Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces

Jefferson Abrantes dos Santos
Universidade Federal de Campina Grande

IMECC-UNICAMP
Setembro 2022

Joint work with Sergio H. Monari Soares (USP/São Carlos)
Research partially supported by FAPESP 16/16745-3 and CNPq/Brazil

The Problem

In this talk we are concerned with the minimization problem

The Problem

In this talk we are concerned with the minimization problem for the functional

$$
J(u)=\int_{\Omega} G(|\nabla u|) d x
$$

The Problem

In this talk we are concerned with the minimization problem for the functional

$$
J(u)=\int_{\Omega} G(|\nabla u|) d x
$$

in the class

$$
\mathcal{K}=\left\{u \in L^{1}(\Omega):\right.
$$

The Problem

In this talk we are concerned with the minimization problem for the functional

$$
J(u)=\int_{\Omega} G(|\nabla u|) d x
$$

in the class

$$
\mathcal{K}=\left\{u \in L^{1}(\Omega): u=f \text { on } \partial \Omega\right.
$$

The Problem

In this talk we are concerned with the minimization problem for the functional

$$
J(u)=\int_{\Omega} G(|\nabla u|) d x
$$

in the class

$$
\mathcal{K}=\left\{u \in L^{1}(\Omega): u=f \text { on } \partial \Omega \text { and } \mathcal{L}^{N}(\{u>0\})=\alpha\right\}
$$

The Problem

In this talk we are concerned with the minimization problem for the functional

$$
J(u)=\int_{\Omega} G(|\nabla u|) d x
$$

in the class

$$
\mathcal{K}=\left\{u \in L^{1}(\Omega): u=f \text { on } \partial \Omega \text { and } \mathcal{L}^{N}(\{u>0\})=\alpha\right\}
$$

for a prescribed function

- $f \in L^{\infty}(\Omega)$

The Problem

In this talk we are concerned with the minimization problem for the functional

$$
J(u)=\int_{\Omega} G(|\nabla u|) d x
$$

in the class

$$
\mathcal{K}=\left\{u \in L^{1}(\Omega): u=f \text { on } \partial \Omega \text { and } \mathcal{L}^{N}(\{u>0\})=\alpha\right\}
$$

for a prescribed function

- $f \in L^{\infty}(\Omega)$ with
- $f \geq 0$;

The Problem

In this talk we are concerned with the minimization problem for the functional

$$
J(u)=\int_{\Omega} G(|\nabla u|) d x
$$

in the class

$$
\mathcal{K}=\left\{u \in L^{1}(\Omega): u=f \text { on } \partial \Omega \text { and } \mathcal{L}^{N}(\{u>0\})=\alpha\right\}
$$

for a prescribed function

- $f \in L^{\infty}(\Omega)$ with
- $f \geq 0$;
- Ω is a smooth bounded domain in $\mathbb{R}^{N}, N \geq 2$;

The Problem

In this talk we are concerned with the minimization problem for the functional

$$
J(u)=\int_{\Omega} G(|\nabla u|) d x
$$

in the class

$$
\mathcal{K}=\left\{u \in L^{1}(\Omega): u=f \text { on } \partial \Omega \text { and } \mathcal{L}^{N}(\{u>0\})=\alpha\right\}
$$

for a prescribed function

- $f \in L^{\infty}(\Omega)$ with
- $f \geq 0$;
- Ω is a smooth bounded domain in $\mathbb{R}^{N}, N \geq 2$;
- $\mathcal{L}^{N}(E)$ denotes the N dimensional Lebesgue measure of the set E in \mathbb{R}^{N}.

The starting point of the study of this problem is the seminal work by Aguilera, Alt and Caffarelli ${ }^{1}$ for the case $G(t)=t^{2}$.

[^0]The starting point of the study of this problem is the seminal work by Aguilera, Alt and Caffarelli ${ }^{1}$ for the case $G(t)=t^{2}$.

The case $G(t)=t^{p}$, with $1<p<\infty$, was considered by Bonder, Martínez and Wolanski. ${ }^{2}$ and by Oliveira and Teixeira ${ }^{3}$.

