The gradient syste 000000 The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Seminário de Equações Diferenciais Parciais Universidade Estadual de Campinas 25 Outubro 2022, Campinas, Brazil

# Elliptic systems involving Schrödinger operators with vanishing potentials.

Join work with J. Arratia and D. Pereira

Pedro Ubilla

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemáticas y C. C.

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous Elliptic System |  |  |  |
|-------------------------------|---------------------|------------------------|-------------------------------------|--|--|--|
| 0000000                       | 000000              | 0000000000             | OO                                  |  |  |  |
| Abstract                      |                     |                        |                                     |  |  |  |

• This talk is concerned with existence of a bounded positive solution of the following elliptic system involving Schrödinger operators

$$\begin{cases} -\Delta u + V_1(x)u = \lambda \rho_1(x)(u+1)^r (v+1)^p & \text{in} \quad \mathbb{R}^N \\ -\Delta v + V_2(x)v = \mu \rho_2(x)(u+1)^q (v+1)^s & \text{in} \quad \mathbb{R}^N, \\ u(x), v(x) \to 0 & \text{as} \quad |x| \to \infty. \end{cases}$$

where  $p, q, r, s \ge 0$ ,  $V_i$  is a nonnegative vanishing potential, and  $\rho_i$  has the property (H) introduced by Brezis and Kamin [1].

| Elliptic system. General case<br>0000000 |  | The Hamiltonian system<br>0000000000 | Some Nonhomogeneous Elliptic System |
|------------------------------------------|--|--------------------------------------|-------------------------------------|
|------------------------------------------|--|--------------------------------------|-------------------------------------|

## Abstract

• This talk is concerned with existence of a bounded positive solution of the following elliptic system involving Schrödinger operators

$$\begin{cases} -\Delta u + V_1(x)u = \lambda \rho_1(x)(u+1)^r (v+1)^p & \text{in } \mathbb{R}^N \\ -\Delta v + V_2(x)v = \mu \rho_2(x)(u+1)^q (v+1)^s & \text{in } \mathbb{R}^N, \\ u(x), v(x) \to 0 & \text{as } |x| \to \infty. \end{cases}$$

where  $p, q, r, s \ge 0$ ,  $V_i$  is a nonnegative vanishing potential, and  $\rho_i$  has the property (H) introduced by Brezis and Kamin [1].

• Furthermore, by imposing some restrictions on the powers p, q, r, s without additional hypotheses of integrability on the weights  $\rho_i$ , we obtain a second solution using variational methods. In this context we consider two particular cases: a gradient system and a Hamiltonian system.

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous Elliptic System |
|-------------------------------|---------------------|------------------------|-------------------------------------|
| 000000                        | 000000              | 000000000              | 00                                  |

More precisely, we will study the following elliptic system involving Schrödinger operators

$$\begin{cases} -\Delta u + V_1(x)u = \lambda \rho_1(x)(u+1)^r (v+1)^p & \text{in } \mathbb{R}^N \\ -\Delta v + V_2(x)v = \mu \rho_2(x)(u+1)^q (v+1)^s & \text{in } \mathbb{R}^N, \\ u(x), v(x) \to 0 & \text{as } |x| \to \infty. \end{cases}$$
(S<sub>\lambda,\mu)</sub>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where  $\lambda, \mu > 0, p, q, r, s \ge 0, N \ge 3$ .

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous Elliptic System |
|-------------------------------|---------------------|------------------------|-------------------------------------|
| 000000                        | 000000              | 000000000              | 00                                  |

 More precisely, we will study the following elliptic system involving Schrödinger operators

$$\begin{cases} -\Delta u + V_1(x)u = \lambda \rho_1(x)(u+1)^r (v+1)^p & \text{in } \mathbb{R}^N \\ -\Delta v + V_2(x)v = \mu \rho_2(x)(u+1)^q (v+1)^s & \text{in } \mathbb{R}^N, \\ u(x), v(x) \to 0 & \text{as } |x| \to \infty. \end{cases}$$

$$(\mathbf{S}_{\lambda,\mu})$$

where  $\lambda, \mu > 0, p, q, r, s \ge 0, N \ge 3$ .

•  $V_i$  is a nonnegative vanish potential satisfying

$$\frac{a_i}{1+|x|^{\alpha}} \le V_i(x) \le \frac{A_i}{1+|x|^{\alpha}} \quad \text{for all} \quad x \in \mathbb{R}^N \tag{$H_V^{\alpha}$}$$

for some constants  $\alpha, A_i > 0$  and  $a_i \ge 0, i = 1, 2$ .

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous Elliptic System |
|-------------------------------|---------------------|------------------------|-------------------------------------|
| 0000000                       | 000000              | 000000000              | 00                                  |

 More precisely, we will study the following elliptic system involving Schrödinger operators

$$\begin{cases} -\Delta u + V_1(x)u = \lambda \rho_1(x)(u+1)^r (v+1)^p & \text{in } \mathbb{R}^N \\ -\Delta v + V_2(x)v = \mu \rho_2(x)(u+1)^q (v+1)^s & \text{in } \mathbb{R}^N, \\ u(x), v(x) \to 0 & \text{as } |x| \to \infty. \end{cases}$$

$$(\mathbf{S}_{\lambda,\mu})$$

where  $\lambda, \mu > 0, p, q, r, s \ge 0, N \ge 3$ .

•  $V_i$  is a nonnegative vanish potential satisfying

$$\frac{a_i}{1+|x|^{\alpha}} \le V_i(x) \le \frac{A_i}{1+|x|^{\alpha}} \quad \text{for all} \quad x \in \mathbb{R}^N \tag{$H_V^{\alpha}$}$$

for some constants  $\alpha, A_i > 0$  and  $a_i \ge 0, i = 1, 2$ .

• The weight  $\rho_i \in L^{\infty}(\mathbb{R}^N)$  satisfies

$$0 < \rho_i(x) \le \frac{k_i}{1+|x|^{\beta}} \quad \text{in} \quad \mathbb{R}^N, \tag{H}_{\rho}$$

with  $\alpha + \beta > 4$  and  $k_i > 0$ , i = 1, 2.

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous Elliptic Sy |
|-------------------------------|---------------------|------------------------|---------------------------------|
| 000000                        | 000000              | 000000000              | 00                              |

• Before to deal the main results about System  $(S_{\lambda,\mu})$ , we will give some know facts about the Poisson's equation

$$-\Delta u = \rho(x) \text{ in } \mathbb{R}^N.$$
(1)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

The gradient syste 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

#### Introduction

• Before to deal the main results about System  $(\mathbf{S}_{\lambda,\mu})$ , we will give some know facts about the Poisson's equation

$$-\Delta u = \rho(x) \text{ in } \mathbb{R}^N.$$
(1)

#### The property (H) introduced by Brezis and Kamin

Let  $\rho \in L^{\infty}_{loc}(\mathbb{R}^N)$ ,  $\rho(x) \geq 0$  and  $\rho$  not identically zero. We said that  $\rho$  has the property property (H) if there exist a bounded solution of Poisson's equation (1)

• In the celebrated paper [1], Brezis and Kamin proved that the sublinear problem

$$\begin{cases}
-\Delta u = \rho(x)u^{\alpha} & \text{in } \mathbb{R}^{N} \\
u(x) \to 0 & \text{as } |x| \to \infty,
\end{cases}$$
(2)

where  $N \ge 3$  and  $0 < \alpha < 1$ , has a bounded positive solution if and only if  $\rho$  has the property (H).

| LLIPTIC SYSTEM. | GENERAL CASE | The grad |
|-----------------|--------------|----------|
| 000000          |              | 000000   |

HE GRADIENT SYSTEM

The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Introduction

• An important fact is that the authors prove that Problem (2) has a bounded solution if and only if

$$U(x) := \frac{1}{N(N-2)w_N} \int_{\mathbb{R}^N_+} \frac{\rho(y)}{|x-y|^{N-2}} dy \in L^{\infty}(\mathbb{R}^N).$$
(3)

The gradient syste 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Introduction

• An important fact is that the authors prove that Problem (2) has a bounded solution if and only if

$$U(x) := \frac{1}{N(N-2)w_N} \int_{\mathbb{R}^N_+} \frac{\rho(y)}{|x-y|^{N-2}} dy \in L^{\infty}(\mathbb{R}^N).$$
(3)

• Thus, if we consider potentials like

$$\rho(x) = \frac{1}{1+|x|^{\beta}} \quad \text{for any } \beta > 2,$$

(3) is satisfied.

