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Abstract

• This talk is concerned with existence of a bounded positive solution of the
following elliptic system involving Schrödinger operators

!
""#

""$

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in RN

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞.

where p, q, r, s ≥ 0, Vi is a nonnegative vanishing potential, and ρi has the
property (H) introduced by Brezis and Kamin [1].
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Abstract

• This talk is concerned with existence of a bounded positive solution of the
following elliptic system involving Schrödinger operators

!
""#

""$

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in RN

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞.

where p, q, r, s ≥ 0, Vi is a nonnegative vanishing potential, and ρi has the
property (H) introduced by Brezis and Kamin [1].

• Furthermore, by imposing some restrictions on the powers p, q, r, s without
additional hypotheses of integrability on the weights ρi, we obtain a second
solution using variational methods. In this context we consider two particular
cases: a gradient system and a Hamiltonian system.
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Introduction

• More precisely, we will study the following elliptic system involving Schrödinger
operators

!
""#

""$

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in RN

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞.

(Sλ,µ)

where λ, µ > 0, p, q, r, s ≥ 0, N ≥ 3.
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Introduction

• More precisely, we will study the following elliptic system involving Schrödinger
operators

!
""#

""$

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in RN

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞.

(Sλ,µ)

where λ, µ > 0, p, q, r, s ≥ 0, N ≥ 3.

• Vi is a nonnegative vanish potential satisfying

ai

1 + |x|α
≤ Vi(x) ≤

Ai

1 + |x|α
for all x ∈ RN

(Hα
V )

for some constants α, Ai > 0 and ai ≥ 0, i = 1, 2.
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Introduction

• More precisely, we will study the following elliptic system involving Schrödinger
operators

!
""#

""$

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in RN

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞.

(Sλ,µ)

where λ, µ > 0, p, q, r, s ≥ 0, N ≥ 3.

• Vi is a nonnegative vanish potential satisfying

ai

1 + |x|α
≤ Vi(x) ≤

Ai

1 + |x|α
for all x ∈ RN

(Hα
V )

for some constants α, Ai > 0 and ai ≥ 0, i = 1, 2.

• The weight ρi ∈ L∞(RN ) satisfies

0 < ρi(x) ≤
ki

1 + |x|β
in RN

, (Hρ)

with α + β > 4 and ki > 0, i = 1, 2.
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Introduction

• Before to deal the main results about System (Sλ,µ), we will give some know facts
about the Poisson’s equation

−∆u = ρ(x) in RN
. (1)
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Introduction

• Before to deal the main results about System (Sλ,µ), we will give some know facts
about the Poisson’s equation

−∆u = ρ(x) in RN
. (1)

The property (H) introduced by Brezis and Kamin

Let ρ ∈ L∞
loc(R

N ), ρ(x) ≥ 0 and ρ not identically zero.
We said that ρ has the property property (H) if there exist a bounded solu-
tion of Poisson’s equation (1)

• In the celebrated paper [1], Brezis and Kamin proved that the sublinear
problem %

−∆u = ρ(x)uα in RN

u(x) → 0 as |x| → ∞,
(2)

where N ≥ 3 and 0 < α < 1, has a bounded positive solution if and only if
ρ has the property (H).
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Introduction

• An important fact is that the authors prove that Problem (2) has a bounded
solution if and only if

U(x) :=
1

N(N − 2)wN

&

RN
+

ρ(y)

|x − y|N−2
dy ∈ L

∞
(RN

). (3)
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Introduction

• An important fact is that the authors prove that Problem (2) has a bounded
solution if and only if

U(x) :=
1

N(N − 2)wN

&

RN
+

ρ(y)

|x − y|N−2
dy ∈ L

∞
(RN

). (3)

• Thus, if we consider potentials like

ρ(x) =
1

1 + |x|β
for any β > 2,

(3) is satisfied.
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Introduction

• Recently Cardoso, Cerda, Pereira and Ubilla [2] they have studied the existence of
bounded solution for the linear Schrödinger equation

−∆u + V (x)u = ρ(x) in RN
, (LS)

giving the next condition of “compatibility” condition between ρ and V .
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Introduction

• Recently Cardoso, Cerda, Pereira and Ubilla [2] they have studied the existence of
bounded solution for the linear Schrödinger equation

−∆u + V (x)u = ρ(x) in RN
, (LS)

giving the next condition of “compatibility” condition between ρ and V .

Definition

Suppose that ρ has the property (H) and let U be the bounded solution of
−∆U = ρ(x) in RN . We say that V and ρ are compatible if

1

|x|N−2
∗ (V U) ∈ L

∞'
RN(

.
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Introduction

Lemma
Assume that ρ satisfies (Hρ) and V satisfies (Hα

V ) with α ∈ (0, 2). Then V and ρ
are compatible

Theorem
If V and ρ are compatible, then the linear Schrödinger equation (LS) has a
bounded positive solution.
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Introduction

• Let us state our first result.

Assume that p, q, r, s ≥ 0 and in addition suppose hypotheses (Hρ) and (Hα
V ) hold

with α ∈ (0, 2] and α + β > 4. Then, there exists Λ > 0 such that System (Sλ,µ)

!
""#

""$

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in RN

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞,

has at least one bounded positive solution for every 0 < λ, µ < Λ.