[^1]The starting point of the study of this problem is the seminal work by Aguilera, Alt and Caffarelli ${ }^{1}$ for the case $G(t)=t^{2}$.

The case $G(t)=t^{p}$, with $1<p<\infty$, was considered by Bonder, Martínez and Wolanski. ${ }^{2}$ and by Oliveira and Teixeira ${ }^{3}$.

Martínez ${ }^{4}$ studied this problem under the following natural condition that allows a different behavior of $G(t)$ when t is close to zero or infinity:

$$
\begin{equation*}
0<\delta_{0} \leq \frac{\operatorname{tg}^{\prime}(t)}{g(t)} \leq g_{0}, \quad \forall t>0 \tag{1}
\end{equation*}
$$

where $g(t)=G^{\prime}(t)$.

[^2]Condition (1) was used by Liberman ${ }^{5}$
${ }^{5}$ G.M. Lieberman, Comm. Partial Differential Equations 1991.

Condition (1) was used by Liberman ${ }^{5}$ and its meaning is that the Euler-Lagrange equation associated with

$$
\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|) d x
$$

is uniformly elliptic

[^3]Condition (1) was used by Liberman ${ }^{5}$ and its meaning is that the Euler-Lagrange equation associated with

$$
\mathcal{J}(u)=\int_{\Omega} G(|\nabla u|) d x
$$

is uniformly elliptic if and only if (1) (Lieberman's condition) holds.

[^4]Rossi and Teixeira ${ }^{6}$ considered the free boundary optimization problem
(2)
$\min \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W^{1, p}(\Omega), u=f\right.$ on $\partial \Omega$
${ }^{6}$ J. D. Rossi and E. V. Teixeira, Trans. Amer. Math. Soc. 2012

Rossi and Teixeira ${ }^{6}$ considered the free boundary optimization problem
(2)

$$
\min \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W^{1, p}(\Omega), u=f \text { on } \partial \Omega \text { and } \mathcal{L}^{N}(\{u>0\}) \leq \alpha\right\}
$$

${ }^{6}$ J. D. Rossi and E. V. Teixeira, Trans. Amer. Math. Soc. 2012

Rossi and Teixeira ${ }^{6}$ considered the free boundary optimization problem
(2) $\min \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W^{1, p}(\Omega), u=f\right.$ on $\partial \Omega$ and $\left.\mathcal{L}^{N}(\{u>0\}) \leq \alpha\right\}$ and studied the asymptotic behavior as $p \rightarrow \infty$
${ }^{6}$ J. D. Rossi and E. V. Teixeira, Trans. Amer. Math. Soc. 2012

Rossi and Teixeira ${ }^{6}$ considered the free boundary optimization problem
(2)
$\min \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W^{1, p}(\Omega), u=f\right.$ on $\partial \Omega$ and $\left.\mathcal{L}^{N}(\{u>0\}) \leq \alpha\right\}$
and studied the asymptotic behavior as $p \rightarrow \infty$ to find a limiting free boundary problem

[^5]Rossi and Teixeira ${ }^{6}$ considered the free boundary optimization problem
(2)

$$
\min \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W^{1, p}(\Omega), u=f \text { on } \partial \Omega \text { and } \mathcal{L}^{N}(\{u>0\}) \leq \alpha\right\}
$$

and studied the asymptotic behavior as $p \rightarrow \infty$ to find a limiting free boundary problem given by the infinity Laplacian operator

$$
\Delta_{\infty} u=D u D^{2} u D u
$$

${ }^{6}$ J. D. Rossi and E. V. Teixeira, Trans. Amer. Math. Soc. 2012

Our problem

In the present work we are interested in a degenerate case.

