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Abstract

The aim of this paper is to study the resolution of topological optimization in
contact problems via an inexact restoration algorithm for solving bilevel program-
ming problems. We present computational experiments for bi-dimensional frames.
The problem is to minimize the strain energy subject to volume constraints and
frictionless contact.

In structural optimization the free variables of an optimization problem are
usually only the design variables. The displacement field is considered a function of
the design variables, that are given implicitly through the equilibrium constraints.
Many algorithms used to solve these problems compute at each iteration of the
optimization process a solution of the equilibrium constraints and use the adjoint
method to make the sensitivity analysis.

The approach presented here treats all the constraints and variables explicitly.
We allow infeasibilities during the optimization process and work with all the vari-
ables as independent, so the sensibility analysis simplifies considerably. The algo-
rithm consists of two phases, one related with feasibility and the other with opti-
mality. We are free to choose any efficient algorithm for each of the phases. It is
not necessary to use non-smooth algorithms.
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Figure 1: Configuration of the nine-truss frame.

1 A nine-truss frame system

We study the nine-truss frame system shown in figure 1. The length of each truss is
denoted by li and its cross section area by Ai, for i = 1, . . . , 9.

We assume that the displacements at nodes 1 and 2 are only vertical. Vertical and
horizontal loads may be applied on the nodes and three rigid obstacles are at positions
sp1, sp2, sp3.

The structural optimization problem consists in finding the value of the cross section
that maximizes the stiffness of the system under a volume (material) constraint. In
the mathematical formulation of this problem the design variables are the cross section
areas Ai and the objective function to be minimized is the system’s strain energy. The
constraints represent the equilibrium of the system, that in this case is a frictionless
contact problem, and the upper bound of the volume. It can be formulated as the following
bilevel programming problem:

Minimize
A,u

W (A, u)

subject to





0 ≤ Ai ≤ A
V (A)− V ≤ 0
u = argmin

u
Wα(A, u)− P T u

s.t. u ∈ K

(1)
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where A ∈ IR9 is the vector of the cross section areas, u ∈ IR12 is the vector of displace-
ments and V =

∑9
i=1 Aili is the total volume of the bars effectively used at any frame

configuration and u ∈ IR12 is the vector containing the displacements of the six nodes of
the structure. The displacement components at each node k are such that

uk
x = u2k−1 uk

y = u2k.

Directions x and y are coincident with the directions of the global coordinate system (see
Figure 1). The set of admissible displacements is given by K = {U ∈ IR12 | u1 = 0, u3 =
0, u6 ≥ sp1, u10 ≥ sp2 and u12 ≤ sp3}. The elastic strain energy stored in the frame is
given by W =

∑9
i=1 wi where wi is the contribution of each truss of the frame:

wi =
AiE

2li
(νi

1 νi
2 νi

3 νi
4)




c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2







νi
1

νi
2

νi
3

νi
4


 , i = 1, . . . , 9.

In this last expression (νi
1 νi

2 νi
3 νi

4) are the displacements of the first and second nodes
of the i-th truss, and c = cos θ, s = sin θ, where θ is the angle between the truss and
the x axes of the global coordinate system. We consider (A, u) ∈ Ω a compact set and
V is the maximum volume allowed, and P is the vector of loads. We also introduce a
regularization in the lower level objective function adding a term involving the vertical
displacement at node 2 as follows:

Wα(A, u) = W (A, u) +
1

2
k(u4)

2 k ¿ AiE

li
∀ i = 1, ..., 9

2 Inexact restoration technique for bilevel program-

ming problems

The inexact-restoration algorithm introduced in [6] is an iterative method for solving
nonlinear programming problems, that at each iteration determines using two phases, a
new approximation of the solution. In the first phase, called restoration phase, it seeks
for a more feasible point. In the second one, called the optimization phase it finds a point
that sufficiently decreases the Lagrangian of the problem in an approximated tangent set.
A merit function is used to measure the progress of the whole process.

An adaptation of the inexact-restoration approach for bilevel problems was proposed
in [1] to deal with problems formulated as:
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Minimize
r,s

F (r, s)

s.t.





s = argmin
s

f(r, s)

s.t.

