claim is proved.

To find an equation of $\psi(S)$ we start from the equation defining $\phi(S)$ in Lemma 4.5:

$$f(\tilde{X}\tilde{Y}) = (1 + (\tilde{X}\tilde{Y})^g_0)((\tilde{X}^{r^{(-1)/r}} + (\tilde{Y}^r)^{(q-1)/r})$$

Thus we need a formula relating the form $A^m + B^m$ with polynomials of type $A + B$ and A^rB^r. We can do that by means of Waring’s formula in two indeterminates over a finite field [22, Thm. 1.76], namely

$$(6.2) \quad A^m + B^m = \sum (-1)^{i+j} \frac{(i+j-1)!m}{i!j!} (A + B)^i(AB)^j,$$

where the summation is extended over all pairs (i, j) of non-negative integers for which $i + 2j = m$ holds. Now the result follows by taking $m = \frac{q-1}{r} \equiv 1 \pmod{2}$, $U := \tilde{X}^r + \tilde{Y}^r$ and $V := \tilde{X}\tilde{Y}$.

Type IV. We use the fact that each subgroup of Aut(S) of order $2r$, $r > 1$ and $r \mid (q \pm 2q_0 + 1)$, is conjugate under Aut(S) to a subgroup of the dihedral subgroup of Aut(S) which comprises the Singer subgroups $S_{\pm 1}$ together with a coset consisting entirely of non-trivial elements of order 2; cf. (2.7).

Theorem 6.10. Let $r > 1$ be an integer and \mathcal{U} a subgroup of Aut(S) of order $2r$.

1. If r is a divisor of $q + 2q_0 + 1$, the quotient curve $\tilde{S} = S/\mathcal{U}$ has genus

$$\tilde{g} = \frac{q_0 - 1}{2} \left(\frac{q + 2q_0 + 1}{r} - 1 \right).$$

Furthermore, a plane model over \mathbb{F}_{q^t} of \tilde{S} is given by

$$\tilde{f}(V) = \sum (-1)^{i+j} \frac{(i+j-1)!}{i!j!} U^iV^{rj},$$

where the summation is extended over all pairs (i, j) of non-negative integers with $i + 2j = (q + 2q_0 + 1)/r$, and $\tilde{f}(t)$ is the polynomial defined in (5.1);

2. If r is a divisor of $q - 2q_0 + 1$, the quotient curve $\tilde{S} = S/\mathcal{U}$ has genus

$$\tilde{g} = \frac{q_0 + 1}{2} \left(\frac{q - 2q_0 + 1}{r} - 1 \right).$$

Furthermore, a plane model over \mathbb{F}_{q^t} of \tilde{S} is given by

$$bf(V) = \sum (-1)^{i+j} \frac{(i+j-1)!}{i!j!} U^iV^{rj}(V^{q_0-1} + V^{2q_0-1}),$$

where the summation is extended over all pairs (i, j) of non-negative integers with $i + 2j = (q - 2q_0 + 1)/r$.

- **Proof.**
where the summation is extended over all pairs (i, j) of non-negative integers with $i + 2j = (q - 2q_0 + 1)/r$, $f(t)$ defined in (4.1), and b as in Theorem 5.1(2).

Proof. The genus: The subgroup U has $r - 1$ non-trivial elements of odd order and r of even order; thus the degree of the ramification divisor is $(2q_0 + 2)r + \tilde{R}$ (cf. proof of Theorem 6.1). By (4.2), in case (1) we obtain $\tilde{R} = 0$ and in case (2), $\tilde{R} = 4(r - 1)$. Now the result follows from the Riemann-Hurwitz genus formula.