Theorem 1
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Introduction

• We also establish a converse of Theorem 1

Suppose that V ∈ L∞(RN ) is a nonnegative potential and the weights ρi belong to

L∞(RN ) with ρi > 0, for i = 1, 2. Suppose also that λ, µ > 0, the powers satisfy
0 < r, s < 1, pq < (r− 1)(s− 1) and there exist positive constants b1, b2 such that

b1ρ1(x) ≤ ρ2(x) ≤ b2ρ1(x) for every x ∈ RN . If System (Sλ,µ) admits a bounded
positive solution, then, the linear Schrödinger equation

%
−∆u + V (x)u = ρi(x) in RN

u(x) → 0 as |x| → ∞

has a bounded positive solution, for i = 1, 2.

Theorem 2
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Introduction

• Note that when r, s > 1 we can construct a function that is the border between the
region of existence and nonexistence.

Suppose hypotheses (Hρ) and (Hα
V ) hold with α ∈ (0, 2] and α + β > 4. Assume

also that r, s > 1 and p, q ≥ 0. Then, there is a positive constant λ∗ and a
continuous function Γ : (0,λ∗) → [0,∞) such that if λ ∈ (0,λ∗) then System
(Sλ,µ):

i) has at least one bounded positive
solution if 0 < µ < Γ(λ);

ii) has no bounded positive solution
if µ > Γ(λ).

Theorem 3
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Introduction

• The second solution will be obtained employing variational methods. The first one
case is the following gradient system:

!
""#

""$

−∆u + V (x)u = λρ1(x)(u + 1)r(v + 1)s+1 in RN

−∆v + V (x)v = λρ2(x)(u + 1)r+1(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞

(GSλ)

with ρ1(x) = (r + 1)ρ(x) and ρ2(x) = (s + 1)ρ(x).
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Introduction

• The second solution will be obtained employing variational methods. The first one
case is the following gradient system:

!
""#

""$

−∆u + V (x)u = λρ1(x)(u + 1)r(v + 1)s+1 in RN

−∆v + V (x)v = λρ2(x)(u + 1)r+1(v + 1)s in RN ,

u(x), v(x) → 0 as |x| → ∞

(GSλ)

with ρ1(x) = (r + 1)ρ(x) and ρ2(x) = (s + 1)ρ(x).

• The main result in this context is the following:

Suppose hypotheses (Hρ) and (Hα
V ) hold with α ∈ (0, 2] and α + β > 4,

i) If r, s ≥ 0, then there exists λ∗ > 0 such that the gradient System (GSλ)
possesses at least one bounded positive solution (u1,λ, v1,λ) for all
0 < λ < λ∗ while for r, s > 1 and λ > λ∗ there are no bounded positive
solutions.

ii) If r, s > 1 and r + s < 2∗ − 2, then there exists 0 < λ∗∗ ≤ λ∗ such that the
gradient System (GSλ) possesses a second positive solution of the form

(u1,λ + u, v1,λ + v) for all 0 < λ < λ∗∗, where u, v ∈ H1(RN ).

Theorem 4
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Introduction
• The second particular situation involves the following Hamiltonian system

!
""#

""$

−∆u + V (x)u = λρ(x)(v + 1)p in RN

−∆v + V (x)v = λρ(x)(u + 1)q in RN ,

u(x), v(x) → 0 as |x| → ∞

(HSλ)

for some conditions in the powers p, q > 0.
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Introduction
• The second particular situation involves the following Hamiltonian system

!
""#

""$

−∆u + V (x)u = λρ(x)(v + 1)p in RN

−∆v + V (x)v = λρ(x)(u + 1)q in RN ,

u(x), v(x) → 0 as |x| → ∞

(HSλ)

for some conditions in the powers p, q > 0.

• The main result involving the Hamiltonian system is the following:

Suppose hypotheses (Hρ) and (Hα
V ) hold with α ∈ (0, 2]. Also, suppose also that

α + β > 4 and p, q ≥ 0, then

i) There exists λ∗ > 0 such that Hamiltonian System (HSλ) possesses at least
one bounded positive solution (u1,λ, v1,λ) for all 0 < λ < λ∗ while for
p, q > 1 and λ > λ∗ there are no bounded positive solutions.

ii) If pq < 1, then Hamiltonian System (HSλ) possesses at least one bounded
positive solution (u1,λ, v1,λ) for all λ > 0.

iii) If 1 < pq and p, q < 2∗ − 1, then there exists 0 < λ∗∗ ≤ λ∗ such that
Hamiltonian System (HSλ) possesses a second positive solution of the form

(u1,λ + u, v1,λ + v) for all 0 < λ < λ∗∗, where u, v ∈ H1(RN ).

Theorem 5
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Outline

Elliptic system. General case

The gradient system

The Hamiltonian system

Some Nonhomogeneous Elliptic System
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Elliptic system. General case

• The proof of existence of the first solution of System (Sλ,µ) follows the line of
Brezis-Kamin [1], Cardoso-Cerda-Pereira-Ubilla [2] and Montenegro [3], that is to
say, we will apply some monotonicity methods.

• First, we will use the lower and upper solution technique developed by
Montenegro [3], to obtain a solution of

!
""#

""$

−∆u + V1(x)u = λρ1(x)(u + 1)r(v + 1)p in BR

−∆v + V2(x)v = µρ2(x)(u + 1)q(v + 1)s in BR

u = 0 = v on ∂BR

(SR,λ,µ)

• More precisely:

Lemma 1.1

Assume that p, q, r, s ≥ 0. Let UVi
be a bounded positive solution of

%
−∆u + Vi(x)u = ρi(x) in RN

u(x) → 0 as |x| → ∞.
(4)

Then there is Λ > 0, which does not depend on R, such that if 0 < λ, µ < Λ, the
System (SR,λ,µ) has a minimal positive solution (uR, vR), which is increasing
with R and satisfies uR ≤ UV1

and vR ≤ UV2
.
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Elliptic system. General case

Proof
Existence of bounded solution

• (u, v) = (0, 0) is a lower solution of (SR,λ,µ) for any λ, µ ∈ (0,∞).
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Elliptic system. General case

Proof
Existence of bounded solution

• (u, v) = (0, 0) is a lower solution of (SR,λ,µ) for any λ, µ ∈ (0,∞).