{
h(r, s) = 0
s ≥ 0

(2)

where r ∈ X, s ∈ Y , F, f : IRnr+ns → IR and h : IRnr+ns → IRm are continuous, and
∇F (r, s), ∇f(r, s) and ∇h(r, s), exist and are continuous.

The technique proposed proceeds at each iteration, as in the nonlinear programming
case, in two different phases to improve respectively the feasibility and the optimality.
The main advantage in this case is that the follower’s problem, that characterizes the
feasible set, can be solved, in the restoration phase, without reformulation.

In order to solve problem (2), some definitions and specifications on the original al-
gorithm are necessary and, under some assumptions, it can be proved that the proposed
algorithm is well defined an converge to feasible points satisfying the AGP optimality
condition(see [2]).

Given an approximated solution (Ak, uk) of problem (1), the two phases of the algo-
rithm proceed as follows to find a new approximation (Ak+1, uk+1)

Restoration Phase:

The problem we want to solve inexactly in this phase is,

Minimize
u

Wα(Ak, u)− P T u

s.t.





u1 = 0
u3 = 0
u6 ≥ sp1

u10 ≥ sp2

u12 ≤ sp3.

(3)

As the variables u1 = u3 = 0 are fixed, we substitute this values in the objective
function and the problem can be written as:

Minimize
u

Wα(Ak, u)− P T u

s.t.





u6 − y1 = sp1

u10 − y2 = sp2

u12 + y3 = sp3

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0

(4)

where u = (u2, u4, u5, . . . , u12) ∈ IR10, P = (P2, P4, P5, . . . , P12) ∈ IR10. We define z =
(y1, y2, y3)

T .
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In the restoration phase we seek for a new approximation (Ak, ū, z̄), solving inexactly
the second level problem (equilibrium problem) parameterized by Ak. For this we use any
convenient optimization algorithm. The KKT optimality conditions of this problem are
used as a measure of feasibilty and furnishes a stopping criterium for the optimization
algorithm used in this phase as follows:

|C(Ak, ū, z̄, µ̄)| ≤ r|C(Ak, uk, zk, µk)| (5)

where C(A, u, z, µ) are the equalities of the KKT system associated to the equilibrium
problem, and µ̄ is an estimative of the vector of Lagrange multipliers at (Ak, ū, z̄).

C(A, u, z, µ) =




∇u[Wα(A, u)]− P + µ1e6 + µ2e10 + µ3e12

−µ1 + µ4

−µ2 + µ5

µ3 + µ6

u6 − y1 − sp1

u10 − y2 − sp2

u12 + y3 − sp3

µ4y1

µ5y2

µ6y3




with ∇u[Wα(A, u)], P, e6, e10, e12 ∈ IR10, where each ei is the corresponding vector in
the canonical basis of IR10.

Minimization phase:

In this phase we find a new approximation (Â, û, ẑ, µ̂) ∈ Πk, such that:

L(Â, û, ẑ, µ̂, λk) ¿ L(Ak, ū, Ȳ , µ̄, λk) (6)

and
‖(Â, û, ẑ, µ̂)− (Ak, ū, z̄, µ̄)‖ ≤ δk (7)

where
Πk = {v ∈ Λ | C ′(Ak, ū, z̄, µ̄)(s− Ak, ū, z̄, µ̄) = 0}

is the approximate tangent set to the feasible region and

L(A, u, z, µ, λ) = W (A, u) + 〈C(A, u, z, µ), λ〉
is the Lagrangian function and ¿ means a sufficient decrease.
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We obtain the new approximation (Â, û, ẑ, µ̂) solving the following optimization prob-
lem:

Minimize
A,u,z,µ

L(A, u, z, µ, λ) = W (A,U) + 〈C(A, u, z, µ), λ〉

s.t.





0 ≤ Ai ≤ A
V (A)− V ≤ 0
C ′(Ak, ū, Ȳ , µ̄)((A, u, z, µ)− (Ak, ū, z̄, µ̄)) = 0
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0
µ4 ≥ 0, µ5 ≥ 0, µ6 ≥ 0

(8)

A merit function of the sharp Lagrangian type is used to decide if this point is accepted.