A plane model: To find the equations stated above we argue as in the proof of Theorem 6.9. For the case (1), the corresponding morphism ϕ is taken to be the one defined in Section 5; we use the plane model of S in Lemma 5.5 written as

$$\tilde{f}(\tilde{X}\tilde{Y}) = (\tilde{X}^r)^{(q+2q_0+1)/r} + (\tilde{Y}^r)^{(q+2q_0+1)/r}.$$

Then we get the claimed equation from (6.2) with $m = \frac{q+2q_0+1}{r} \equiv 1 \pmod{2}$, $U := \tilde{X}^r + \tilde{Y}^r$ and $V := \tilde{X}\tilde{Y}$. For the case (2) we use the plane model of S stated in Lemma 5.7. □

Type V. We use the fact that any any subgroup of $\text{Aut}(S)$ order $4r$ with $r > 1$ and $r \mid (q \pm 2q_0 + 1)$ is conjugate in $\text{Aut}(S)$ to a subgroup of $N_{\text{Aut}(S)}(S_{\pm 1})$ (which has order $4(q \pm 2q_0 + 1)$).

Theorem 6.11. Let U be a subgroup of $\text{Aut}(S)$ of order $4r$, with a divisor $r > 1$ of $q \pm 2q_0 + 1$. Then the genus \tilde{g} of the quotient curve $\tilde{S} = S/U$ is given by

$$\tilde{g} = \begin{cases}
\frac{q_0-1}{4} + \frac{q_0+2q_0+1}{r} - 1 & \text{for } r \mid (q + 2q_0 + 1), \\
\frac{q_0+1}{4} + \frac{q_0-2q_0+1}{r} - 1 & \text{for } r \mid (q - 2q_0 + 1).
\end{cases}$$

Proof. The subgroup U comprises r elements of odd order together with the same number of elements of order 2 and $2r$ elements of order 4. By (4.2) the degree of the ramification divisor of the natural map $S \to \tilde{S}$ is $(2q_0 + 2)r + (2r)2 + \tilde{R}$, where $\tilde{R} = 0$ if $r \mid (q + 2q_0 + 1)$ and $\tilde{R} = 4(r - 1)$ if $r \mid (q - 2q_0 + 1)$. Now the proof follows by the Riemann-Hurwitz genus formula. □

Type VI. Let $q_0 = 2^s$. Set $\tilde{q} := 2^{2s+1}$, with s a divisor of s such that $2s + 1$ divides $2s + 1$. This is an arithmetical (necessary) condition in order that $\text{Aut}(S)$ contains a subgroup U isomorphic to $S_{\pm 1}(\tilde{q})$.

Theorem 6.12. With the notation above, the genus of $\tilde{S} = S/U$ is given by

$$\tilde{g} = \frac{q_0(q - 1) - 1 + (\tilde{q}^2 + 1)\tilde{q}^2(\tilde{q} - 1) + \Delta}{(\tilde{q}^2 + 1)\tilde{q}^2(\tilde{q} - 1)},$$

where

$$\Delta := (\tilde{q}^2 + 1)((2q_0 + 2)(\tilde{q} - 1) + 2\tilde{q}(\tilde{q} - 1)) + \tilde{q}^2(\tilde{q}^2 + 1)(\tilde{q} - 2) + \tilde{q}^2(\tilde{q} + 2q_0 + 1)(\tilde{q} - 1)(\tilde{q} - 2\tilde{q}_0).$$

Proof. It is straightforward to see that U has $(\tilde{q}^2 + 1)(\tilde{q} - 1)$ elements of order 2, and $(\tilde{q}^2 + 1)(\tilde{q}^2 - \tilde{q})$ elements of order 4. Furthermore, U has $\frac{1}{2}\tilde{q}^2(\tilde{q}^2 + 1)$ subgroups of order $\tilde{q} - 1$. Also, U has $\frac{1}{4}\tilde{q}^2(\tilde{q} + 2\tilde{q}_0 + 1)(\tilde{q} - 1)$ subgroups of order $\tilde{q} - 2\tilde{q}_0 + 1$. Finally, U has
$\frac{1}{4}q^2(q - 2q_0 + 1)(q - 1)$ subgroups of order $q + 2q_0 + 1$. Thus by (4.2) the degree of the ramification divisor of $S \to \bar{S}$ equals

$$(q^2 + 1)[(2q_0 + 2)(q - 1) + 2q(q - 1)] + q^2(q^2 + 1)(q - 2) + q^2(q + 2q_0 + 1)(q - 1)(q - 2q_0),$$

whence the assertion follows by the Riemann-Hurwitz genus formula.