• Since UV1
, UV2

∈ L∞(RN ) there exists Λ > 0 such that for 0 < λ, µ ≤ Λ, the pair
(u, v) = (UV1

, UV2
) is an upper solution of (SR,λ,µ), for any R > 0. Therefore

there is a solution (uR, vR) of (SR,λ,µ).
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Elliptic system. General case

Proof
Existence of bounded solution

• (u, v) = (0, 0) is a lower solution of (SR,λ,µ) for any λ, µ ∈ (0,∞).

• Since UV1
, UV2

∈ L∞(RN ) there exists Λ > 0 such that for 0 < λ, µ ≤ Λ, the pair
(u, v) = (UV1

, UV2
) is an upper solution of (SR,λ,µ), for any R > 0. Therefore

there is a solution (uR, vR) of (SR,λ,µ).

Existence of minimal solution



Elliptic system. General case The gradient system The Hamiltonian system Some Nonhomogeneous Elliptic System

Elliptic system. General case

Proof
Existence of bounded solution

• (u, v) = (0, 0) is a lower solution of (SR,λ,µ) for any λ, µ ∈ (0,∞).

• Since UV1
, UV2

∈ L∞(RN ) there exists Λ > 0 such that for 0 < λ, µ ≤ Λ, the pair
(u, v) = (UV1

, UV2
) is an upper solution of (SR,λ,µ), for any R > 0. Therefore

there is a solution (uR, vR) of (SR,λ,µ).

Existence of minimal solution
(uR, vR) is increasing with R.
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Elliptic system. General case

Proof
Existence of bounded solution

• (u, v) = (0, 0) is a lower solution of (SR,λ,µ) for any λ, µ ∈ (0,∞).

• Since UV1
, UV2

∈ L∞(RN ) there exists Λ > 0 such that for 0 < λ, µ ≤ Λ, the pair
(u, v) = (UV1

, UV2
) is an upper solution of (SR,λ,µ), for any R > 0. Therefore

there is a solution (uR, vR) of (SR,λ,µ).

Existence of minimal solution
(uR, vR) is increasing with R.

• Since (uR, vR) is the minimal solution of (SR,λ,µ), it follows that if R′ > R, then

uR ≤ uR′ and vR ≤ vR′ in BR

and
uR ≤ UV1

and vR ≤ UV2
.
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Elliptic system. General case

Proof of Theorem 1
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Elliptic system. General case

Proof of Theorem 1

• Let 0 < λ, µ < Λ, R > 0 and (uR, vR) be the increasing sequence of solution of
(SR,λ,µ) given by Lemma 1.1. Thus, there exist the limits

lim
R→∞

uR(x) := u(x) and lim
R→∞

vR(x) := v(x) for every x ∈ RN
.
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Elliptic system. General case

Proof of Theorem 1

• Let 0 < λ, µ < Λ, R > 0 and (uR, vR) be the increasing sequence of solution of
(SR,λ,µ) given by Lemma 1.1. Thus, there exist the limits

lim
R→∞

uR(x) := u(x) and lim
R→∞

vR(x) := v(x) for every x ∈ RN
.

• Using Green’s representation in the ball BR, convergence theorems and property
(H) it is possible to show that (u, v) is a bounded positive solution of (Sλ,µ).
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Elliptic system. General case

Now, we prove the converse of Theorem 1.

Suppose that V ∈ L∞(RN ) is a nonnegative potential and the weights ρi
belong to L∞(RN ) with ρi > 0, for i = 1, 2. Suppose also that λ, µ > 0, the
powers satisfy 0 < r, s < 1, pq < (r−1)(s−1) and there exist positive constants
b1, b2 such that b1ρ1(x) ≤ ρ2(x) ≤ b2ρ1(x) for every x ∈ RN . If System (Sλ,µ)
admits a bounded positive solution, then, the linear Schrödinger equation

%
−∆u + V (x)u = ρi(x) in RN

u(x) → 0 as |x| → ∞

has a bounded positive solution, for i = 1, 2.

Theorem 2
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Elliptic system. General case

Proof of Theorem 2
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Elliptic system. General case

Proof of Theorem 2

• Let (u, v) be a bounded positive solution of system (Sλ,µ).
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Elliptic system. General case

Proof of Theorem 2

• Let (u, v) be a bounded positive solution of system (Sλ,µ).

• Consider the auxiliary function w = (u+ 1)a(v + 1)b, with a = 1− r and b = 1− s

and define z = 1
1−ηw1−η , where

1

η
=

1
b+p
b

+
1

a+q
a

.
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Elliptic system. General case

Proof of Theorem 2

• Let (u, v) be a bounded positive solution of system (Sλ,µ).

• Consider the auxiliary function w = (u+ 1)a(v + 1)b, with a = 1− r and b = 1− s

and define z = 1
1−ηw1−η , where

1

η
=

1
b+p
b

+
1

a+q
a

.

