On maximal curves of Fermat type

Saeed Tafazolian* and Fernando Torres†

July 31, 2014

Abstract

The aim of this paper is to give a characterization of a maximal curve given by the equation $x^n + y^m = 1$ over a finite field \mathbb{F}_{q^2}.

By a curve over a field k we mean a projective, non-singular, algebraic curve defined over k and irreducible over the algebraic closure \overline{k} of k. A curve C of genus $g = g(C)$ defined over a finite field \mathbb{F}_{q^2} with q^2 elements is called maximal over \mathbb{F}_{q^2} if the cardinality of the set $C(\mathbb{F}_{q^2})$ of its \mathbb{F}_{q^2}-rational points attains the Hasse-Weil upper bound, that is,

$$\#C(\mathbb{F}_{q^2}) = q^2 + 1 + 2gq.$$

Ihara (see [11, Proposition 5.3.3]) showed that if a curve C is maximal over \mathbb{F}_{q^2}, then

$$g(C) \leq (q - 1)/2.$$

Maximal curves with genus $(q - 1)q/2$ have been characterized, see [10]. Up to \mathbb{F}_{q^2}-isomorphism, there is just one maximal curve over \mathbb{F}_{q^2} with this genus, the so-called Hermitian curve H which can be given by the equation

$$x^{q+1} + y^{q+1} = 1.$$

Remark 1. As J. P. Serre has pointed out (see e.g. [8, Proposition 2.3]), if there is a morphism defined over the field k between two curves $f : C \rightarrow D$, then the L-polynomial of D divides the one of C. Hence a subcover D of a maximal curve C is also maximal. So one way to construct explicit maximal curves is to find equations for subcovers of the Hermitian curve (see e.g. [1], [4], [2]).

*The first author was supported by FAPESP/SP-Brazil grant 2012/02255-3.
†The second author was supported by CNPq-Brazil grant 306324/2011-3.
General facts on maximal curves can be seen in [3], [7, Chapter 10].
In this paper, we consider maximal curves $C(n, m)$ given by the equation
\[x^n + y^m = 1 \]
on a finite field with q^2 elements. From [11, Example 6.3.3] it follows that
\[g(C(n, m)) = 1/2[(n - 1)(m - 1) - \gcd(n, m) + 1]. \]
In the particular case, when $n = m$, it has been proved that the Fermat curve $C(m): x^m + y^m = 1$ is maximal over \mathbb{F}_{q^2} if and only if m divides $q + 1$; see [6, Theorem 4.4]
and also Theorem 4 here.

From Lemma 1 in [10] we have that:

Proposition 2. Let C be a maximal curve over \mathbb{F}_{q^2}, and let P_0 and P_1 be two rational points. Then
\[(q + 1)P_0 \sim (q + 1)P_1. \]
This result says that the linear system $|(q + 1)P_0|$, P_0 a rational point, is an \mathbb{F}_{q^2}-invariant of the curve. In particular, we have that $q + 1 \in H(P_0)$, the Weierstrass semigroup at P_0, i.e., $(q + 1)$ is a pole number at any rational point.

In [1] the authors use Lemma 3 below to characterize maximal Hurwitz curves, i.e., plane curves of type $x^my + y^m + x = 0$. Here we state some other applications of this lemma; for the sake of completeness we write a proof of such a result.

Lemma 3. Let C be a maximal curve over \mathbb{F}_{q^2}, and let P_0 and P_1 be two rational points. Suppose that there exists a natural number m such that $mP_0 \sim mP_1$. If $d := \gcd(m, q + 1)$, then d is a pole number at P_0.

Proof. We can find two integers r and s such that $d = rm + s(q + 1)$. As we have $mP_0 \sim mP_1$, then $rmP_0 \sim rmP_1$. And also according to Proposition 2, we get $s(q + 1)P_0 \sim s(q + 1)P_1$. Hence we obtain
\[dP_0 \sim dP_1 \]
and so the result follows. \qed

Now we are able to prove the main result of this paper, namely Theorem 5 below. First we give a simple proof of [6, Theorem 4.4].