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous Elliptic System |
|-------------------------------|---------------------|------------------------|-------------------------------------|
| 000000                        | 000000              | 000000000              | 00                                  |

• Recently Cardoso, Cerda, Pereira and Ubilla [2] they have studied the existence of bounded solution for the *linear Schrödinger equation* 

$$-\Delta u + V(x)u = \rho(x) \quad \text{in } \mathbb{R}^N, \tag{LS}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

giving the next condition of "compatibility" condition between  $\rho$  and V.

| Elliptic system. | General | CASE |  |
|------------------|---------|------|--|
| 0000000          |         |      |  |

THE GRADIENT SYSTEM

The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## Introduction

• Recently Cardoso, Cerda, Pereira and Ubilla [2] they have studied the existence of bounded solution for the *linear Schrödinger equation* 

$$-\Delta u + V(x)u = \rho(x) \quad \text{in } \mathbb{R}^N, \tag{LS}$$

giving the next condition of "compatibility" condition between  $\rho$  and V.

#### Definition

Suppose that  $\rho$  has the property (H) and let U be the bounded solution of  $-\Delta U = \rho(x)$  in  $\mathbb{R}^N$ . We say that V and  $\rho$  are compatible if

$$\frac{1}{|x|^{N-2}} * (VU) \in L^{\infty}(\mathbb{R}^N).$$

The gradient system 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## Introduction

#### Lemma

Assume that  $\rho$  satisfies  $(H_{\rho})$  and V satisfies  $(H_V^{\alpha})$  with  $\alpha \in (0,2)$ . Then V and  $\rho$  are compatible

#### Theorem

If V and  $\rho$  are compatible, then the linear Schrödinger equation (LS) has a bounded positive solution.

The gradient syste 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

#### Introduction

• Let us state our first result.

#### Theorem 1

Assume that  $p, q, r, s \ge 0$  and in addition suppose hypotheses  $(H_{\rho})$  and  $(H_V^{\alpha})$  hold with  $\alpha \in (0, 2]$  and  $\alpha + \beta > 4$ . Then, there exists  $\Lambda > 0$  such that System  $(\mathbf{S}_{\lambda,\mu})$ 

$$\begin{cases} -\Delta u + V_1(x)u = \lambda \rho_1(x)(u+1)^r (v+1)^p & \text{in} \quad \mathbb{R}^N \\ -\Delta v + V_2(x)v = \mu \rho_2(x)(u+1)^q (v+1)^s & \text{in} \quad \mathbb{R}^N, \\ u(x), v(x) \to 0 & \text{as} \quad |x| \to \infty, \end{cases}$$

has at least one bounded positive solution for every  $0 < \lambda, \mu < \Lambda$ .

The gradient syste 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

## Introduction

• We also establish a converse of **Theorem 1** 

Theorem 2

Suppose that  $V \in L^{\infty}(\mathbb{R}^N)$  is a nonnegative potential and the weights  $\rho_i$  belong to  $L^{\infty}(\mathbb{R}^N)$  with  $\rho_i > 0$ , for i = 1, 2. Suppose also that  $\lambda, \mu > 0$ , the powers satisfy 0 < r, s < 1, pq < (r-1)(s-1) and there exist positive constants  $b_1, b_2$  such that  $b_1\rho_1(x) \leq \rho_2(x) \leq b_2\rho_1(x)$  for every  $x \in \mathbb{R}^N$ . If System  $(\mathbf{S}_{\lambda,\mu})$  admits a bounded positive solution, then, the linear Schrödinger equation

$$\begin{cases} -\Delta u + V(x)u = \rho_i(x) & \text{in} \quad \mathbb{R}^N\\ u(x) \to 0 & \text{as} \quad |x| \to \infty \end{cases}$$

has a bounded positive solution, for i = 1, 2.

The gradient syste 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

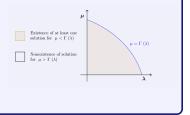
## Introduction

• Note that when r, s > 1 we can construct a function that is the border between the region of existence and nonexistence.

#### Theorem 3

Suppose hypotheses  $(H_{\rho})$  and  $(H_{V}^{\alpha})$  hold with  $\alpha \in (0, 2]$  and  $\alpha + \beta > 4$ . Assume also that r, s > 1 and  $p, q \ge 0$ . Then, there is a positive constant  $\lambda^{*}$  and a continuous function  $\Gamma : (0, \lambda^{*}) \to [0, \infty)$  such that if  $\lambda \in (0, \lambda^{*})$  then System  $(\mathbf{S}_{\lambda,\mu})$ :

- i) has at least one bounded positive solution if  $0 < \mu < \Gamma(\lambda)$ ;
- ii) has no bounded positive solution if  $\mu > \Gamma(\lambda)$ .



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

The gradient syste

The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## Introduction

• The second solution will be obtained employing variational methods. The first one case is the following gradient system:

$$\begin{cases} -\Delta u + V(x)u = \lambda \rho_1(x)(u+1)^r (v+1)^{s+1} & \text{in} \quad \mathbb{R}^N\\ -\Delta v + V(x)v = \lambda \rho_2(x)(u+1)^{r+1}(v+1)^s & \text{in} \quad \mathbb{R}^N, \\ u(x), v(x) \to 0 & \text{as} \quad |x| \to \infty \end{cases}$$
(GS <sub>$\lambda$</sub> )

with  $\rho_1(x) = (r+1)\rho(x)$  and  $\rho_2(x) = (s+1)\rho(x)$ .

The gradient syste

The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System

#### Introduction

• The second solution will be obtained employing variational methods. The first one case is the following gradient system:

$$\begin{cases} -\Delta u + V(x)u = \lambda \rho_1(x)(u+1)^r (v+1)^{s+1} & \text{in} \quad \mathbb{R}^N \\ -\Delta v + V(x)v = \lambda \rho_2(x)(u+1)^{r+1} (v+1)^s & \text{in} \quad \mathbb{R}^N, \\ u(x), v(x) \to 0 & \text{as} \quad |x| \to \infty \end{cases}$$
(GS <sub>$\lambda$</sub> )

with 
$$\rho_1(x) = (r+1)\rho(x)$$
 and  $\rho_2(x) = (s+1)\rho(x)$ .

• The main result in this context is the following:

#### Theorem 4

Suppose hypotheses  $(H_{\rho})$  and  $(H_V^{\alpha})$  hold with  $\alpha \in (0, 2]$  and  $\alpha + \beta > 4$ ,

- i) If  $r, s \geq 0$ , then there exists  $\lambda^* > 0$  such that the gradient System  $(\mathbf{GS}_{\lambda})$  possesses at least one bounded positive solution  $(u_{1,\lambda}, v_{1,\lambda})$  for all  $0 < \lambda < \lambda^*$  while for r, s > 1 and  $\lambda > \lambda^*$  there are no bounded positive solutions.
- *ii*) If r, s > 1 and  $r + s < 2^* 2$ , then there exists  $0 < \lambda^{**} \le \lambda^*$  such that the gradient System (**GS**<sub> $\lambda$ </sub>) possesses a second positive solution of the form  $(u_{1,\lambda} + u, v_{1,\lambda} + v)$  for all  $0 < \lambda < \lambda^{**}$ , where  $u, v \in H^1(\mathbb{R}^N)$ .

The gradient system 000000

The Hamiltonian system

Some Nonhomogeneous Elliptic System

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Introduction

• The second particular situation involves the following Hamiltonian system

$$\begin{cases} -\Delta u + V(x)u = \lambda \rho(x)(v+1)^p & \text{in} \quad \mathbb{R}^N\\ -\Delta v + V(x)v = \lambda \rho(x)(u+1)^q & \text{in} \quad \mathbb{R}^N, \\ u(x), v(x) \to 0 & \text{as} \quad |x| \to \infty \end{cases}$$
(HS<sub>\lambda</sub>)

for some conditions in the powers p, q > 0.

The gradient system 000000

The Hamiltonian system

Some Nonhomogeneous Elliptic System

#### Introduction

• The second particular situation involves the following Hamiltonian system

$$\begin{aligned} &-\Delta u + V(x)u = \lambda \rho(x)(v+1)^p & \text{in} \quad \mathbb{R}^N \\ &-\Delta v + V(x)v = \lambda \rho(x)(u+1)^q & \text{in} \quad \mathbb{R}^N, \\ &u(x), v(x) \to 0 & \text{as} \quad |x| \to \infty \end{aligned}$$
(HS<sub>\lambda</sub>)

for some conditions in the powers p, q > 0.