Our problem

In the present work we are interested in a degenerate case. We consider the minimization problem

$$
\min \left\{J(u):|\nabla u| \in K_{\phi}(\Omega), u=f \text { on } \partial \Omega,\right.
$$

Our problem

In the present work we are interested in a degenerate case. We consider the minimization problem

$$
\min \left\{J(u):|\nabla u| \in K_{\phi}(\Omega), u=f \text { on } \partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\},
$$

Our problem

In the present work we are interested in a degenerate case. We consider the minimization problem

$$
\min \left\{J(u):|\nabla u| \in K_{\phi}(\Omega), u=f \text { on } \partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\},
$$

for a prescribed

- $f \in C(\bar{\Omega})$;

Our problem

In the present work we are interested in a degenerate case. We consider the minimization problem

$$
\min \left\{J(u):|\nabla u| \in K_{\phi}(\Omega), u=f \text { on } \partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\},
$$

for a prescribed

- $f \in C(\bar{\Omega})$;
- $|\nabla f| \in K_{\Phi}(\Omega) \Leftrightarrow \int_{\Omega} \Phi(|\nabla f|)<+\infty$;

Our problem

In the present work we are interested in a degenerate case. We consider the minimization problem

$$
\min \left\{J(u):|\nabla u| \in K_{\phi}(\Omega), u=f \text { on } \partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\},
$$

for a prescribed

- $f \in C(\bar{\Omega})$;
- $|\nabla f| \in K_{\Phi}(\Omega) \Leftrightarrow \int_{\Omega} \Phi(|\nabla f|)<+\infty$;
- $f \geq 0$

Our problem

In the present work we are interested in a degenerate case. We consider the minimization problem

$$
\min \left\{J(u):|\nabla u| \in K_{\phi}(\Omega), u=f \text { on } \partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\},
$$

for a prescribed

- $f \in C(\bar{\Omega})$;
- $|\nabla f| \in K_{\Phi}(\Omega) \Leftrightarrow \int_{\Omega} \Phi(|\nabla f|)<+\infty$;
- $f \geq 0$
and the functional J is given by

$$
J(u)=\int_{\Omega} \Phi(|\nabla u|) d x,|\nabla u| \in K_{\Phi}(\Omega)
$$

Our problem

In the present work we are interested in a degenerate case. We consider the minimization problem

$$
\min \left\{J(u):|\nabla u| \in K_{\phi}(\Omega), u=f \text { on } \partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\},
$$

for a prescribed

- $f \in C(\bar{\Omega})$;
- $|\nabla f| \in K_{\Phi}(\Omega) \Leftrightarrow \int_{\Omega} \Phi(|\nabla f|)<+\infty$;
- $f \geq 0$
and the functional J is given by

$$
J(u)=\int_{\Omega} \Phi(|\nabla u|) d x,|\nabla u| \in K_{\phi}(\Omega),
$$

where

- $\Phi(t)=\exp \left(t^{2}\right)-1$

Our problem

In the present work we are interested in a degenerate case. We consider the minimization problem

$$
\min \left\{J(u):|\nabla u| \in K_{\phi}(\Omega), u=f \text { on } \partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\},
$$

for a prescribed

- $f \in C(\bar{\Omega})$;
- $|\nabla f| \in K_{\Phi}(\Omega) \Leftrightarrow \int_{\Omega} \Phi(|\nabla f|)<+\infty$;
- $f \geq 0$
and the functional J is given by

$$
J(u)=\int_{\Omega} \Phi(|\nabla u|) d x,|\nabla u| \in K_{\Phi}(\Omega)
$$

where

- $\Phi(t)=\exp \left(t^{2}\right)-1$
- $K_{\phi}(\Omega)$ is the Orlicz class.