• Using that b1ρ(x) ≤ ρ2(x), 0 < (1 − η)(a + b) < 1 and V be a nonnegative
potential, we obtain

%
−∆z + V (x)z ≥ c1ρ1(x) in RN

z(x) → 0 as |x| → ∞
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Elliptic system. General case

Proof of Theorem 2

• Let (u, v) be a bounded positive solution of system (Sλ,µ).

• Consider the auxiliary function w = (u+ 1)a(v + 1)b, with a = 1− r and b = 1− s

and define z = 1
1−ηw1−η , where

1

η
=

1
b+p
b

+
1

a+q
a

.

• Using that b1ρ(x) ≤ ρ2(x), 0 < (1 − η)(a + b) < 1 and V be a nonnegative
potential, we obtain

%
−∆z + V (x)z ≥ c1ρ1(x) in RN

z(x) → 0 as |x| → ∞

• This allows us to demonstrate the existence of a bounded positive solution of the
linear Schrödinger equation (LS), when ρ = ρ1.
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A Sobolev embedding

• Now, we obtain a second solution of System (Sλ,µ) using variational methods.
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A Sobolev embedding

• Now, we obtain a second solution of System (Sλ,µ) using variational methods.

• For this purpose, we denote by H1
V

'
RN

(
the Sobolev subspace of H1

'
RN

(

endowed with the scalar product

〈u, v〉
H1

V
(RN )

=

&

RN

'
∇u∇v + V (x)uv

(
dx,

and the corresponding norm

‖u‖
H1

V
(RN )

=

)&

RN

'
|∇u|2 + V (x)u

2(
dx

* 1
2
.
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A Sobolev embedding

• Now, we obtain a second solution of System (Sλ,µ) using variational methods.

• For this purpose, we denote by H1
V

'
RN

(
the Sobolev subspace of H1

'
RN

(

endowed with the scalar product

〈u, v〉
H1

V
(RN )

=

&

RN

'
∇u∇v + V (x)uv

(
dx,

and the corresponding norm

‖u‖
H1

V
(RN )

=

)&

RN

'
|∇u|2 + V (x)u

2(
dx

* 1
2
.

• For q > 1, let us denote by Lq
ρ

'
RN

(
the weighted Lebesgue space

L
q
ρ

'
RN(

=
+
u : RN → R : u is measurable and ||u||Lq

ρ(RN ) < +∞
,
,

where

||u||Lq
ρ(RN ) :=

-&

RN
ρ(x)|u|qdx

. 1
q
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A Sobolev embedding

The following embedding result due to A. Ambrosetti, V. Felli and A. Malchiodi 1.

Lemma 1.2

Suppose hypotheses (Hρ) and (Hα
V ) hold with α ∈ (0, 2]. Then the embedding

H
1
V

'
RN(

↩→ L
q
ρ

'
RN(

is continuous for 2 ≤ q ≤ 2∗ and is compact if 2 ≤ q < 2∗.

• The Hilbert space in which we will work is E = H1
V (RN ) × H1

V (RN ) endowed with
the inner product given by

〈(u, v), (ϕ,ψ)〉 =

&

RN

/
∇u∇ϕ + ∇v∇ψ + V (x)uϕ + V (x)vψ

0
dx

and corresponding norm

‖(u, v)‖ =

)&

RN

/
|∇u|2 + V (x)u

2
+ |∇v|2 + V (x)v

2
0
dx

*1/2

.

1
A. Ambrosetti, V. Felli and A. Malchiodi. Ground states of Nonlinear Schrödinger Equations with

Potentials Vanishing at Infinity. J. Eur. Math. Soc. 7, 2005, 117-144.
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The gradient system

• This section is devoted to the proof of Theorem 4, which involves the gradient
system (GSλ).
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The gradient system

• This section is devoted to the proof of Theorem 4, which involves the gradient
system (GSλ).

• Observe that the most natural energy functional Jλ : E → R, associated to the
gradient system (GSλ) is given by

Jλ(u, v) =
1

2
‖(u, v)‖2 − λ

&

RN
ρ(x)F (u, v)dx,

where F : R2 → R is defined by

F (u, v) = (u + 1)
r+1

(v + 1)
s+1

,

where we have assumed that r, s > 1 and r + s < 2∗ − 2.
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The gradient system

• This section is devoted to the proof of Theorem 4, which involves the gradient
system (GSλ).

• Observe that the most natural energy functional Jλ : E → R, associated to the
gradient system (GSλ) is given by

Jλ(u, v) =
1

2
‖(u, v)‖2 − λ

&

RN
ρ(x)F (u, v)dx,

where F : R2 → R is defined by

F (u, v) = (u + 1)
r+1

(v + 1)
s+1

,

where we have assumed that r, s > 1 and r + s < 2∗ − 2.

• However it is not well defined because the Sobolev embeddings do not work.
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The gradient system

• This section is devoted to the proof of Theorem 4, which involves the gradient
system (GSλ).

• Observe that the most natural energy functional Jλ : E → R, associated to the
gradient system (GSλ) is given by

Jλ(u, v) =
1

2
‖(u, v)‖2 − λ

&

RN
ρ(x)F (u, v)dx,

where F : R2 → R is defined by

F (u, v) = (u + 1)
r+1

(v + 1)
s+1

,

where we have assumed that r, s > 1 and r + s < 2∗ − 2.

• However it is not well defined because the Sobolev embeddings do not work.