• The main result involving the Hamiltonian system is the following:

#### Theorem 5

Suppose hypotheses  $(H_{\rho})$  and  $(H_{V}^{\alpha})$  hold with  $\alpha \in (0, 2]$ . Also, suppose also that  $\alpha + \beta > 4$  and  $p, q \ge 0$ , then

- i) There exists  $\lambda^* > 0$  such that Hamiltonian System  $(\mathbf{HS}_{\lambda})$  possesses at least one bounded positive solution  $(u_{1,\lambda}, v_{1,\lambda})$  for all  $0 < \lambda < \lambda^*$  while for p, q > 1 and  $\lambda > \lambda^*$  there are no bounded positive solutions.
- *ii)* If pq < 1, then Hamiltonian System (HS<sub> $\lambda$ </sub>) possesses at least one bounded positive solution  $(u_{1,\lambda}, v_{1,\lambda})$  for all  $\lambda > 0$ .
- iii) If 1 < pq and  $p, q < 2^* 1$ , then there exists  $0 < \lambda^{**} \le \lambda^*$  such that Hamiltonian System  $(\mathbf{HS}_{\lambda})$  possesses a second positive solution of the form  $(u_{1,\lambda} + u, v_{1,\lambda} + v)$  for all  $0 < \lambda < \lambda^{**}$ , where  $u, v \in H^1(\mathbb{R}^N)$ .

THE GRADIENT SYSTEM

The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00



Elliptic system. General case

The gradient system

The Hamiltonian system

Some Nonhomogeneous Elliptic System

▲□▶ ▲圖▶ ★国▶ ★国▶ 三国 - のへで

The gradient syste

The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

- The proof of existence of the first solution of System (S<sub>λ,μ</sub>) follows the line of Brezis-Kamin [1], Cardoso-Cerda-Pereira-Ubilla [2] and Montenegro [3], that is to say, we will apply some monotonicity methods.
- First, we will use the lower and upper solution technique developed by Montenegro [3], to obtain a solution of

$$\begin{cases} -\Delta u + V_1(x)u = \lambda \rho_1(x)(u+1)^r (v+1)^p & \text{in} & B_R \\ -\Delta v + V_2(x)v = \mu \rho_2(x)(u+1)^q (v+1)^s & \text{in} & B_R \\ u = 0 = v & \text{on} & \partial B_R \end{cases}$$
(S<sub>R, \lambda, \mu)</sub>

More precisely:

#### Lemma 1.1

Assume that  $p, q, r, s \ge 0$ . Let  $U_{V_i}$  be a bounded positive solution of

$$\begin{cases} -\Delta u + V_i(x)u = \rho_i(x) & \text{in} \quad \mathbb{R}^N\\ u(x) \to 0 & \text{as} \quad |x| \to \infty. \end{cases}$$
(4)

Then there is  $\Lambda > 0$ , which does not depend on R, such that if  $0 < \lambda, \mu < \Lambda$ , the System  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$  has a minimal positive solution  $(u_R, v_R)$ , which is increasing with R and satisfies  $u_R \leq U_{V_1}$  and  $v_R \leq U_{V_2}$ .

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへの

The gradient syste 000000

The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

#### Proof Existence of bounded solution

•  $(\underline{u}, \underline{v}) = (0, 0)$  is a lower solution of  $(\mathbf{S}_{\mathbf{R}, \lambda, \mu})$  for any  $\lambda, \mu \in (0, \infty)$ .

The gradient syste

The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

#### Proof Existence of bounded solution

- $(\underline{u}, \underline{v}) = (0, 0)$  is a lower solution of  $(\mathbf{S}_{\mathbf{R}, \lambda, \mu})$  for any  $\lambda, \mu \in (0, \infty)$ .
- Since  $U_{V_1}, U_{V_2} \in L^{\infty}(\mathbb{R}^N)$  there exists  $\Lambda > 0$  such that for  $0 < \lambda, \mu \leq \Lambda$ , the pair  $(\overline{u}, \overline{v}) = (U_{V_1}, U_{V_2})$  is an upper solution of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ , for any R > 0. Therefore there is a solution  $(\overline{u}_R, \overline{v}_R)$  of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ .

The gradient syste

The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

#### Proof Existence of bounded solution

- $(\underline{u}, \underline{v}) = (0, 0)$  is a lower solution of  $(\mathbf{S}_{\mathbf{R}, \lambda, \mu})$  for any  $\lambda, \mu \in (0, \infty)$ .
- Since  $U_{V_1}, U_{V_2} \in L^{\infty}(\mathbb{R}^N)$  there exists  $\Lambda > 0$  such that for  $0 < \lambda, \mu \leq \Lambda$ , the pair  $(\overline{u}, \overline{v}) = (U_{V_1}, U_{V_2})$  is an upper solution of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ , for any R > 0. Therefore there is a solution  $(\overline{u}_R, \overline{v}_R)$  of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ .

#### Existence of minimal solution

The gradient syste 000000

The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

#### Proof Existence of bounded solution

- $(\underline{u}, \underline{v}) = (0, 0)$  is a lower solution of  $(\mathbf{S}_{\mathbf{R}, \lambda, \mu})$  for any  $\lambda, \mu \in (0, \infty)$ .
- Since  $U_{V_1}, U_{V_2} \in L^{\infty}(\mathbb{R}^N)$  there exists  $\Lambda > 0$  such that for  $0 < \lambda, \mu \leq \Lambda$ , the pair  $(\overline{u}, \overline{v}) = (U_{V_1}, U_{V_2})$  is an upper solution of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ , for any R > 0. Therefore there is a solution  $(\overline{u}_R, \overline{v}_R)$  of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ .

## Existence of minimal solution $(u_R, v_R)$ is increasing with R.

The gradient system 000000 The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

ション ふゆ さい シャリン しょうくしゃ

## Elliptic system. General case

#### Proof Existence of bounded solution

- $(\underline{u}, \underline{v}) = (0, 0)$  is a lower solution of  $(\mathbf{S}_{\mathbf{R}, \lambda, \mu})$  for any  $\lambda, \mu \in (0, \infty)$ .
- Since  $U_{V_1}, U_{V_2} \in L^{\infty}(\mathbb{R}^N)$  there exists  $\Lambda > 0$  such that for  $0 < \lambda, \mu \leq \Lambda$ , the pair  $(\overline{u}, \overline{v}) = (U_{V_1}, U_{V_2})$  is an upper solution of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ , for any R > 0. Therefore there is a solution  $(\overline{u}_R, \overline{v}_R)$  of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ .

## Existence of minimal solution $(u_R, v_R)$ is increasing with R.

• Since  $(u_R, v_R)$  is the minimal solution of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ , it follows that if R' > R, then

$$u_R \leq u_{R'}$$
 and  $v_R \leq v_{R'}$  in  $B_R$ 

and

$$u_R \leq U_{V_1}$$
 and  $v_R \leq U_{V_2}$ 

The gradient syste 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Elliptic system. General case

Proof of Theorem 1

The gradient syste

The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

#### Proof of Theorem 1

• Let  $0 < \lambda, \mu < \Lambda, R > 0$  and  $(u_R, v_R)$  be the increasing sequence of solution of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$  given by Lemma 1.1. Thus, there exist the limits

$$\lim_{R \to \infty} u_R(x) := u(x) \text{ and } \lim_{R \to \infty} v_R(x) := v(x) \text{ for every } x \in \mathbb{R}^N.$$

The gradient syste 000000 THE HAMILTONIAN SYSTEM

Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

#### Proof of Theorem 1

• Let  $0 < \lambda, \mu < \Lambda, R > 0$  and  $(u_R, v_R)$  be the increasing sequence of solution of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$  given by Lemma 1.1. Thus, there exist the limits

$$\lim_{R \to \infty} u_R(x) := u(x) \text{ and } \lim_{R \to \infty} v_R(x) := v(x) \text{ for every } x \in \mathbb{R}^N.$$

• Using Green's representation in the ball  $B_R$ , convergence theorems and property (H) it is possible to show that (u, v) is a bounded positive solution of  $(\mathbf{S}_{\lambda,\mu})$ .

The gradient syste

The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

・ロト ・ 四ト ・ 日ト ・ 日

#### Elliptic system. General case

Now, we prove the converse of **Theorem 1**.

#### Theorem 2

Suppose that  $V \in L^{\infty}(\mathbb{R}^N)$  is a nonnegative potential and the weights  $\rho_i$ belong to  $L^{\infty}(\mathbb{R}^N)$  with  $\rho_i > 0$ , for i = 1, 2. Suppose also that  $\lambda, \mu > 0$ , the powers satisfy 0 < r, s < 1, pq < (r-1)(s-1) and there exist positive constants  $b_1, b_2$  such that  $b_1\rho_1(x) \leq \rho_2(x) \leq b_2\rho_1(x)$  for every  $x \in \mathbb{R}^N$ . If System  $(\mathbf{S}_{\lambda,\mu})$ admits a bounded positive solution, then, the linear Schrödinger equation

$$\begin{cases} -\Delta u + V(x)u = \rho_i(x) & \text{in} \quad \mathbb{R}^N\\ u(x) \to 0 & \text{as} \quad |x| \to \infty \end{cases}$$

has a bounded positive solution, for i = 1, 2.

The gradient system 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

Proof of Theorem 2



The gradient syste 000000

The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Elliptic system. General case

#### Proof of Theorem 2

• Let (u, v) be a bounded positive solution of system  $(\mathbf{S}_{\lambda,\mu})$ .