3 Computational experiments

To solve problem (1), we considered the following data:

• Upper bound for cross section areas: Ai = 4 mm2 (i = 1, ..9);

• li = 200 mm for horizontal bars (i = 2, 4, 6, 8) and vertical bars (i = 1, 5, 9) e
li = 200

√
2 mm for the diagonal bars (i = 3, 7);

• E = 2× 105 N/mm2;

• Upper bound V = 25% of the maximum volume i.e., considering all the bars with
their maximum value of cross section area.

In table 1 we summarize the choices done in five cases. Our initial point was Ai =
4 mm2, i = 1, . . . , 9 e uj = 0 mm, j = 1, . . . , 12. All the other variables (slacks and
multipliers) were initialized at zero. In the restoration and minimization phases, we
used the package MINOS ([7]) in order to solve the minimization problems. To estimate
the vector of Lagrange multipliers µ of the follower’s problem we used the least square
approach and to update λ we used the estimations given by the optimization package
MINOS, used in the minimization phase.

3.1 Case 1

The results are shown in tables 2-5. The optimal structure is in figure 2 (left.). Execution
time was 99.4 seconds. The pattern of the displacements is presented out of scale in
figure 2 (right). In this way we can see optimal displacements corresponding to the
optimal frame. We observe that the maximum volume is achieved and the feasibility
error is of the order of 2× 10−12.
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Table 1: Experiments with the nine-truss frame.
Case Position of obstacles (mm) Loads (N)

1 sp1 = 0, sp2 = 0, sp3 = 0 P1 = −100 P6 = 0
2 sp1 = −1, sp2 = 0, sp3 = 0 P1 = −100 P6 = 0
3 sp1 = −1, sp2 = 0, sp3 = 1 P1 = +100 P6 = 0
4 sp1 = 0, sp2 = 0, sp3 = 0 P1 = −100 P6 = −100
5 sp1 = −1, sp2 = 0, sp3 = 0 P1 = −100 P6 = −200

Table 2: First-level objective function - Case 1
Iteration Strain energy Feasibility error

Initial (0) 0.00 100.00
Final (20) 6.39 2.34 ×10−12

Table 3: Cross section areas - Case 1
Bar i Ai

1 0.00
2 1.22 ×10−7

3 4.00
4 3.50
5 3.50
6 0.00
7 1.57 ×10−7

8 9.89 ×10−8

9 0.00

Table 4: Nodal displacements - Case 1
Node ux = u2i−1 uy = u2i

1 0.00 -1.28 ×10−1

2 0.00 -1.71 ×10−1

3 -6.44 ×10−3 0.00
4 -2.86 ×10−2 -2.86 ×10−2

5 -9.24 ×10−3 1.54 ×10−3

6 -2.06 ×10−2 0.00
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Table 5: Contact forces - Case 1.
Node Force

3 100.00
5 0.00
6 7.86 ×10−7

Figure 2: Optimal configuration (left) and displacements pattern (right) for case 1.

3.2 Case 2

The results are shown in tables 6-9. The optimal structure is in figure 3 (left.). Execution
time was 48.89 seconds. The pattern of the displacements is presented out of scale in
figure 3 (right). The maximum volume is achieved and the feasibility error is of the order
of 1× 10−6.

3.3 Case 3

The results are shown in tables 10-13. The optimal structure is in figure 4 (left.). Execu-
tion time was 100.04 seconds. The pattern of the displacements is presented out of scale
in figure 4 (right). The maximum volume is achieved and the feasibility error is of the
order of 8× 10−6.

Table 6: First-level objective function - Case 2
Iteration Strain energy Feasibility error

Initial (0) 0.000 100.01
Final (8) 39.50 1.15 ×10−6
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Table 7: Cross section areas - Case 2
Bar i Ai

1 0.00
2 1.27
3 1.79
4 2.53
5 1.27
6 0.00
7 1.79
8 1.27
9 1.27

Table 8: Nodal displacements - Case 2
Node ux = u2i−1 uy = u2i

1 0.00 -7.90 ×10−1

2 0.00 -7.81 ×10−1

3 7.9 ×10−2 -4.74 ×10−1

4 -7.9 ×10−2 -5.53 ×10−1

5 8.98 ×10−2 0.00
6 -1.58 ×10−1 -7.90 ×10−2

Table 9: Contact forces - Case 2.
Node Force

3 0.00
5 100.00
6 0.00

Figure 3: Optimal Configuration (left) and displacements pattern (right) for case 2.
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Table 10: First-level objective function - Case 3
Iteration Strain energy Feasibility error