• This is mainly due to the behaviour near zero of the nonlinearities and the fact
that the ρ(x) coefficient does not necessarily satisfy any integrability hypothesis.
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The gradient system

For this reason, in order to show the existence of a second solution for System (GSλ),
we will consider the following auxiliary system

!
#

$
−∆u + V (x)u = λρ(x)f(x, u, v) in RN

−∆v + V (x)v = λρ(x)g(x, u, v) in RN
(GSλ

A)

where the functions f , g are defined by

f(x, u, v) = f1
'
u1,λ + u

+
, v1,λ + v

+(
− f1

'
u1,λ, v1,λ

(

and
g(x, u, v) = f2

'
u1,λ + u

+
, v1,λ + v

+(
− f2

'
u1,λ, v1,λ

(
,

where for simplicity we have denoted u1,λ, v1,λ instead of u1,λ(x), v1,λ(x) , and where

f1(u, v) =
∂F

∂u
and f2(u, v) =

∂F

∂v
.
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The gradient system

For this reason, in order to show the existence of a second solution for System (GSλ),
we will consider the following auxiliary system

!
#

$
−∆u + V (x)u = λρ(x)f(x, u, v) in RN

−∆v + V (x)v = λρ(x)g(x, u, v) in RN
(GSλ

A)

where the functions f , g are defined by

f(x, u, v) = f1
'
u1,λ + u

+
, v1,λ + v

+(
− f1

'
u1,λ, v1,λ

(

and
g(x, u, v) = f2

'
u1,λ + u

+
, v1,λ + v

+(
− f2

'
u1,λ, v1,λ

(
,

where for simplicity we have denoted u1,λ, v1,λ instead of u1,λ(x), v1,λ(x) , and where

f1(u, v) =
∂F

∂u
and f2(u, v) =

∂F

∂v
.

• Clearly, if (u, v) is a solution for the auxiliary system (GSλ
A), then

(u1,λ + u, v1,λ + v) is a solution of System (GSλ).
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• Now, we define G : RN+2 → R by

G = F
'
u1,λ+u

+
, v1,λ+v

+(
−F

'
u1,λ, v1,λ

(
−
/
f1

'
u1,λ, v1,λ

(
u
+
+f2

'
u1,λ, v1,λ

(
v
+
0
.
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G = F
'
u1,λ+u

+
, v1,λ+v

+(
−F

'
u1,λ, v1,λ

(
−
/
f1

'
u1,λ, v1,λ

(
u
+
+f2

'
u1,λ, v1,λ

(
v
+
0
.

• Then
∂G

∂u
= f(x, u, v) and

∂G

∂v
= g(x, u, v).
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• Now, we define G : RN+2 → R by

G = F
'
u1,λ+u

+
, v1,λ+v

+(
−F

'
u1,λ, v1,λ

(
−
/
f1

'
u1,λ, v1,λ

(
u
+
+f2

'
u1,λ, v1,λ

(
v
+
0
.

• Then
∂G

∂u
= f(x, u, v) and

∂G

∂v
= g(x, u, v).

• This shows that the auxiliary problem (GSλ
A) is also a gradient system.
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The gradient system

• Now, we define G : RN+2 → R by

G = F
'
u1,λ+u

+
, v1,λ+v

+(
−F

'
u1,λ, v1,λ

(
−
/
f1

'
u1,λ, v1,λ

(
u
+
+f2

'
u1,λ, v1,λ

(
v
+
0
.

• Then
∂G

∂u
= f(x, u, v) and

∂G

∂v
= g(x, u, v).

• This shows that the auxiliary problem (GSλ
A) is also a gradient system.

• The energy functional associated to the auxiliary system (GSλ
A) is given by

Jλ(u, v) =
1

2
‖(u, v)‖2 − λ

&

RN
ρ(x)G(x, u, v)dx.
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The gradient system

Lemma 2.1

The functional Jλ associated to (GSλ
A) is well defined in E.

Proof.
Using the inequality (Itl) given by:

(a+b)
t
(c+d)

l−a
t
c
l ≤

!
""""""#

""""""$

t(a + b)t−1(c + d)lb + l(a + b)t(c + d)l−1d if t, l ≥ 1

tat−1(c + d)lb + l(a + b)t(c + d)l−1d if 0 ≤ t < 1, l ≥ 1

t(a + b)t−1(c + d)lb + l(a + b)tcl−1d if t ≥ 1, 0 ≤ l < 1

tat−1(c + d)lb + l(a + b)tcl−1d if 0 < t, l < 1,

is possible to show that there exists C > 0 such that

G(x, u, v) ≤ C
'
u
2
+ v

2
+ (u + v)

r+s+2(
for all x ∈ RN

and u, v ≥ 0. (5)

This fact allows us to easily prove the Lemma 2.1
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The gradient system

The next lemma says that Jλ has the mountain pass geometry.

Lemma 2.2

i) There exist λ∗
1 > 0 and r0, a > 0 such that

Jλ(u, v) ≥ a if ‖(u, v)‖ = r0 for every λ ∈ (0,λ
∗
1).

ii) There exists (u, v) ∈ E with

‖(u, v)‖ > r0 and Jλ(u, v) < 0.
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The gradient system

The nonlinearity G satisfies the following property which is more general than the
classical Ambrosetti-Rabinowitz condition:

Lemma 2.3

There exist θ ∈
'
2, 2∗

(
and C > 0 such that

uf(x, u, v) + vg(x, u, v) − θG(x, u, v) ≥ −C
'
u
2
+ v

2(

for all x ∈ RN and u, v > 0.

Lemma 2.4

There exists λ∗
2 > 0 enough small such that the functional Jλ satisfies the

Palais-Smale condition for every λ ∈ (0,λ∗
2).