The gradient syste 000000 The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

#### Proof of Theorem 2

- Let (u, v) be a bounded positive solution of system  $(\mathbf{S}_{\lambda,\mu})$ .
- Consider the auxiliary function  $w = (u+1)^a (v+1)^b$ , with a = 1 r and b = 1 sand define  $z = \frac{1}{1-\eta} w^{1-\eta}$ , where

$$\frac{1}{\eta} = \frac{1}{\frac{b+p}{b}} + \frac{1}{\frac{a+q}{a}}.$$

The gradient syste 000000 The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## Elliptic system. General case

#### Proof of Theorem 2

- Let (u, v) be a bounded positive solution of system  $(\mathbf{S}_{\lambda,\mu})$ .
- Consider the auxiliary function  $w = (u+1)^a (v+1)^b$ , with a = 1-r and b = 1-s and define  $z = \frac{1}{1-n} w^{1-\eta}$ , where

$$\frac{1}{\eta} = \frac{1}{\frac{b+p}{b}} + \frac{1}{\frac{a+q}{a}}.$$

• Using that  $b_1\rho(x) \le \rho_2(x), \ 0 < (1-\eta)(a+b) < 1$  and V be a nonnegative potential, we obtain

$$\begin{cases} -\Delta z + V(x)z \ge c_1\rho_1(x) & \text{in} \quad \mathbb{R}^N\\ z(x) \to 0 & \text{as} \quad |x| \to \infty \end{cases}$$

The gradient syste 000000 The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

## Elliptic system. General case

#### Proof of Theorem 2

- Let (u, v) be a bounded positive solution of system  $(\mathbf{S}_{\lambda,\mu})$ .
- Consider the auxiliary function  $w = (u+1)^a (v+1)^b$ , with a = 1-r and b = 1-s and define  $z = \frac{1}{1-\eta} w^{1-\eta}$ , where

$$\frac{1}{\eta} = \frac{1}{\frac{b+p}{b}} + \frac{1}{\frac{a+q}{a}}.$$

• Using that  $b_1\rho(x) \le \rho_2(x), \ 0 < (1-\eta)(a+b) < 1$  and V be a nonnegative potential, we obtain

$$\begin{cases} -\Delta z + V(x)z \ge c_1 \rho_1(x) & \text{ in } \mathbb{R}^N\\ z(x) \to 0 & \text{ as } |x| \to \infty \end{cases}$$

• This allows us to demonstrate the existence of a bounded positive solution of the linear Schrödinger equation (LS), when  $\rho = \rho_1$ .

The Hamiltonian system 0000000000

Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# A Sobolev embedding

• Now, we obtain a second solution of System  $(S_{\lambda,\mu})$  using variational methods.

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous Elliptic System |
|-------------------------------|---------------------|------------------------|-------------------------------------|
| 0000000                       | 000000              | 000000000              | 00                                  |

### A Sobolev embedding

- Now, we obtain a second solution of System  $(\mathbf{S}_{\lambda,\mu})$  using variational methods.
- For this purpose, we denote by  $H^1_V(\mathbb{R}^N)$  the Sobolev subspace of  $H^1(\mathbb{R}^N)$  endowed with the scalar product

$$\langle u,v\rangle_{H^1_V(\mathbb{R}^N)}=\int_{\mathbb{R}^N}\big(\nabla u\nabla v+V(x)uv\big)dx,$$

and the corresponding norm

$$\|u\|_{H^1_V(\mathbb{R}^N)} = \left(\int_{\mathbb{R}^N} \left(\left|\nabla u\right|^2 + V(x)u^2\right) dx\right)^{\frac{1}{2}}.$$

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous Elliptic System |
|-------------------------------|---------------------|------------------------|-------------------------------------|
| 0000000                       | 000000              | 000000000              | 00                                  |

## A Sobolev embedding

- Now, we obtain a second solution of System  $(\mathbf{S}_{\lambda,\mu})$  using variational methods.
- For this purpose, we denote by  $H^1_V(\mathbb{R}^N)$  the Sobolev subspace of  $H^1(\mathbb{R}^N)$  endowed with the scalar product

$$\langle u,v\rangle_{H^1_V(\mathbb{R}^N)}=\int_{\mathbb{R}^N}\big(\nabla u\nabla v+V(x)uv\big)dx,$$

and the corresponding norm

$$\|u\|_{H^1_V(\mathbb{R}^N)} = \left(\int_{\mathbb{R}^N} \left(\left|\nabla u\right|^2 + V(x)u^2\right) dx\right)^{\frac{1}{2}}.$$

• For q > 1, let us denote by  $L^q_{\rho}(\mathbb{R}^N)$  the weighted Lebesgue space

$$L^q_\rho\big(\mathbb{R}^N\big) = \left\{ u: \mathbb{R}^N \to \mathbb{R}: \ u \text{ is measurable and } ||u||_{L^q_\rho(\mathbb{R}^N)} < +\infty \right\},$$

where

$$||u||_{L^q_\rho(\mathbb{R}^N)} := \left(\int_{\mathbb{R}^N} \rho(x) |u|^q dx\right)^{\frac{1}{q}}$$

The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

э

### A Sobolev embedding

The following embedding result due to A. Ambrosetti, V. Felli and A. Malchiodi<sup>1</sup>.

## Lemma 1.2

Suppose hypotheses  $(H_{\rho})$  and  $(H_{V}^{\alpha})$  hold with  $\alpha \in (0, 2]$ . Then the embedding

$$H^1_V(\mathbb{R}^N) \hookrightarrow L^q_\rho(\mathbb{R}^N)$$

is continuous for  $2 \le q \le 2^*$  and is compact if  $2 \le q < 2^*$ .

• The Hilbert space in which we will work is  $E = H^1_V(\mathbb{R}^N) \times H^1_V(\mathbb{R}^N)$  endowed with the inner product given by

$$\langle (u,v),(\varphi,\psi)\rangle = \int_{\mathbb{R}^N} \Big(\nabla u \nabla \varphi + \nabla v \nabla \psi + V(x) u \varphi + V(x) v \psi \Big) dx$$

and corresponding norm

$$\|(u,v)\| = \left(\int_{\mathbb{R}^N} \left(|\nabla u|^2 + V(x)u^2 + |\nabla v|^2 + V(x)v^2\right) dx\right)^{1/2}$$

<sup>&</sup>lt;sup>1</sup>A. Ambrosetti, V. Felli and A. Malchiodi. Ground states of Nonlinear Schrödinger Equations with Potentials Vanishing at Infinity. J. Eur. Math. Soc. 7, 2005, 117-144.

The gradient system

Fhe Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# The gradient system

• This section is devoted to the proof of **Theorem 4**, which involves the gradient system  $(\mathbf{GS}_{\lambda})$ .

The gradient system •00000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## The gradient system

- This section is devoted to the proof of **Theorem 4**, which involves the gradient system  $(\mathbf{GS}_{\lambda})$ .
- Observe that the most natural energy functional  $\mathfrak{J}_{\lambda}: E \to \mathbb{R}$ , associated to the gradient system  $(\mathbf{GS}_{\lambda})$  is given by

$$\mathfrak{J}_{\lambda}(u,v) = \frac{1}{2} \|(u,v)\|^2 - \lambda \int_{\mathbb{R}^N} \rho(x) F(u,v) dx,$$

where  $F : \mathbb{R}^2 \to \mathbb{R}$  is defined by

$$F(u, v) = (u+1)^{r+1}(v+1)^{s+1},$$

where we have assumed that r, s > 1 and  $r + s < 2^* - 2$ .

The gradient system •00000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## The gradient system

- This section is devoted to the proof of **Theorem 4**, which involves the gradient system  $(\mathbf{GS}_{\lambda})$ .
- Observe that the most natural energy functional  $\mathfrak{J}_{\lambda}: E \to \mathbb{R}$ , associated to the gradient system  $(\mathbf{GS}_{\lambda})$  is given by

$$\mathfrak{J}_{\lambda}(u,v) = \frac{1}{2} \|(u,v)\|^2 - \lambda \int_{\mathbb{R}^N} \rho(x) F(u,v) dx,$$

where  $F : \mathbb{R}^2 \to \mathbb{R}$  is defined by

$$F(u, v) = (u+1)^{r+1}(v+1)^{s+1},$$

where we have assumed that r, s > 1 and  $r + s < 2^* - 2$ .

• However it is not well defined because the Sobolev embeddings do not work.