7. On curves with many rational points

Let $N_q(g)$ be the maximum number of K-rational points that a curve over K of genus $g > 0$ can have. Our references for this section are [9] and [8].

The study of the function $N_q(g)$ is strongly motivated by applications, as already mentioned in the Introduction; in particular, good Goppa geometric codes have been constructed from the Suzuki curve by Matthews [24]. In general, no closed formula for $N_q(g)$ is known. The study of $N_q(g)$ viewed as function of g was initiated by Serre [29]. He was able to compute $N_q(1)$ and $N_q(2)$.

For any non-negative integer g,

$$(7.1) \quad a_q(g) \leq N_q(g) \leq b_q(g) \leq q + 2g\sqrt{q} + 1,$$

where $a_q(g)$ is the number of K-rational points of a specific curve over K of genus g, and $b_q(g)$ is a theoretical upper bound. One often takes $b_q(g)$ as the smallest number among the Serre’s bound, Ihara’s bound (cf. [8, p. 1]), or the one obtained via Explicit Formulas (see e.g. [31, V.3.4]).

We shall investigate the left hand side inequality in (7.1) with $q = 2q_0$, and $g = \tilde{g}$ the genus of a quotient curve \bar{S} of the Suzuki curve S. Note that by (3.1) $\#\bar{S}(K) = q + 2q_0\tilde{g} + 1 \geq \lceil b/\sqrt{2} \rceil$: thus we might expect “many” K-rational points from the curve \bar{S} (this is the case when $q \leq 128$ and $\tilde{g} \leq 50$ according to [8, Sect. 1]). We only consider the cases $q_0 = 2$, $q_0 = 4$, $q_0 = 8$, $\tilde{g} \leq 50$ in such a way that we can compare the number of rational points of the curves studied in this paper with the entries of van der Geer and van der Vlugt tables [8]; we remark that such tables are updated periodically.

1. $q_0 = 2$. Here $\#\bar{S}(K) = 9 + 4\tilde{g}$. We have the following data:

<table>
<thead>
<tr>
<th>References</th>
<th>Cor. 6.5</th>
<th>Thm. 4.1</th>
<th>Cor. 6.5</th>
<th>Cor. 6.5</th>
<th>Cor. 6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>\tilde{g}</td>
<td>14</td>
<td>18</td>
<td>24</td>
<td>33 - 35</td>
<td>65</td>
</tr>
<tr>
<td>$N_{\tilde{g}}(\tilde{g})$</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>33</td>
<td>65</td>
</tr>
<tr>
<td>$#\bar{S}(K)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The curve of genus 2 almost attains $N_{\tilde{g}}(2)$; it is given by

$$V^2 + V = \frac{(1 + U)^2U^4}{f(U)},$$

where $f(U) = U^3 + U^2 + 1$ (Remark 4.7). It would be interesting to find an explicit equation of a plane model of a curve realizing $N_{\tilde{g}}(2)$. However, this appears to be out of reach. The cases $\tilde{g} = 6, 14$ were already noticed by Stichtenoth [30, p. 205].

2. $q_0 = 4$. Here $\#\bar{S}(K) = 33 + 8\tilde{g}$. We have the following data:
We have $113 \leq N_{32}(10) \leq 143$, where the upper bound is obtained from Serre’s bound.

The equation of S is given by

$$bf(V) = (U^5 + U^3V^5 + UV^{10})(V^3 + V^7),$$

where $b = \lambda^4 + \lambda^3 + \lambda^{-4} + \lambda^{-3}$ with $\lambda \in F_{32^4}$ of order 25, and $f(V) = 1 + V^2(1 + V) + V^9(1 + V)^2$. The cases $\bar{g} = 12$, $\bar{g} = 28$ and $\bar{g} = 30$ were already noticed by van der Geer and van der Vlugt [11] via fiber product of certain Artin-Schreier curves. We do not know if such curves are isomorphic to the corresponding quotient curves S here. The curve of genus $\bar{g} = 14$ almost attains $N_{32}(14)$. We have $225 \leq N_{32}(24) \leq 245$, where the upper bound is obtained from Ihara’s bound; a plane model of S is given by

$$bV^5f(U) = (U^3 + U^7)(U^{25} + V^{10}),$$

where b and $f(U)$ are as above.