• Finally, from Lemma 2.1, 2.3 and Lemma 2.4 there exists 0 < λ∗∗ ≤ λ∗

such that the functional Jλ is well defined and satisfies the conditions of the
Mountain Pass Theorem for every λ ∈ (0,λ∗∗), which allows us to conclude
the proof of Theorem 4 part ii).
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The Hamiltonian system

• This section is devoted to the proof of Theorem 5, which involves the
Hamiltonian system (HSλ).
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The Hamiltonian system

• This section is devoted to the proof of Theorem 5, which involves the
Hamiltonian system (HSλ).

• If pq < 1, by choosing γ > q such that pγ < 1 is possible to find M > 1 large
enough such that %

M ≥ λ(Mγ‖UV2
‖∞ + 1)p

Mγ ≥ µ(M‖UV1
‖∞ + 1)q,

where UV1
, UV2

is a bounded positive solution of (4).
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The Hamiltonian system

• This section is devoted to the proof of Theorem 5, which involves the
Hamiltonian system (HSλ).

• If pq < 1, by choosing γ > q such that pγ < 1 is possible to find M > 1 large
enough such that %

M ≥ λ(Mγ‖UV2
‖∞ + 1)p

Mγ ≥ µ(M‖UV1
‖∞ + 1)q,

where UV1
, UV2

is a bounded positive solution of (4).

• Thus, the couple (MUV1
,MγUV2

) is an upper solution of (SR,λ,µ) for every
R,λ, µ > 0, and since (u, v) = (0, 0) is a lower solution of (SR,λ,µ), following the
argument in Theorem 1, we obtain existence of at least one bounded positive
solution of Hamiltonian System (HSλ) for all λ > 0, which proves Theorem 5
part ii).
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The Hamiltonian system

• Now, we assume that pq > 1 and let (u1,λ, v1,λ) be a bounded positive solution of
(HSλ), given by Theorem 5 i).
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The Hamiltonian system

• Now, we assume that pq > 1 and let (u1,λ, v1,λ) be a bounded positive solution of
(HSλ), given by Theorem 5 i).

• In a similar way as in a gradient system, to show the existence of a second solution
for the System (HSλ) we will show the existence of at least one solution for the
following auxiliary Hamiltonian system

!
#

$
−∆u + V (x)u = λρ(x)f(x, v) in RN

−∆v + V (x)v = λρ(x)g(x, u) in RN ,
(HSλ

A)

with

f(x, v) := h1(v1,λ + v
+
) − h1(v1,λ), g(x, u) := h2(u1,λ + u

+
) − h2(u1,λ)

and

h1(v) =
∂H
∂v

, h2(u) =
∂H
∂u

,

where H : R2 → R is given by

H(u, v) =
(u + 1)q+1

q + 1
+

(v + 1)p+1

p + 1
.
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The Hamiltonian system

• Define H : RN+2 → R by

H(x, u, v) = H(u1,λ +u
+
, v1,λ + v

+
)−H(u1,λ, v1,λ)−

'
h1(v1,λ)v

+
+h2(u1,λ)u

+(
.

• Then
∂H

∂v
= f(x, v) and

∂H

∂u
= g(x, u).

• This shows that the auxiliary problem (HSλ
A) is also a Hamiltonian system.

• The energy functional associated to the auxiliary system (HSλ
A) is given by

Iλ(u, v) =

&

RN

/
∇u∇v + V (x)uv

0
dx − λ

&

RN
ρ(x)H(x, u, v)dx

Lemma 3.1

The functional Iλ associated to (HSλ
A) is well defined in E.
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The Hamiltonian system

• To show the existence of a nontrivial solution of the auxiliary problem (HSλ
A), we

will use the technique developed in 2, in which the authors show the existence of
at least one positive solution for a Hamiltonian system of the form:

!
#

$
−∆u + V (x)u = ρ1(x)f(v) in RN

−∆v + V (x)v = ρ2(x)g(u) in RN ,

2
E. Toon and P. Ubilla. Hamiltonian systems of Schrödinger equations with vanishing potentials. Commun.

Contemp. Math, 2020, 2050074.
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The Hamiltonian system

• To show the existence of a nontrivial solution of the auxiliary problem (HSλ
A), we

will use the technique developed in 2, in which the authors show the existence of
at least one positive solution for a Hamiltonian system of the form:

!
#

$
−∆u + V (x)u = ρ1(x)f(v) in RN

−∆v + V (x)v = ρ2(x)g(u) in RN ,

• Since the nonlinearities of our system (HSλ
A) are not of separate variables, we

cannot directly use their argument. However by taking λ small enough, we can
adapt their argument for our case.

2
E. Toon and P. Ubilla. Hamiltonian systems of Schrödinger equations with vanishing potentials. Commun.

Contemp. Math, 2020, 2050074.
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The Hamiltonian system

• To show the existence of a nontrivial solution of the auxiliary problem (HSλ
A), we

will use the technique developed in 2, in which the authors show the existence of
at least one positive solution for a Hamiltonian system of the form:

!
#

$
−∆u + V (x)u = ρ1(x)f(v) in RN

−∆v + V (x)v = ρ2(x)g(u) in RN ,

• Since the nonlinearities of our system (HSλ
A) are not of separate variables, we

cannot directly use their argument. However by taking λ small enough, we can
adapt their argument for our case.

• Let E be a Hilbert space and Φ ∈ C1(E,R). Recall that (un) ⊂ E is a Cerami
sequence at the level c ((C)c-sequence for short) if

Φ(un) −→
n→∞

c and (1 + ‖un‖)Φ′
(un) −→

n→∞
0.