The gradient system •00000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## The gradient system

- This section is devoted to the proof of **Theorem 4**, which involves the gradient system  $(\mathbf{GS}_{\lambda})$ .
- Observe that the most natural energy functional  $\mathfrak{J}_{\lambda}: E \to \mathbb{R}$ , associated to the gradient system  $(\mathbf{GS}_{\lambda})$  is given by

$$\mathfrak{J}_{\lambda}(u,v) = \frac{1}{2} \|(u,v)\|^2 - \lambda \int_{\mathbb{R}^N} \rho(x) F(u,v) dx,$$

where  $F : \mathbb{R}^2 \to \mathbb{R}$  is defined by

$$F(u, v) = (u+1)^{r+1}(v+1)^{s+1},$$

where we have assumed that r, s > 1 and  $r + s < 2^* - 2$ .

- However it is not well defined because the Sobolev embeddings do not work.
- This is mainly due to the behaviour near zero of the nonlinearities and the fact that the  $\rho(x)$  coefficient does not necessarily satisfy any integrability hypothesis.

The gradient system 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## The gradient system

For this reason, in order to show the existence of a second solution for System  $(\mathbf{GS}_{\lambda})$ , we will consider the following auxiliary system

$$\begin{cases} -\Delta u + V(x)u = \lambda \rho(x)f(x, u, v) & \text{in} \quad \mathbb{R}^{N} \\ -\Delta v + V(x)v = \lambda \rho(x)g(x, u, v) & \text{in} \quad \mathbb{R}^{N} \end{cases}$$
(GS<sup>\lambda</sup>)

where the functions f, g are defined by

$$f(x, u, v) = f_1(u_{1,\lambda} + u^+, v_{1,\lambda} + v^+) - f_1(u_{1,\lambda}, v_{1,\lambda})$$

and

$$g(x, u, v) = f_2(u_{1,\lambda} + u^+, v_{1,\lambda} + v^+) - f_2(u_{1,\lambda}, v_{1,\lambda}),$$

where for simplicity we have denoted  $u_{1,\lambda}, v_{1,\lambda}$  instead of  $u_{1,\lambda}(x), v_{1,\lambda}(x)$ , and where

$$f_1(u,v) = \frac{\partial F}{\partial u}$$
 and  $f_2(u,v) = \frac{\partial F}{\partial v}$ .

The gradient system 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

ション ふゆ さい シャリン しょうくしゃ

#### The gradient system

For this reason, in order to show the existence of a second solution for System  $(\mathbf{GS}_{\lambda})$ , we will consider the following auxiliary system

$$\begin{cases} -\Delta u + V(x)u = \lambda \rho(x)f(x, u, v) & \text{in} \quad \mathbb{R}^{N} \\ -\Delta v + V(x)v = \lambda \rho(x)g(x, u, v) & \text{in} \quad \mathbb{R}^{N} \end{cases}$$
(GS<sup>\lambda</sup>)

where the functions f, g are defined by

$$f(x, u, v) = f_1(u_{1,\lambda} + u^+, v_{1,\lambda} + v^+) - f_1(u_{1,\lambda}, v_{1,\lambda})$$

and

$$g(x, u, v) = f_2(u_{1,\lambda} + u^+, v_{1,\lambda} + v^+) - f_2(u_{1,\lambda}, v_{1,\lambda}),$$

where for simplicity we have denoted  $u_{1,\lambda}, v_{1,\lambda}$  instead of  $u_{1,\lambda}(x), v_{1,\lambda}(x)$ , and where

$$f_1(u,v) = \frac{\partial F}{\partial u}$$
 and  $f_2(u,v) = \frac{\partial F}{\partial v}$ .

• Clearly, if (u, v) is a solution for the auxiliary system  $(\mathbf{GS}^{\lambda}_{\mathbf{A}})$ , then  $(u_{1,\lambda} + u, v_{1,\lambda} + v)$  is a solution of System  $(\mathbf{GS}_{\lambda})$ .

The gradient system 000000 Fhe Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## The gradient system

• Now, we define  $G: \mathbb{R}^{N+2} \to \mathbb{R}$  by

 $G = F(u_{1,\lambda} + u^+, v_{1,\lambda} + v^+) - F(u_{1,\lambda}, v_{1,\lambda}) - (f_1(u_{1,\lambda}, v_{1,\lambda})u^+ + f_2(u_{1,\lambda}, v_{1,\lambda})v^+).$ 

-

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# The gradient system

• Now, we define 
$$G : \mathbb{R}^{N+2} \to \mathbb{R}$$
 by  

$$G = F(u_{1,\lambda}+u^+, v_{1,\lambda}+v^+) - F(u_{1,\lambda}, v_{1,\lambda}) - \left(f_1(u_{1,\lambda}, v_{1,\lambda})u^+ + f_2(u_{1,\lambda}, v_{1,\lambda})v^+\right).$$

• Then

$$\frac{\partial G}{\partial u} = f(x, u, v) \text{ and } \frac{\partial G}{\partial v} = g(x, u, v).$$

 $\alpha = N \perp 2$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# The gradient system

• Now, we define 
$$G : \mathbb{R}^{N+2} \to \mathbb{R}$$
 by  

$$G = F(u_{1,\lambda}+u^+, v_{1,\lambda}+v^+) - F(u_{1,\lambda}, v_{1,\lambda}) - (f_1(u_{1,\lambda}, v_{1,\lambda})u^+ + f_2(u_{1,\lambda}, v_{1,\lambda})v^+).$$

• Then

$$\frac{\partial G}{\partial u} = f(x, u, v) \text{ and } \frac{\partial G}{\partial v} = g(x, u, v).$$

• This shows that the auxiliary problem  $(\mathbf{GS}^{\lambda}_{\mathbf{A}})$  is also a gradient system.

## The gradient system

• Now, we define 
$$G : \mathbb{R}^{N+2} \to \mathbb{R}$$
 by  

$$G = F(u_{1,\lambda}+u^+, v_{1,\lambda}+v^+) - F(u_{1,\lambda}, v_{1,\lambda}) - \left(f_1(u_{1,\lambda}, v_{1,\lambda})u^+ + f_2(u_{1,\lambda}, v_{1,\lambda})v^+\right).$$

• Then

$$\frac{\partial G}{\partial u} = f(x,u,v) \text{ and } \frac{\partial G}{\partial v} = g(x,u,v).$$

- This shows that the auxiliary problem  $(\mathbf{GS}^{\lambda}_{\mathbf{A}})$  is also a gradient system.
- The energy functional associated to the auxiliary system  $(\mathbf{GS}^{\lambda}_{\mathbf{A}})$  is given by

$$J_{\lambda}(u,v) = \frac{1}{2} \|(u,v)\|^2 - \lambda \int_{\mathbb{R}^N} \rho(x) G(x,u,v) dx.$$

The gradient system 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

## The gradient system

# Lemma 2.1

The functional  $J_{\lambda}$  associated to  $(GS^{\lambda}_{A})$  is well defined in E.

#### Proof.

Using the inequality  $(I_{tl})$  given by:

$$(a+b)^{t}(c+d)^{l}-a^{t}c^{l} \leq \begin{cases} t(a+b)^{t-1}(c+d)^{l}b+l(a+b)^{t}(c+d)^{l-1}d & \text{ if } t,l \geq 1\\ ta^{t-1}(c+d)^{l}b+l(a+b)^{t}(c+d)^{l-1}d & \text{ if } 0 \leq t < 1, l \geq 1\\ t(a+b)^{t-1}(c+d)^{l}b+l(a+b)^{t}c^{l-1}d & \text{ if } t \geq 1, 0 \leq l < 1\\ ta^{t-1}(c+d)^{l}b+l(a+b)^{t}c^{l-1}d & \text{ if } 0 < t, l < 1, \end{cases}$$

is possible to show that there exists C > 0 such that

$$G(x, u, v) \le C\left(u^2 + v^2 + (u+v)^{r+s+2}\right) \text{ for all } x \in \mathbb{R}^N \text{ and } u, v \ge 0.$$
 (5)

This fact allows us to easily prove the Lemma 2.1

- ◆ □ ▶ ★ □ ▶ ★ 三 ▶ ★ □ ▶ ↓ □ ▶ ◆ □ ▶ ★

The gradient system 000000 The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

## The gradient system

The next lemma says that  $J_{\lambda}$  has the mountain pass geometry.

*i)* There exist  $\lambda_1^* > 0$  and  $r_0$ , a > 0 such that  $J_{\lambda}(u, v) \ge a$  if  $||(u, v)|| = r_0$  for every  $\lambda \in (0, \lambda_1^*)$ . *ii)* There exists  $(u, v) \in E$  with  $||(u, v)|| > r_0$  and  $J_{\lambda}(u, v) < 0$ .

The gradient system 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

### The gradient system

The nonlinearity  ${\cal G}$  satisfies the following property which is more general than the classical Ambrosetti-Rabinowitz condition:

## Lemma 2.3

There exist  $\theta \in (2, 2^*)$  and C > 0 such that

$$uf(x, u, v) + vg(x, u, v) - \theta G(x, u, v) \ge -C(u^2 + v^2)$$

for all  $x \in \mathbb{R}^N$  and u, v > 0.