Theorem 4. Let $C(m): x^m + y^m = 1$ be the Fermat curve of degree m defined over \mathbb{F}_{q^2}. Then $C(m)$ is maximal over \mathbb{F}_{q^2} if and only if m divides $q + 1$.

\[2 \]
Proof. (cf. [12, Theorem 5]) Suppose \(C(m) \) is maximal over \(\mathbb{F}_{q^2} \). We first show that

\[
q^2 \equiv 1 \pmod{m}.
\]

In fact, let \(f = \gcd(m, q^2 - 1) \). If \(C(m) \) is maximal over \(\mathbb{F}_{q^2} \), then the curve \(C_1 \) given by the equation \(y^f = 1 - x^m \) is also maximal since it is covered by the curve \(C(m) \). We also have

\[
\{ \alpha \in \mathbb{F}_{q^2} \mid \alpha \text{ is } m\text{-th power} \} = \{ \alpha \in \mathbb{F}_{q^2} \mid \alpha \text{ is } f\text{-th power} \}.
\]

The plane curve \(C_1 \) possesses just one infinite point, which is the center of \(f \) places of degree 1 in the function field \(\mathbb{F}_{q^2}(C_1) \), and that \(f \) is just the number of places of degree 1 centered at infinite points of \(C(m) \). Hence \(\#C(m)(\mathbb{F}_{q^2}) = \#C_1(\mathbb{F}_{q^2}) \). Therefore \(g(C(m)) = g(C_1) \) and we conclude that \(f = m \).

Consider now the affine equation of the curve: \(x^n + y^m = 1 \). For \(\alpha^m = \beta^m = 1 \) let \(P_\alpha = (0, \alpha) \) and \(P_\beta = (0, \beta) \). Hence \(P_\alpha \) and \(P_\beta \) are rational points because \(m \) divides \(q^2 - 1 \). Then \(\text{div}(y - \alpha) = mP_\alpha - D_1 \) and \(\text{div}(y - \beta) = mP_\beta - D_1 \), for some divisor \(D_1 \). Thus

\[
mP_\alpha \sim mP_\beta.
\]

We also have \(\text{div}(y) = \sum_\alpha P_\alpha - D_1 \); and so the Weierstrass semigroup at \(P_\alpha \) is generated by \(m - 1 \) and \(m \). If \(d := \gcd(m, q + 1) \), then by Lemma 3 \(d \in H(P_\alpha) \). Thus \(d = a(m - 1) + bm \) with \(a, b \geq 0 \), and \(m = cd = ca(m - 1) + bm \). It follows that \(d = m \). Conversely if \(m \) divides \(q + 1 \), then the curve \(C(m) \) is covered by the Hermitian curve \(H \) and so is maximal over \(\mathbb{F}_{q^2} \). This completes the proof. \(\square \)

Now we can generalize this result as follows:

Theorem 5. Suppose \(q \) is a power of a prime number \(p \) and let \(m > 1 \) and \(n > 1 \) be integers such that \(\gcd(p, m) = \gcd(p, n) = 1 \). Then the smooth complete curve \(C(n, m) \) corresponding to \(x^n + y^m = 1 \) is maximal over \(\mathbb{F}_{q^2} \) if and only if both integers \(n \) and \(m \) divide \(q + 1 \).

Proof. Suppose \(m \) and \(n \) divide \(q + 1 \). Let \(q + 1 = na = mb \) and consider the following morphism

\[
\begin{align*}
\mathcal{H} & \rightarrow C(n, m) \\
(x, y) & \mapsto (x^n, y^m).
\end{align*}
\]

Hence \(C(n, m) \) is covered by the Hermitian curve and Remark 1 implies that \(C(n, m) \) is maximal over \(\mathbb{F}_{q^2} \).

Consider now the affine equation of the curve: \(x^n + y^m = 1 \). If the curve \(C(n, m) \) is maximal over \(\mathbb{F}_{q^2} \) then as in the proof of Theorem 4 we can show that both \(n \) and \(m \) divide \(q^2 - 1 \). Now as \(m > 1 \) and \(n > 1 \) we have non-trivial factorization in prime
numbers, \(m = p_1^{r_1} \ldots p_t^{r_t} \) and \(n = p_1^{s_1} \ldots p_t^{s_t} \). Set \(w_i = \max\{r_i, s_i\} \). Then we shall show that \(p_i^{w_i} \) divides \(q + 1 \) for all \(1 \leq i \leq t \). By Remark 1, the curve

\[
x^{p_i^{w_i}} + y^{p_j^{s_j}} = 1
\]

is maximal over \(\mathbb{F}_{q^2} \). Two cases might arise,

Case \(p_i = p_j \). Here again by Remark 1 the curve \(x^{p_i} + y^{p_i} = 1 \) is maximal over \(\mathbb{F}_{q^2} \) so that \(p_i \) divides \(q + 1 \) by Theorem 4. Let \(w_i \geq 2 \). If \(p_i > 2 \), then \(p_i^{w_i} \) divides \(q + 1 \) since \(m \) and \(n \) divide \(q^2 - 1 \) and \(\gcd(q + 1, q - 1) = 2 \). Let \(p_i = 2 \). We are led to a maximal curve over \(\mathbb{F}_{q^2} \) defined by an equation of type \(x^{2r+1} + y^2 = 1 \), where \(q + 1 = 2^s \) with \(s \) an odd integer. It has been shown that the Hasse-Witt invariant of this curve is not zero [13, Lemma 10] so that it cannot be maximal; this rule out the case \(p_i = 2 \).