2
E. Toon and P. Ubilla. Hamiltonian systems of Schrödinger equations with vanishing potentials. Commun.

Contemp. Math, 2020, 2050074.
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The Hamiltonian system

In this line, we will use the linking result due to Li and Szulkin 3:

Lemma 3.2

Let E = E+ ⊕E− be a separable Hilbert space with E− orthogonal to E+ and
Φ ∈ C1(E,R). Suppose

i) Φ(z) =
1

2
(‖z+‖2 − ‖z−‖2

) − Ψ(z), where Ψ ∈ C1(E,R) is bounded from

below, weakly sequentially lower semicontinuous and Ψ′ is weakly
sequentially continuous.

ii) There exist z0 ∈ E+ \ {0}, α > 0 and R > r > 0 such that Φ|Nr ≥ α and
Φ|∂MR,z0

≤ 0.

Then there exists a (C)c-sequence for Φ, with c ≥ α and where

c := inf
h∈Γ

sup
u∈MR,z0

Φ(h(u, 1)).

3
G. Li and A. Szulkin. An asymptotically periodic Schrödinger equation with indefinite linear part.

Commun. Contemp. Math., V. 4, n.4, 2002, 763-776.
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The Hamiltonian system

• The following result is a key point in our argument to obtain a second solution to
the Hamiltonian system.

Lemma 3.3

Let (zn) ⊂ E is a (C)c-sequence of Iλ. Then (zn) is bounded in E, for suffi-
ciently small values of λ.

• Since pq > 1, without loss of generality we will assume that p > 1. Then, there
exists C > 0 such that

f(x, v) ≤ C(v + v
p
) and g(x, u) ≤

%
u if 0 < q ≤ 1

C(u + uq) if q > 1,

for all x ∈ RN and every u, v ≥ 0.
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The Hamiltonian system
Proof of Lemma 3.3

• We may assume, by contradiction, that ‖zn‖ → ∞ and set

wn =
zn

‖zn‖
=

)
un

‖zn‖
,

vn

‖zn‖

*
:= (w

1
n, w

2
n).
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The Hamiltonian system
Proof of Lemma 3.3

• We may assume, by contradiction, that ‖zn‖ → ∞ and set

wn =
zn

‖zn‖
=

)
un

‖zn‖
,

vn

‖zn‖

*
:= (w

1
n, w

2
n).

• It follows by Cerami condition that

lim
n→∞

λ

&

RN
ρ(x)

)
f(x, vn)un

‖zn‖2
+

g(x, un)vn

‖zn‖2

*
dx = 1. (6)
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The Hamiltonian system
Proof of Lemma 3.3

• We may assume, by contradiction, that ‖zn‖ → ∞ and set

wn =
zn

‖zn‖
=

)
un

‖zn‖
,

vn

‖zn‖

*
:= (w

1
n, w

2
n).

• It follows by Cerami condition that

lim
n→∞

λ

&

RN
ρ(x)

)
f(x, vn)un

‖zn‖2
+

g(x, un)vn

‖zn‖2

*
dx = 1. (6)

• Let 0 ≤ a < b ≤ +∞ and define

An(a, b) = {x ∈ RN
; a ≤ vn(x) < b}.
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The Hamiltonian system
Proof of Lemma 3.3

• We may assume, by contradiction, that ‖zn‖ → ∞ and set

wn =
zn

‖zn‖
=

)
un

‖zn‖
,

vn

‖zn‖

*
:= (w

1
n, w

2
n).

• It follows by Cerami condition that

lim
n→∞

λ

&

RN
ρ(x)

)
f(x, vn)un

‖zn‖2
+

g(x, un)vn

‖zn‖2

*
dx = 1. (6)

• Let 0 ≤ a < b ≤ +∞ and define

An(a, b) = {x ∈ RN
; a ≤ vn(x) < b}.

• There is a > 0 small enough such that f(x, v) ≤ Cv for each 0 ≤ v ≤ a, uniformly

in x ∈ RN , then, for any n ∈ N, we have
&

An(0,a)

ρ(x)
f(x, vn)un

‖zn‖2
dx ≤ C

&

An(0,a)

ρ(x)
vnun

‖zn‖2
dx

= C

&

An(0,a)

ρ(x)w
1
nw

2
ndx

≤ C‖w1
n‖H1

V
(RN )

‖w2
n‖H1

V
(RN )

≤ C.
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The Hamiltonian system
• It follows by Cerami condition that, for n sufficiently large,

&

An(b,+∞)

ρ(x)dx → 0, as b → +∞.
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The Hamiltonian system
• It follows by Cerami condition that, for n sufficiently large,

&

An(b,+∞)

ρ(x)dx → 0, as b → +∞.

• Let t1 ∈
'
N
2 , N

(
and s1 =

1
1
2 + 1

N − 1
t1

. For n sufficiently large, we obtain

&

An(b,+∞)

ρ(x)|w1
n|

s1dx ≤ C

-&

An(b,+∞)

ρ(x)dx

. 2∗−s1
2∗

.
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The Hamiltonian system
• It follows by Cerami condition that, for n sufficiently large,

&

An(b,+∞)

ρ(x)dx → 0, as b → +∞.

• Let t1 ∈
'
N
2 , N

(
and s1 =

1
1
2 + 1

N − 1
t1

. For n sufficiently large, we obtain

&

An(b,+∞)

ρ(x)|w1
n|

s1dx ≤ C

-&

An(b,+∞)

ρ(x)dx

. 2∗−s1
2∗

.