The function

$$
\Phi(t)=\exp \left(t^{2}\right)-1
$$

The function

$$
\Phi(t)=\exp \left(t^{2}\right)-1
$$

satisfies

$$
1 \leq \frac{\phi^{\prime}(t) t}{\phi(t)}
$$

The function

$$
\Phi(t)=\exp \left(t^{2}\right)-1
$$

satisfies

$$
1 \leq \frac{\phi^{\prime}(t) t}{\phi(t)} \quad \text { and } \quad \lim _{t \rightarrow+\infty} \frac{\phi^{\prime}(t) t}{\phi(t)}=\infty
$$

The function

$$
\Phi(t)=\exp \left(t^{2}\right)-1
$$

satisfies

$$
1 \leq \frac{\phi^{\prime}(t) t}{\phi(t)} \quad \text { and } \quad \lim _{t \rightarrow+\infty} \frac{\phi^{\prime}(t) t}{\phi(t)}=\infty
$$

where $\phi(t)=\Phi^{\prime}(t)$,

The function

$$
\Phi(t)=\exp \left(t^{2}\right)-1
$$

satisfies

$$
1 \leq \frac{\phi^{\prime}(t) t}{\phi(t)} \quad \text { and } \quad \lim _{t \rightarrow+\infty} \frac{\phi^{\prime}(t) t}{\phi(t)}=\infty
$$

where $\phi(t)=\Phi^{\prime}(t)$, that is $\delta_{0}=1$

The function

$$
\Phi(t)=\exp \left(t^{2}\right)-1
$$

satisfies

$$
1 \leq \frac{\phi^{\prime}(t) t}{\phi(t)} \quad \text { and } \quad \lim _{t \rightarrow+\infty} \frac{\phi^{\prime}(t) t}{\phi(t)}=\infty
$$

where $\phi(t)=\Phi^{\prime}(t)$, that is $\delta_{0}=1$ and $g_{0}=\infty$ in condition (1).

The function

$$
\Phi(t)=\exp \left(t^{2}\right)-1
$$

satisfies

$$
1 \leq \frac{\phi^{\prime}(t) t}{\phi(t)} \quad \text { and } \quad \lim _{t \rightarrow+\infty} \frac{\phi^{\prime}(t) t}{\phi(t)}=\infty
$$

where $\phi(t)=\Phi^{\prime}(t)$, that is $\delta_{0}=1$ and $g_{0}=\infty$ in condition (1). So, in this case observe that the function Φ does not assume the Liberman condition.

Our problem

Since

Φ does not satisfy Δ_{2}-condition ${ }^{7}$,
${ }^{7} A$ satisfies the Δ_{2}-condition if there is a constant $k>0$ such that $A(2 t) \leq k A(t)$ for all $t \geq 0$.

Our problem

Since

$$
\Phi \text { does not satisfy } \Delta_{2} \text {-condition }{ }^{7}
$$

the Banach space

$$
W^{1, \Phi}(\Omega) \text { is neither separable nor reflexive, }
$$

${ }^{7} A$ satisfies the Δ_{2}-condition if there is a constant $k>0$ such that $A(2 t) \leq k A(t)$ for all $t \geq 0$.

Our problem

Since

$$
\Phi \text { does not satisfy } \Delta_{2} \text {-condition }{ }^{7}
$$

the Banach space

$$
W^{1, \Phi}(\Omega) \text { is neither separable nor reflexive, }
$$

as a result, the use of minimizing sequences to find solutions to the minimization problem breaks down.

[^6]
Our problem

Since

$$
\Phi \text { does not satisfy } \Delta_{2} \text {-condition }{ }^{7}
$$

the Banach space

$$
W^{1, \Phi}(\Omega) \text { is neither separable nor reflexive, }
$$

as a result, the use of minimizing sequences to find solutions to the minimization problem breaks down.
To overcome this difficulty and "others", for each $k \in \mathbb{N}$, we consider the truncated function G_{k} defined for $t \in \mathbb{R}$ by

$$
G_{k}(t)=\sum_{n=1}^{k} \frac{|t|^{2 n}}{n!}, \quad t \in \mathbb{R}
$$

[^7]Let $g_{k}(t)=G_{k}^{\prime}(t), t \in \mathbb{R}$.