#### Lemma 2.4

There exists  $\lambda_2^* > 0$  enough small such that the functional  $J_{\lambda}$  satisfies the Palais-Smale condition for every  $\lambda \in (0, \lambda_2^*)$ .

• Finally, from Lemma 2.1, 2.3 and Lemma 2.4 there exists  $0 < \lambda^{**} \leq \lambda^*$  such that the functional  $J_{\lambda}$  is well defined and satisfies the conditions of the Mountain Pass Theorem for every  $\lambda \in (0, \lambda^{**})$ , which allows us to conclude the proof of **Theorem 4** part ii).

The gradient syste 000000 The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# The Hamiltonian system

• This section is devoted to the proof of **Theorem 5**, which involves the Hamiltonian system  $(HS_{\lambda})$ .

The gradient syste 000000 Some Nonhomogeneous Elliptic System 00

## The Hamiltonian system

- This section is devoted to the proof of **Theorem 5**, which involves the Hamiltonian system  $(HS_{\lambda})$ .
- If pq < 1, by choosing  $\gamma > q$  such that  $p\gamma < 1$  is possible to find M > 1 large enough such that

 $\left\{ \begin{array}{l} M \geq \lambda (M^{\gamma} \| U_{V_2} \|_{\infty} + 1)^p \\ \\ M^{\gamma} \geq \mu (M \| U_{V_1} \|_{\infty} + 1)^q, \end{array} \right.$ 

where  $U_{V_1}, U_{V_2}$  is a bounded positive solution of (4).

The gradient syste 000000 Some Nonhomogeneous Elliptic System 00

ション ふゆ さい シャリン しょうくしゃ

### The Hamiltonian system

- This section is devoted to the proof of **Theorem 5**, which involves the Hamiltonian system  $(HS_{\lambda})$ .
- If pq < 1, by choosing  $\gamma > q$  such that  $p\gamma < 1$  is possible to find M > 1 large enough such that

 $\left\{ \begin{array}{l} M \geq \lambda (M^{\gamma} \| U_{V_2} \|_{\infty} + 1)^p \\ \\ M^{\gamma} \geq \mu (M \| U_{V_1} \|_{\infty} + 1)^q, \end{array} \right.$ 

where  $U_{V_1}, U_{V_2}$  is a bounded positive solution of (4).

• Thus, the couple  $(MU_{V_1}, M^{\gamma}U_{V_2})$  is an upper solution of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$  for every  $R, \lambda, \mu > 0$ , and since  $(\underline{u}, \underline{v}) = (0, 0)$  is a lower solution of  $(\mathbf{S}_{\mathbf{R},\lambda,\mu})$ , following the argument in **Theorem 1**, we obtain existence of at least one bounded positive solution of Hamiltonian System  $(\mathbf{HS}_{\lambda})$  for all  $\lambda > 0$ , which proves **Theorem 5** part ii).

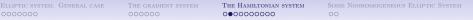
The gradient syste 000000 The Hamiltonian system 000000000

Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# The Hamiltonian system

Now, we assume that pq > 1 and let (u<sub>1,λ</sub>, v<sub>1,λ</sub>) be a bounded positive solution of (HS<sub>λ</sub>), given by Theorem 5 i).



### The Hamiltonian system

- Now, we assume that pq > 1 and let (u<sub>1,λ</sub>, v<sub>1,λ</sub>) be a bounded positive solution of (HS<sub>λ</sub>), given by Theorem 5 i).
- In a similar way as in a gradient system, to show the existence of a second solution for the System  $(HS_{\lambda})$  we will show the existence of at least one solution for the following auxiliary Hamiltonian system

$$\begin{cases} -\Delta u + V(x)u = \lambda \rho(x)f(x,v) & \text{in } \mathbb{R}^{N} \\ -\Delta v + V(x)v = \lambda \rho(x)g(x,u) & \text{in } \mathbb{R}^{N}, \end{cases}$$
(HS<sup>\lambda</sup>)

with

$$f(x,v) := h_1(v_{1,\lambda} + v^+) - h_1(v_{1,\lambda}), \quad g(x,u) := h_2(u_{1,\lambda} + u^+) - h_2(u_{1,\lambda})$$

and

$$h_1(v) = \frac{\partial \mathcal{H}}{\partial v}, \quad h_2(u) = \frac{\partial \mathcal{H}}{\partial u},$$

where  $\mathcal{H}: \mathbb{R}^2 \to \mathbb{R}$  is given by

$$\mathcal{H}(u,v) = \frac{(u+1)^{q+1}}{q+1} + \frac{(v+1)^{p+1}}{p+1}.$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

The gradient system 000000 THE HAMILTONIAN SYSTEM 000000000 Some Nonhomogeneous Elliptic System 00

ション ふゆ さい シャリン しょうくしゃ

#### The Hamiltonian system

• Define  $H : \mathbb{R}^{N+2} \to \mathbb{R}$  by

 $H(x, u, v) = \mathcal{H}(u_{1,\lambda} + u^+, v_{1,\lambda} + v^+) - \mathcal{H}(u_{1,\lambda}, v_{1,\lambda}) - (h_1(v_{1,\lambda})v^+ + h_2(u_{1,\lambda})u^+).$ 

Then

$$\frac{\partial H}{\partial v} = f(x, v) \text{ and } \frac{\partial H}{\partial u} = g(x, u).$$

- This shows that the auxiliary problem  $(\mathbf{HS}^{\lambda}_{\mathbf{A}})$  is also a Hamiltonian system.
- The energy functional associated to the auxiliary system  $(\mathbf{HS}^{\lambda}_{\mathsf{A}})$  is given by

$$I_{\lambda}(u,v) = \int_{\mathbb{R}^{N}} \left( \nabla u \nabla v + V(x) uv \right) dx - \lambda \int_{\mathbb{R}^{N}} \rho(x) H(x,u,v) dx$$

## Lemma 3.1

The functional  $I_{\lambda}$  associated to  $(\mathbf{HS}^{\lambda}_{\mathbf{A}})$  is well defined in E.

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous Elliptic System |
|-------------------------------|---------------------|------------------------|-------------------------------------|
| 0000000                       | 000000              | 000000000              | 00                                  |

## The Hamiltonian system

• To show the existence of a nontrivial solution of the auxiliary problem  $(HS_A^{\lambda})$ , we will use the technique developed in <sup>2</sup>, in which the authors show the existence of at least one positive solution for a Hamiltonian system of the form:

$$\begin{cases} -\Delta u + V(x)u = \rho_1(x)f(v) & \text{in } \mathbb{R}^N\\ -\Delta v + V(x)v = \rho_2(x)g(u) & \text{in } \mathbb{R}^N, \end{cases}$$

<sup>&</sup>lt;sup>2</sup> E. Toon and P. Ubilla. Hamiltonian systems of Schrödinger equations with vanishing potentials. Commun. Contemp. Math, 2020, 2050074.

| Elliptic system. General case | The gradient system | The Hamiltonian system | Some Nonhomogeneous |
|-------------------------------|---------------------|------------------------|---------------------|
| 0000000                       | 000000              | 000000000              | 00                  |

## The Hamiltonian system

• To show the existence of a nontrivial solution of the auxiliary problem  $(\mathbf{HS}^{\lambda}_{\mathbf{A}})$ , we will use the technique developed in <sup>2</sup>, in which the authors show the existence of at least one positive solution for a Hamiltonian system of the form:

$$\begin{cases} -\Delta u + V(x)u = \rho_1(x)f(v) & \text{in} \quad \mathbb{R}^N\\ -\Delta v + V(x)v = \rho_2(x)g(u) & \text{in} \quad \mathbb{R}^N, \end{cases}$$

• Since the nonlinearities of our system  $(HS_A^{\lambda})$  are not of separate variables, we cannot directly use their argument. However by taking  $\lambda$  small enough, we can adapt their argument for our case.

 Elliptic system. General case
 The gradient system
 The Hamiltonian system

 00000000
 0000000
 00000000

Some Nonhomogeneous Elliptic System 00

### The Hamiltonian system

• To show the existence of a nontrivial solution of the auxiliary problem  $(\mathbf{HS}^{\lambda}_{\mathbf{A}})$ , we will use the technique developed in <sup>2</sup>, in which the authors show the existence of at least one positive solution for a Hamiltonian system of the form:

$$\begin{cases} -\Delta u + V(x)u = \rho_1(x)f(v) & \text{in} \quad \mathbb{R}^N\\ -\Delta v + V(x)v = \rho_2(x)g(u) & \text{in} \quad \mathbb{R}^N, \end{cases}$$

- Since the nonlinearities of our system  $(HS_A^{\lambda})$  are not of separate variables, we cannot directly use their argument. However by taking  $\lambda$  small enough, we can adapt their argument for our case.
- Let E be a Hilbert space and  $\Phi \in C^1(E, \mathbb{R})$ . Recall that  $(u_n) \subset E$  is a Cerami sequence at the level c  $((C)_c$ -sequence for short) if

$$\Phi(u_n) \underset{n \to \infty}{\longrightarrow} c \text{ and } (1 + ||u_n||) \Phi'(u_n) \underset{n \to \infty}{\longrightarrow} 0.$$

<sup>&</sup>lt;sup>2</sup> E. Toon and P. Ubilla. Hamiltonian systems of Schrödinger equations with vanishing potentials. Commun. Contemp. Math, 2020, 2050074.