• Thus, for n sufficiently large, using generalized Hölder’s inequality we have

&

An(b,+∞)

ρ(x)
f(x, vn)un

‖zn‖2
dx =

&

An(b,+∞)

ρ
1
t1 (x)ρ

1
s1 (x)ρ

1
2∗ (x)

f(x, vn)

vn

vn

‖zn‖
un

‖zn‖
dx

≤ C

-&

An(b,+∞)

ρ(x)

) |f(x, vn)|
|vn|

*t1

dx

. 1
t1

·
-&

An(b,+∞)

ρ(x)|w1
n|

s1dx

. 1
s1

≤ C

-&

An(b,+∞)

ρ(x)|w1
n|

s1dx

. 1
s1

→ 0, as b → +∞.



Elliptic system. General case The gradient system The Hamiltonian system Some Nonhomogeneous Elliptic System

The Hamiltonian system

• In a similar way it is possible to show that
&

An(a,b)

ρ(x)
f(x, vn)un

‖zn‖2
dx ≤ 1 for n sufficiently large.
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The Hamiltonian system

• In a similar way it is possible to show that
&

An(a,b)

ρ(x)
f(x, vn)un

‖zn‖2
dx ≤ 1 for n sufficiently large.

• Using a similar argument for the nonlinearity g, we obtain:

&

RN
ρ(x)

)
f(x, vn)un

‖zn‖2
+

g(x, un)vn

‖zn‖2

*
dx ≤ 2(1 + C) for n sufficiently large.
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The Hamiltonian system

• In a similar way it is possible to show that
&

An(a,b)

ρ(x)
f(x, vn)un

‖zn‖2
dx ≤ 1 for n sufficiently large.

• Using a similar argument for the nonlinearity g, we obtain:

&

RN
ρ(x)

)
f(x, vn)un

‖zn‖2
+

g(x, un)vn

‖zn‖2

*
dx ≤ 2(1 + C) for n sufficiently large.

• If we consider 2
'
1 + C

(
λ < 1, this fact contradicts (6). Therefore, (zn) is bounded

in E, for small values of λ, and the lemma is proved.

• Then, up to a subsequence, we may assume that zn ⇀ z in E.
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The Hamiltonian system

• In a similar way it is possible to show that
&
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f(x, vn)un

‖zn‖2
dx ≤ 1 for n sufficiently large.

• Using a similar argument for the nonlinearity g, we obtain:
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*
dx ≤ 2(1 + C) for n sufficiently large.
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'
1 + C

(
λ < 1, this fact contradicts (6). Therefore, (zn) is bounded

in E, for small values of λ, and the lemma is proved.

• Then, up to a subsequence, we may assume that zn ⇀ z in E.

• Using that zn is a (C)c-sequence it is possible to show that zn → z in E.
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The Hamiltonian system

• In a similar way it is possible to show that
&

An(a,b)

ρ(x)
f(x, vn)un

‖zn‖2
dx ≤ 1 for n sufficiently large.

• Using a similar argument for the nonlinearity g, we obtain:

&

RN
ρ(x)

)
f(x, vn)un

‖zn‖2
+

g(x, un)vn

‖zn‖2

*
dx ≤ 2(1 + C) for n sufficiently large.

• If we consider 2
'
1 + C

(
λ < 1, this fact contradicts (6). Therefore, (zn) is bounded

in E, for small values of λ, and the lemma is proved.

• Then, up to a subsequence, we may assume that zn ⇀ z in E.

• Using that zn is a (C)c-sequence it is possible to show that zn → z in E.

• Therefore, z = (u, v) is a nontrivial solution of problem (HSλ
A) with

Iλ(u, v) = c ≥ a > 0. Moreover by maximum principle u > 0 and v > 0.
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The Hamiltonian system

• In a similar way it is possible to show that
&
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• Using a similar argument for the nonlinearity g, we obtain:
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• If we consider 2
'
1 + C

(
λ < 1, this fact contradicts (6). Therefore, (zn) is bounded

in E, for small values of λ, and the lemma is proved.

• Then, up to a subsequence, we may assume that zn ⇀ z in E.

• Using that zn is a (C)c-sequence it is possible to show that zn → z in E.

• Therefore, z = (u, v) is a nontrivial solution of problem (HSλ
A) with

Iλ(u, v) = c ≥ a > 0. Moreover by maximum principle u > 0 and v > 0.

• Therefore (u1,λ + u, v1,λ + v) is a positive solution of System (HSλ). This
concludes the proof of Theorem 5 part iii).
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The Hamiltonian system

This graph illustrates
the results obtained for
System (HSλ), which may
be compared to works about
Hamiltonian systems involving
the critical hyperbola.
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Some Nonhomogeneous Elliptic System

• Now, we give an important application of Theorem 1.
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Some Nonhomogeneous Elliptic System

• Now, we give an important application of Theorem 1.

Let ρi satisfying (Hρ) with β > 2 and consider the nonhomogeneous elliptic system

!
""#

""$

−∆z = ρ1(x)z
rwp in RN

−∆w = ρ2(x)z
qws in RN ,

z(x) → c1, w(x) → c2 as |x| → ∞.

(7)

Then System (7) has a bounded positive solution (z̄, w̄) in the following two cases:

i) p, q > 0 and r, s > 1, for some c1, c2 ≥ 0 small enough.

ii) r = s = 0 and 0 < pq < 1, for some c large enough, c1 = c, c2 = cγ and
where γ > q.

Theorem 6

• • We would like to mention the paper [3], where the class of type ii)
problems was studied with c = 0 (see [3, Theorem 5.1]).
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