3. $q_0 = 8$. Here $\#S(K) = 129 + 16\bar{g}$. We have the following data:

<table>
<thead>
<tr>
<th>Reference</th>
<th>\bar{g}</th>
<th>$N_{32}(\bar{g})$</th>
<th>$#S(K)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cor. 6.5</td>
<td>1</td>
<td>150</td>
<td>145</td>
</tr>
<tr>
<td>Cor. 6.5</td>
<td>2</td>
<td>172</td>
<td>161</td>
</tr>
<tr>
<td>Cor. 6.5</td>
<td>3</td>
<td>192</td>
<td>177</td>
</tr>
<tr>
<td>Cor. 6.5</td>
<td>4</td>
<td>215 - 217</td>
<td>193</td>
</tr>
<tr>
<td>Cor. 6.5</td>
<td>6</td>
<td>243 - 261</td>
<td>225</td>
</tr>
<tr>
<td>Thm. 6.11</td>
<td>7</td>
<td>258 - 283</td>
<td>241</td>
</tr>
<tr>
<td>Cor. 6.5</td>
<td>8</td>
<td>257 - 305</td>
<td>257</td>
</tr>
<tr>
<td>Cor. 6.5</td>
<td>12</td>
<td>321 - 393</td>
<td>321</td>
</tr>
<tr>
<td>Thm. 6.10(1)</td>
<td>14</td>
<td>353 - 437</td>
<td>353</td>
</tr>
<tr>
<td>Thm. 5.1(2)</td>
<td>24</td>
<td>513 - 657</td>
<td>513</td>
</tr>
<tr>
<td>Cor. 6.5</td>
<td>28</td>
<td>577 - 745</td>
<td>577</td>
</tr>
<tr>
<td>Cor. 6.5</td>
<td>30</td>
<td>609 - 789</td>
<td>609</td>
</tr>
<tr>
<td>Thm. 5.1(1)</td>
<td>36</td>
<td>...</td>
<td>705</td>
</tr>
<tr>
<td>Thm. 6.11</td>
<td>49</td>
<td>...</td>
<td>913</td>
</tr>
</tbody>
</table>
For \(\tilde{g} = 8 \), the existence of a curve with 257 \(K \)-rational points was pointed out by Wirtz [34]. We have that \(\tilde{S} \) is hyperelliptic and it is defined by (cf. Remark 4.7)

\[
V^2 + V = \frac{(1 + U)^8 U^{64}}{f(U)},
\]

where \(f(U) = 1 + U^8(1 + U) + U^{25}(1 + U)^2 + U^{59}(1 + U)^4 \). We do not know whether \(\tilde{S} \) is isomorphic to Wirtz’s curve. For \(\tilde{g} = 12, 14, 24, 28, 30 \), the existence problem was solved affirmatively by van der Geer and van der Vlugt [11], [10]. Again, it is still unknown to us whether such curves are isomorphic to the corresponding \(\tilde{S} \). Furthermore, \(705 \leq N_{128}(36) \leq 921 \); here the upper bound follows from Serre’s bound. A plane equation for \(\tilde{S} \) is given by

\[
V^5 \tilde{f}(U) = U^{145} + V^{10},
\]

where \(\tilde{f}(U) = 1 + U^8(1 + U) + U^{16}(1 + U)^{10} + U^{32}(1 + U)^{28} + U^{64} \). Finally, \(913 \leq N_{128}(49) \leq 1207 \) where, again, the upper bound follows from Serre’s bound. Unfortunately in this case we do not have an explicit plane model for \(\tilde{S} \).

Acknowledgement: M. Giulietti and G. Korchmáros were supported by the Italian Ministry MIUR, project Strutture Geometriche, Combinatoria e loro applicazioni, PRIN 2001-2002, and by GNSAGA. The work of F. Torres was supported by the “Secretaria de Estado de Educación y Universidades del Ministerio de Educación, Cultura y Deportes de España” (SB2000-0225), CNPq-Brazil (306676/03-6) and PRONEX (66.2408/96-9).

References