The gradient syste 000000 The Hamiltonian system 0000000000 Some Nonhomogeneous Elliptic System 00

#### The Hamiltonian system

In this line, we will use the linking result due to Li and Szulkin<sup>3</sup>:

Lemma 3.2

Let  $E=E^+\oplus E^-$  be a separable Hilbert space with  $E^-$  orthogonal to  $E^+$  and  $\Phi\in C^1(E,\mathbb{R}).$  Suppose

i)  $\Phi(z) = \frac{1}{2}(\|z^+\|^2 - \|z^-\|^2) - \Psi(z)$ , where  $\Psi \in C^1(E, \mathbb{R})$  is bounded from

below, weakly sequentially lower semicontinuous and  $\Psi'$  is weakly sequentially continuous.

*ii)* There exist  $z_0 \in E^+ \setminus \{0\}$ ,  $\alpha > 0$  and R > r > 0 such that  $\Phi|_{N_r} \ge \alpha$  and  $\Phi|_{\partial M_{R,Z_0}} \le 0$ .

Then there exists a  $(C)_c$ -sequence for  $\Phi$ , with  $c \geq \alpha$  and where

$$c := \inf_{h \in \Gamma} \sup_{u \in M_{R,z_0}} \Phi(h(u,1)).$$

<sup>&</sup>lt;sup>3</sup> G. Li and A. Szulkin. An asymptotically periodic Schrödinger equation with indefinite linear part. Commun. Contemp. Math., V. 4, n.4, 2002, 763-776. ← □ → ← ⊕ → ← ⊕ → ← ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ → ↓ ⊕ →

The gradient syste 000000

## The Hamiltonian system

• The following result is a key point in our argument to obtain a second solution to the Hamiltonian system.

Lemma 3.3

Let  $(z_n) \subset E$  is a  $(C)_c$ -sequence of  $I_{\lambda}$ . Then  $(z_n)$  is bounded in E, for sufficiently small values of  $\lambda$ .

• Since pq > 1, without loss of generality we will assume that p > 1. Then, there exists C > 0 such that

$$f(x,v) \leq C(v+v^p)$$
 and  $g(x,u) \leq \begin{cases} u & \text{if } 0 < q \leq 1 \\ C(u+u^q) & \text{if } q > 1, \end{cases}$ 

for all  $x \in \mathbb{R}^N$  and every  $u, v \ge 0$ .

The gradient systi 000000 The Hamiltonian system 00000000000

Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## The Hamiltonian system

#### Proof of Lemma 3.3

• We may assume, by contradiction, that  $\|z_n\| \to \infty$  and set

$$w_n = \frac{z_n}{\|z_n\|} = \left(\frac{u_n}{\|z_n\|}, \frac{v_n}{\|z_n\|}\right) := (w_n^1, w_n^2).$$

The Hamiltonian system 0000000000

Some Nonhomogeneous Elliptic System 00

# The Hamiltonian system

#### Proof of Lemma 3.3

• We may assume, by contradiction, that  $||z_n|| \to \infty$  and set

$$w_n = \frac{z_n}{\|z_n\|} = \left(\frac{u_n}{\|z_n\|}, \frac{v_n}{\|z_n\|}\right) := (w_n^1, w_n^2).$$

• It follows by Cerami condition that

$$\lim_{n \to \infty} \lambda \int_{\mathbb{R}^N} \rho(x) \left( \frac{f(x, v_n) u_n}{\|z_n\|^2} + \frac{g(x, u_n) v_n}{\|z_n\|^2} \right) dx = 1.$$
(6)

The Hamiltonian system 00000000000

Some Nonhomogeneous Elliptic System 00

### The Hamiltonian system

#### Proof of Lemma 3.3

• We may assume, by contradiction, that  $||z_n|| \to \infty$  and set

$$w_n = \frac{z_n}{\|z_n\|} = \left(\frac{u_n}{\|z_n\|}, \frac{v_n}{\|z_n\|}\right) := (w_n^1, w_n^2).$$

• It follows by Cerami condition that

$$\lim_{n \to \infty} \lambda \int_{\mathbb{R}^N} \rho(x) \left( \frac{f(x, v_n) u_n}{\|z_n\|^2} + \frac{g(x, u_n) v_n}{\|z_n\|^2} \right) dx = 1.$$
(6)

• Let  $0 \le a < b \le +\infty$  and define

$$A_n(a,b) = \{x \in \mathbb{R}^N ; a \le v_n(x) < b\}.$$

THE HAMILTONIAN SYSTEM 0000000000 Some Nonhomogeneous Elliptic System 00

### The Hamiltonian system

#### Proof of Lemma 3.3

• We may assume, by contradiction, that  $||z_n|| \to \infty$  and set

$$w_n = \frac{z_n}{\|z_n\|} = \left(\frac{u_n}{\|z_n\|}, \frac{v_n}{\|z_n\|}\right) := (w_n^1, w_n^2).$$

• It follows by Cerami condition that

$$\lim_{n \to \infty} \lambda \int_{\mathbb{R}^N} \rho(x) \left( \frac{f(x, v_n) u_n}{\|z_n\|^2} + \frac{g(x, u_n) v_n}{\|z_n\|^2} \right) dx = 1.$$
(6)

• Let  $0 \le a < b \le +\infty$  and define

$$A_n(a,b) = \{x \in \mathbb{R}^N ; a \le v_n(x) < b\}.$$

• There is a > 0 small enough such that  $f(x, v) \leq Cv$  for each  $0 \leq v \leq a$ , uniformly in  $x \in \mathbb{R}^N$ , then, for any  $n \in \mathbb{N}$ , we have

$$\begin{split} \int_{A_n(0,a)} \rho(x) \frac{f(x,v_n)u_n}{\|z_n\|^2} dx &\leq C \int_{A_n(0,a)} \rho(x) \frac{v_n u_n}{\|z_n\|^2} dx \\ &= C \int_{A_n(0,a)} \rho(x) w_n^1 w_n^2 dx \\ &\leq C \|w_n^1\|_{H^1_V(\mathbb{R}^N)} \|w_n^2\|_{H^1_V(\mathbb{R}^N)} \\ &\leq C. \end{split}$$

The gradient syste 000000 The Hamiltonian system 00000000000

Some Nonhomogeneous Elliptic System 00

# The Hamiltonian system

• It follows by Cerami condition that, for n sufficiently large,

$$\int_{A_n(b,+\infty)}\rho(x)dx\to 0, \text{ as } b\to+\infty$$



The gradient syste 000000 The Hamiltonian system 0000000000

Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

### The Hamiltonian system

• It follows by Cerami condition that, for n sufficiently large,

$$\int_{A_n(b,+\infty)} \rho(x) dx \to 0, \text{ as } b \to +\infty.$$

• Let  $t_1 \in \left(\frac{N}{2}, N\right)$  and  $s_1 = \frac{1}{\frac{1}{2} + \frac{1}{N} - \frac{1}{t_1}}$ . For n sufficiently large, we obtain

$$\int_{A_n(b,+\infty)} \rho(x) |w_n^1|^{s_1} dx \le C \left( \int_{A_n(b,+\infty)} \rho(x) dx \right)^{\frac{2^* - s_1}{2^*}}$$

The gradient syste 000000 THE HAMILTONIAN SYSTEM 0000000000

Some Nonhomogeneous Elliptic System 00

### The Hamiltonian system

• It follows by Cerami condition that, for *n* sufficiently large,

$$\int_{A_n(b,+\infty)} \rho(x) dx \to 0, \text{ as } b \to +\infty.$$

• Let  $t_1 \in \left(\frac{N}{2}, N\right)$  and  $s_1 = \frac{1}{\frac{1}{2} + \frac{1}{N} - \frac{1}{t_1}}$ . For n sufficiently large, we obtain

$$\int_{A_n(b,+\infty)} \rho(x) |w_n^1|^{s_1} dx \le C \left( \int_{A_n(b,+\infty)} \rho(x) dx \right)^{\frac{2^*-s_1}{2^*}}$$