Let $g_{k}(t)=G_{k}^{\prime}(t), t \in \mathbb{R}$. The function g_{k} satisfies
(3)

$$
\delta_{0} \leq \frac{t g_{k}^{\prime}(t)}{g_{k}(t)} \leq g_{0}, t \geq 0
$$

for $\delta_{0}=1$

Let $g_{k}(t)=G_{k}^{\prime}(t), t \in \mathbb{R}$. The function g_{k} satisfies

$$
\begin{equation*}
\delta_{0} \leq \frac{t g_{k}^{\prime}(t)}{g_{k}(t)} \leq g_{0}, t \geq 0 \tag{3}
\end{equation*}
$$

for $\delta_{0}=1$ and $g_{0}=2 k-1$.

Let $g_{k}(t)=G_{k}^{\prime}(t), t \in \mathbb{R}$. The function g_{k} satisfies

$$
\begin{equation*}
\delta_{0} \leq \frac{t g_{k}^{\prime}(t)}{g_{k}(t)} \leq g_{0}, t \geq 0 \tag{3}
\end{equation*}
$$

for $\delta_{0}=1$ and $g_{0}=2 k-1$.

Since

$$
f \in W^{1, G_{k}}(\Omega) \cap C(\bar{\Omega}) \text { for sufficiently large } k,{ }^{8}
$$

${ }^{8}$ because $f \in W^{1, \Phi}(\Omega)$, with $|\nabla f| \in K_{\Phi}(\Omega)$, and the immersion of $W^{1, \Phi}(\Omega)$ in $W^{1, G_{k}}(\Omega)$ is continuous (for every k) and in $C(\bar{\Omega})$ (for k sufficiently targe)

Since

$$
f \in W^{1, G_{k}}(\Omega) \cap C(\bar{\Omega}) \text { for sufficiently large } k,{ }^{8}
$$

the result of Martínez implies the existence of a minimizer u_{k}

[^8]Since

$$
f \in W^{1, G_{k}}(\Omega) \cap C(\bar{\Omega}) \text { for sufficiently large } k,^{8}
$$

the result of Martínez implies the existence of a minimizer u_{k} to the minimization problem
(4) $\quad \min \left\{\int_{\Omega} G_{k}(|\nabla u|) d x: u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$

[^9]
Existence

Theorem (1)
Let

$$
u_{k} \in W^{1, G_{k}}(\Omega) \text { be a minimizer of (4). }
$$

Existence

Theorem (1)
Let

$$
u_{k} \in W^{1, G_{k}}(\Omega) \text { be a minimizer of (4). }
$$

Then, there is a subsequence (not renamed) such that

$$
u_{k} \rightarrow u_{\Phi}, \text { as } k \rightarrow \infty, \text { uniformly on } \bar{\Omega},
$$

Existence

Theorem (1)
Let

$$
u_{k} \in W^{1, G_{k}}(\Omega) \text { be a minimizer of (4). }
$$

Then, there is a subsequence (not renamed) such that

$$
u_{k} \rightarrow u_{\Phi}, \text { as } k \rightarrow \infty, \text { uniformly on } \bar{\Omega},
$$

where

$$
u_{\Phi} \in W^{1, \Phi}(\Omega) \text { is a solution }
$$

Existence

Theorem (1)
Let

$$
u_{k} \in W^{1, G_{k}}(\Omega) \text { be a minimizer of (4). }
$$

Then, there is a subsequence (not renamed) such that

$$
u_{k} \rightarrow u_{\Phi}, \text { as } k \rightarrow \infty, \text { uniformly on } \bar{\Omega},
$$

where

$$
u_{\Phi} \in W^{1, \Phi}(\Omega) \text { is a solution }
$$

to problem
(5) $\min \left\{J(u): u=f\right.$ on $\left.\partial \Omega,|\nabla u| \in K_{\Phi}(\Omega), \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,

Existence

Theorem (1)
Let

$$
u_{k} \in W^{1, G_{k}}(\Omega) \text { be a minimizer of (4). }
$$

Then, there is a subsequence (not renamed) such that

$$
u_{k} \rightarrow u_{\Phi}, \text { as } k \rightarrow \infty, \text { uniformly on } \bar{\Omega},
$$

where

$$
u_{\Phi} \in W^{1, \Phi}(\Omega) \text { is a solution }
$$

to problem
(5) $\min \left\{J(u): u=f\right.$ on $\left.\partial \Omega,|\nabla u| \in K_{\Phi}(\Omega), \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J(u)=\int_{\Omega} \Phi(|\nabla u|) d x
$$