Initial (0) 0.000 100.01
Final (18) 32.00 8.84 ×10−6

Table 11: Cross section areas - Case 3
Bar i Ai

1 0.00
2 1.41
3 1.99
4 2.81
5 1.41
6 0.00
7 1.99
8 1.41
9 0.00

Table 12: Nodal displacements - Case 3
Node ux = u2i−1 uy = u2i

1 0.00 1.64
2 0.00 1.64
3 -7.12 ×10−2 1.36
4 7.12 ×10−2 1.43
5 -7.00 ×10−2 1.00
6 1.42 ×10−1 1.00

Table 13: Contact forces - Case 3.
Node Force

3 0.00
5 0.00
6 100.00
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Figure 4: Optimal configuration (left) and displacements pattern (right) for case 3.

Table 14: First-level objective function - Case 4
Iteration Strain energy Feasibility error

Initial (0) 0.00 141.42
Final (11) 14.24 5.38 ×10−11

3.4 Case 4

The results are shown in tables 14-17. The optimal structure is in figure 5 (left.). Execu-
tion time was 59.08 seconds. The pattern of the displacements is presented out of scale
in figure 5 (right). The maximum volume is achieved and the feasibility error is of the
order of 5× 10−11.

Table 15: Cross section areas - Case 4
Bar i Ai

1 0.00
2 0.00
3 3.06
4 4.00
5 2.16
6 0.00
7 2.50 ×10−6

8 2.16
9 0.00
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Table 16: Nodal displacements - Case 4
Node ux = u2i−1 uy = u2i

1 0.00 -1.89 ×10−1

2 0.00 -2.07 ×10−1

3 -9.62 ×10−2 0.00
4 -5.00 ×10−2 -4.62 ×10−2

5 -1.97 ×10−2 1.54 ×10−3

6 -9.62 ×10−2 0.00

Table 17: Contact forces - Case 4.
Node Force

3 100.00
5 0.00
6 3.00 ×10−12

Figure 5: Optimal configuration (left) and displacements pattern (right) for case 4.
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Table 18: First-level objective function - Case 5
Iteration Strain energy Feasibility error

Initial (0) 0.00 223.61
Final (8) 77.43 4.80 ×10−5

Table 19: Cross section areas - Case 5
Bar i Ai

1 0.00
2 9.04 ×10−1

3 1.28
4 3.62
5 9.04 ×10−1

6 0.00
7 1.28
8 2.71
9 9.04 ×10−1

3.5 Case 5

The results are shown in tables 18-21. The optimal structure is in figure 6 (left.). Execu-
tion time was 52.94 seconds. The pattern of the displacements is presented out of scale
in figure 6 (right). The maximum volume is achieved and the feasibility error is of the
order of 5× 10−5.

4 Conclusions and the future work

In this work we presented a method to solve a frame optimization problem with frictionless
contact formulated as a bilevel problem. We validated our results solving simultaneously

Table 20: Nodal displacements - Case 5
Node ux = u2i−1 uy = u2i

1 0.00 -1.11
2 0.00 -9.69 ×10−1

3 1.12 ×10−1 -6.64 ×10−1

4 -1.11 ×10−1 -7.74 ×10−1

5 6.55 ×10−2 0.00
6 -2.21 ×10−1 -1.11 ×10−1
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Table 21: Contact forces - Case 5.
Node Force

3 0.00
5 100.00
6 0.00

Figure 6: Optimal configuration (left) and displacements pattern (right) for case 5.

the problems with an algorithm described in [4, 5]
The inexact-restoration approach for bilevel problems has the advantage that the

derivative and the Jacobian matrix of the cost function is easier to compute than in
the classical formulation, since the variables (design variable and the solution of the
equilibrium problem) are treated as independent. Also, it allows direct solving of the
follower’s problem that describes the equilibrium of the system. Moreover, the precision
of the solution of the equilibrium problem is controlled at each iteration and it permits
its inexact solving when we are far from the solution.

This approach also permits to deal naturally with nonlinear path-independent mate-
rials. The algorithm has shown to be reliable and the experimental results encourage us
to improve implementation details. For solving larger problems we intend to exploit the
characteristics of the topological optimization bilevel problem, that is a problem with a
lot of structure.
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