Case \(p_i \neq p_j \). In this case, we can assume \(m = p_i^{r_i} \) and \(n = p_j^{s_j} \) so that \(\gcd(n, m) = 1 \). Due to similarity, we only show that \(m \) divides \(q + 1 \). For \(\alpha^n = \beta^n = 1 \), let \(P_\alpha = (\alpha, 0) \) and \(P_\beta = (\beta, 0) \). Hence \(P_\alpha \) and \(P_\beta \) are \(\mathbb{F}_{q^2} \)-rational points of \(\mathcal{C}(n, m) \). Thus we obtain that \(\text{div}(x - \alpha) = mP_\alpha - D_1 \) and \(\text{div}(x - \beta) = mP_\beta - D_1 \) for some positive divisor \(D_1 \). Thus

\[
mP_\alpha \sim mP_\beta
\]

and from from Lemma 3 we get that \(d := \gcd(m, q + 1) \) belongs to the Weierstrass semigroup \(H(P_\alpha) \) at \(P_\alpha \).

On the other hand, from [9, p. 115] it is known that \(H(P_\alpha) \) is given by

\[
H(P_\alpha) = \mathbb{N} - \{im + j + 1 \mid i, j \geq 0 \text{ and } 2g - 2 - (im + jn) \geq 0\}.
\]

Thus, as \(d = 0m + (d - 1) + 1 \), then \(2g - 2 - [0m + (d - 1)n] < 0 \) since \(d \in H(P_\alpha) \). This means that \(dn > nm - m - 1 \). If \(n > 2 \), then it is clear that \(d > m/2 \). If \(n = 2 \), then we have \(2d > m - 1 \). So \(2d > m \) since \(\gcd(n, m) = 1 \). Hence we conclude that \(d = m \).

Remark 6. Let \(m \) be a positive integer number. Then the curve

\[
\mathcal{C}(1, m) : x + y^m = 1
\]

is clearly maximal over \(\mathbb{F}_{q^2} \) for any \(q \). In particular, not necessarily \(m \) divides \(q + 1 \).

Remark 7. Suppose \(\text{char}(k) = p > 2 \). In [13] the author has shown that the hyperelliptic curve given by the equation \(y^2 = x^m + 1 \) is maximal over \(\mathbb{F}_{q^2} \) if and only if \(m \) divides \(q + 1 \); Theorem 5 generalizes this result.

Remark 8. For \(n, m > 1 \) integers, Theorem 5 shows that the curve \(x^n + y^m = 1 \) is maximal over \(\mathbb{F}_{q^2} \) if and only if it is covered by the Hermitian curve \(\mathcal{H} \) over \(\mathbb{F}_{q^2} \).
We finish this note by giving another application of Lemma 3 above. In particular, we give a simple proof of [5, Theorem 1.2].

Theorem 9. Let \(C \) be a maximal curve over \(\mathbb{F}_{q^2} \), \(q \) a power of \(p \), given by an equation of the form
\[
A(x) = y^m \quad \text{with} \quad \gcd(p, m) = 1,
\]
where \(A(x) \in \mathbb{F}_{q^2}[x] \) is an additive and separable polynomial with \(\deg(A(x)) > 1 \). Then we must have that \(m \) divides \(q + 1 \).

Proof. Suppose \(\deg(A(x)) = p^t \). Let \(P_0 \) and \(P_\infty \) be the \(\mathbb{F}_{q^2} \)-rational points over \(x = 0 \) and \(x = \infty \), respectively. Then \(mP_0 \sim mP_\infty \) and hence by using Lemma 3, \(d := \gcd(m, q + 1) \in H(P_\infty) \). One can show that \(p^t \) and \(m \) are both pole numbers at \(P_\infty \) and thus the Weierstrass semigroup \(H(P_\infty) \) is generated by \(p^t \) and \(m \) as \(g(C) = (p^t - 1)(m - 1)/2 \) (loc. cit.). This implies \(d = m \). \(\Box \)

Acknowledgment. We are grateful to H. Stichtenoth who suggested us to write some applications of Lemma 3. We also thank the referee for pointing out Remark 6 and for valuable comments and suggestions which led to improve the exposition of the paper. We also want to thank H. Borges for point out to us a mistake in the proof of Theorem 9.

References

UNICAMP/IMECC
Rua Sérgio Buarque de Holanda, 651
Cidade Universitária, 13083 - 859
Campinas, SP, Brazil.
E-mail: tafazolian@ime.unicamp.br, fتورres@ime.unicamp.br