Theorem (1)

Moreover, the function
u_{Φ} is a viscosity sense,

Theorem (1)

Moreover, the function
u_{Φ} is a viscosity sense,
to the equation

$$
\Delta u_{\Phi}+2 \Delta_{\infty} u_{\Phi}=0 \text { in }\left\{u_{\Phi}>0\right\} .
$$

Theorem (1)

Moreover, the function
u_{Φ} is a viscosity sense,
to the equation

$$
\Delta u_{\Phi}+2 \Delta_{\infty} u_{\Phi}=0 \text { in }\left\{u_{\Phi}>0\right\} .
$$

Some fine properties of u_{Φ}

Theorem (2)
Let

$$
u_{\Phi} \in W^{1, \Phi}(\Omega) \text { be the solution to }
$$

Some fine properties of u_{Φ}

Theorem (2)

Let

$$
u_{\Phi} \in W^{1, \Phi}(\Omega) \text { be the solution to }
$$

given by Theorem 1,

$$
D \subset \subset \Omega \text { be any set }
$$

Some fine properties of u_{Φ}

Theorem (2)

Let

$$
u_{\Phi} \in W^{1, \Phi}(\Omega) \text { be the solution to }(5)
$$

given by Theorem 1,

$$
D \subset \subset \Omega \text { be any set }
$$

and
$B_{r}(x) \subset D \cap\left\{u_{\Phi}>0\right\}$ be a ball touching the free boundary $\partial\left\{u_{\Phi}>0\right\}$ for $r>0$ is sufficiently small.

Theorem (2)

Then,
(i) Non-degeneracy. There are positive constants c and C depending only on N and f

Theorem (2)

Then,
(i) Non-degeneracy. There are positive constants c and C depending only on N and f such that

$$
c r \leq u_{\Phi}(x) \leq C r .
$$

Theorem (2)

Then,
(i) Non-degeneracy. There are positive constants c and C depending only on N and f such that

$$
c r \leq u_{\Phi}(x) \leq C r .
$$

(ii) Harnack inequality in a touching ball. There is a positive constant
C depending only on r and $M:=\sup _{\bar{\Omega}} f$

Theorem (2)

Then,
(i) Non-degeneracy. There are positive constants c and C depending only on N and f such that

$$
c r \leq u_{\Phi}(x) \leq C r .
$$

(ii) Harnack inequality in a touching ball. There is a positive constant
C depending only on r and $M:=\sup _{\bar{\Omega}} f$
such that

$$
\sup _{B_{\sigma r}(x)} u_{\Phi} \leq C \inf _{B_{\sigma r}(x)} u_{\Phi}
$$

for any $\sigma \in(0,1)$.

Figure: A pictorial figure of the non-degeneracy

In order to prove Theorem 2,
${ }^{9}$ G.M Lieberman, Comm. Partial Differential Equations, 1991.
${ }^{10}$ J. Abrantes Santos and S.H. Monari Soares, Rev. Mat. Iberoam., 2020.

In order to prove Theorem 2, we use refined Local maximum principle

[^10]In order to prove Theorem 2, we use refined Local maximum principle and Harnack's inequality for G_{k}-subharmonic and harmonic functions, respectively,

[^11]In order to prove Theorem 2, we use refined Local maximum principle and Harnack's inequality for G_{k}-subharmonic and harmonic functions, respectively, developed by Lieberman ${ }^{9}$,

[^12]In order to prove Theorem 2, we use refined Local maximum principle and Harnack's inequality for G_{k}-subharmonic and harmonic functions, respectively, developed by Lieberman ${ }^{9}$, where G_{k} is given by

$$
G_{k}(t)=\sum_{n=1}^{k} \frac{|t|^{2 n}}{n!}, \quad t \in \mathbb{R} .
$$

[^13]In order to prove Theorem 2, we use refined Local maximum principle and Harnack's inequality for G_{k}-subharmonic and harmonic functions, respectively, developed by Lieberman ${ }^{9}$, where G_{k} is given by

$$
G_{k}(t)=\sum_{n=1}^{k} \frac{|t|^{2 n}}{n!}, \quad t \in \mathbb{R} .
$$

Such refinement was proved in a joint work with Monari Soares ${ }^{10}$

[^14]Theorem (Local maximum principle)
Set $k \geq 2$ and $R \in(0,1]$.