• Thus, for *n* sufficiently large, using generalized Hölder's inequality we have

$$\begin{split} \int_{A_n(b,+\infty)} \rho(x) \frac{f(x,v_n)u_n}{\|z_n\|^2} dx &= \int_{A_n(b,+\infty)} \rho^{\frac{1}{t_1}}(x) \rho^{\frac{1}{s_1}}(x) \rho^{\frac{1}{2^*}}(x) \frac{f(x,v_n)}{v_n} \frac{v_n}{\|z_n\|} \frac{u_n}{\|z_n\|} dx \\ &\leq C \left( \int_{A_n(b,+\infty)} \rho(x) \left( \frac{|f(x,v_n)|}{|v_n|} \right)^{t_1} dx \right)^{\frac{1}{t_1}} \\ &\cdot \qquad \left( \int_{A_n(b,+\infty)} \rho(x) |w_n^1|^{s_1} dx \right)^{\frac{1}{s_1}} \\ &\leq C \left( \int_{A_n(b,+\infty)} \rho(x) |w_n^1|^{s_1} dx \right)^{\frac{1}{s_1}} \to 0, \text{ as } b \to +\infty. \end{split}$$

The gradient syste 000000 The Hamiltonian system 000000000

Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃ のへで

# The Hamiltonian system

• In a similar way it is possible to show that

$$\int_{A_n(a,b)} \rho(x) \frac{f(x,v_n) u_n}{\|z_n\|^2} dx \leq 1 \text{ for } n \text{ sufficiently large.}$$

The gradient syste 000000 The Hamiltonian system 000000000

Some Nonhomogeneous Elliptic System 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# The Hamiltonian system

In a similar way it is possible to show that

$$\int_{A_n(a,b)} \rho(x) \frac{f(x,v_n) u_n}{\|z_n\|^2} dx \leq 1 \text{ for } n \text{ sufficiently large}.$$

$$\int_{\mathbb{R}^N} \rho(x) \left( \frac{f(x, v_n)u_n}{\|z_n\|^2} + \frac{g(x, u_n)v_n}{\|z_n\|^2} \right) dx \le 2(1+C) \ \text{ for } n \text{ sufficiently large}.$$

The gradient syste 000000 THE HAMILTONIAN SYSTEM

Some Nonhomogeneous Elliptic System 00

### The Hamiltonian system

In a similar way it is possible to show that

$$\int_{A_n(a,b)} \rho(x) \frac{f(x,v_n) u_n}{\|z_n\|^2} dx \leq 1 \text{ for } n \text{ sufficiently large}.$$

$$\int_{\mathbb{R}^N} \rho(x) \left( \frac{f(x,v_n)u_n}{\|z_n\|^2} + \frac{g(x,u_n)v_n}{\|z_n\|^2} \right) dx \le 2(1+C) \text{ for } n \text{ sufficiently large.}$$

- If we consider  $2(1+C)\lambda < 1$ , this fact contradicts (6). Therefore,  $(z_n)$  is bounded in E, for small values of  $\lambda$ , and the lemma is proved.
- Then, up to a subsequence, we may assume that  $z_n \rightarrow z$  in E.

The gradient syste 000000 THE HAMILTONIAN SYSTEM

Some Nonhomogeneous Elliptic System 00

#### The Hamiltonian system

In a similar way it is possible to show that

$$\int_{A_n(a,b)} \rho(x) \frac{f(x,v_n)u_n}{\|z_n\|^2} dx \leq 1 \text{ for } n \text{ sufficiently large}.$$

$$\int_{\mathbb{R}^N} \rho(x) \left( \frac{f(x,v_n)u_n}{\|z_n\|^2} + \frac{g(x,u_n)v_n}{\|z_n\|^2} \right) dx \le 2(1+C) \text{ for } n \text{ sufficiently large.}$$

- If we consider  $2(1+C)\lambda < 1$ , this fact contradicts (6). Therefore,  $(z_n)$  is bounded in E, for small values of  $\lambda$ , and the lemma is proved.
- Then, up to a subsequence, we may assume that  $z_n \rightarrow z$  in E.
- Using that  $z_n$  is a  $(C)_c$ -sequence it is possible to show that  $z_n \to z$  in E.

The gradient syste 000000 THE HAMILTONIAN SYSTEM

Some Nonhomogeneous Elliptic System 00

#### The Hamiltonian system

In a similar way it is possible to show that

$$\int_{A_n(a,b)} \rho(x) \frac{f(x,v_n)u_n}{\|z_n\|^2} dx \leq 1 \text{ for } n \text{ sufficiently large}.$$

$$\int_{\mathbb{R}^N} \rho(x) \left( \frac{f(x,v_n)u_n}{\|z_n\|^2} + \frac{g(x,u_n)v_n}{\|z_n\|^2} \right) dx \le 2(1+C) \text{ for } n \text{ sufficiently large.}$$

- If we consider  $2(1+C)\lambda < 1$ , this fact contradicts (6). Therefore,  $(z_n)$  is bounded in E, for small values of  $\lambda$ , and the lemma is proved.
- Then, up to a subsequence, we may assume that  $z_n \rightarrow z$  in E.
- Using that  $z_n$  is a  $(C)_c$ -sequence it is possible to show that  $z_n \to z$  in E.
- Therefore, z = (u, v) is a nontrivial solution of problem  $(\mathbf{HS}^{\lambda}_{\mathbf{A}})$  with  $I_{\lambda}(u, v) = c \geq a > 0$ . Moreover by maximum principle u > 0 and v > 0.

The gradient syste 000000 The Hamiltonian system 000000000 Some Nonhomogeneous Elliptic System 00

#### The Hamiltonian system

In a similar way it is possible to show that

$$\int_{A_n(a,b)} \rho(x) \frac{f(x,v_n)u_n}{\|z_n\|^2} dx \leq 1 \text{ for } n \text{ sufficiently large}.$$

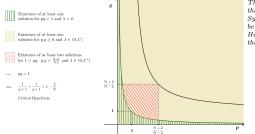
$$\int_{\mathbb{R}^N} \rho(x) \left( \frac{f(x,v_n)u_n}{\|z_n\|^2} + \frac{g(x,u_n)v_n}{\|z_n\|^2} \right) dx \le 2(1+C) \text{ for } n \text{ sufficiently large.}$$

- If we consider  $2(1+C)\lambda < 1$ , this fact contradicts (6). Therefore,  $(z_n)$  is bounded in E, for small values of  $\lambda$ , and the lemma is proved.
- Then, up to a subsequence, we may assume that  $z_n \rightarrow z$  in E.
- Using that  $z_n$  is a  $(C)_c$ -sequence it is possible to show that  $z_n \to z$  in E.
- Therefore, z = (u, v) is a nontrivial solution of problem  $(\mathbf{HS}^{\lambda}_{\mathbf{A}})$  with  $I_{\lambda}(u, v) = c \ge a > 0$ . Moreover by maximum principle u > 0 and v > 0.
- Therefore  $(u_{1,\lambda} + u, v_{1,\lambda} + v)$  is a positive solution of System (HS<sub> $\lambda$ </sub>). This concludes the proof of **Theorem 5** part iii).

The gradient syste 000000 The Hamiltonian system

Some Nonhomogeneous Elliptic System 00

## The Hamiltonian system



This graph illustrates the results obtained for System ( $\mathrm{HS}_{\lambda}$ ), which may be compared to works about Hamiltonian systems involving the critical hyperbola.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Some Nonhomogeneous Elliptic System

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

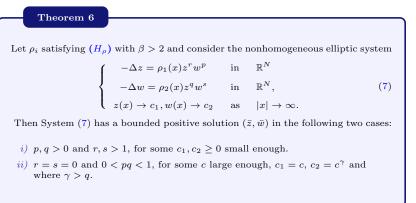
# Some Nonhomogeneous Elliptic System

• Now, we give an important application of **Theorem 1**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

# Some Nonhomogeneous Elliptic System

• Now, we give an important application of **Theorem 1**.



• We would like to mention the paper [3], where the class of type ii) problems was studied with c = 0 (see [3, Theorem 5.1]).

The gradient system

Fhe Hamiltonian system

Some Nonhomogeneous Elliptic System

ション ふゆ さい シャリン しょうくしゃ

# References

- H. Brezis and S. Kamin. Sublinear elliptic equations in  $\mathbb{R}^N.$  Manuscripta Math. 74, 1992, 87-106.
- J. A. Cardoso, P. Cerda, D. S. Pereira and P. Ubilla. Schrödinger Equation with vanishing potentials involving Brezis-Kamin type problems. Discrete Contin. Dyn. Syst. Vol 41, No.6 (2021) 2947-2969.
- M. Montenegro. The construction of principal spectral curves for Lane-Emden systems and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. 4 série, tome 29, 2000, 193-229.
  - J. Arratia, D. Pereira and P. Ubilla . *Elliptic systems involving Schrödinger operators with vanishing potentials.* Discrete Contin. Dyn. Syst. Vol 42, No.3 (2022) 1369-1401.