Theorem (Local maximum principle)

Set $k \geq 2$ and $R \in(0,1]$. Suppose that $u \in L^{\infty}\left(B_{R}\right) \cap W^{1, G_{k}}\left(B_{R}\right)$

Theorem (Local maximum principle)

Set $k \geq 2$ and $R \in(0,1]$. Suppose that $u \in L^{\infty}\left(B_{R}\right) \cap W^{1, G_{k}}\left(B_{R}\right)$ satisfies

$$
-\operatorname{div}\left(g_{k}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right) \leq 0 \text { in } B_{R}
$$

Theorem (Local maximum principle)

Set $k \geq 2$ and $R \in(0,1]$. Suppose that $u \in L^{\infty}\left(B_{R}\right) \cap W^{1, G_{k}}\left(B_{R}\right)$ satisfies

$$
-\operatorname{div}\left(g_{k}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right) \leq 0 \text { in } B_{R},
$$

with $0 \leq u \leq M$ in B_{R},

Theorem (Local maximum principle)

Set $k \geq 2$ and $R \in(0,1]$. Suppose that $u \in L^{\infty}\left(B_{R}\right) \cap W^{1, G_{k}}\left(B_{R}\right)$ satisfies

$$
-\operatorname{div}\left(g_{k}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right) \leq 0 \text { in } B_{R}
$$

with $0 \leq u \leq M$ in B_{R}, then for any $s \geq\left(g_{0}+1\right)^{2} N=: \theta N$ and
$\sigma \in(0,1)$,

Theorem (Local maximum principle)

Set $k \geq 2$ and $R \in(0,1]$. Suppose that $u \in L^{\infty}\left(B_{R}\right) \cap W^{1, G_{k}}\left(B_{R}\right)$ satisfies

$$
-\operatorname{div}\left(g_{k}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right) \leq 0 \text { in } B_{R}
$$

with $0 \leq u \leq M$ in B_{R}, then for any $s \geq\left(g_{0}+1\right)^{2} N=: \theta N$ and $\sigma \in(0,1)$, there is a constant $c=c\left(N, g_{0}, k, R, M, \sigma\right)$ such that

$$
\sup _{B_{\sigma R}} u^{2} \leq c\left(\int_{B_{R}} u^{s} d x\right)^{\frac{1}{s}}
$$

Theorem (Local maximum principle)

Set $k \geq 2$ and $R \in(0,1]$. Suppose that $u \in L^{\infty}\left(B_{R}\right) \cap W^{1, G_{k}}\left(B_{R}\right)$ satisfies

$$
-\operatorname{div}\left(g_{k}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right) \leq 0 \text { in } B_{R}
$$

with $0 \leq u \leq M$ in B_{R}, then for any $s \geq\left(g_{0}+1\right)^{2} N=: \theta N$ and $\sigma \in(0,1)$, there is a constant $c=c\left(N, g_{0}, k, R, M, \sigma\right)$ such that

$$
\sup _{B_{\sigma R}} u^{2} \leq c\left(\int_{B_{R}} u^{s} d x\right)^{\frac{1}{s}}
$$

Moreover, there is $k_{0} \in \mathbb{N}$ depending only on N, σ and R

Theorem (Local maximum principle)

Set $k \geq 2$ and $R \in(0,1]$. Suppose that $u \in L^{\infty}\left(B_{R}\right) \cap W^{1, G_{k}}\left(B_{R}\right)$ satisfies

$$
-\operatorname{div}\left(g_{k}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right) \leq 0 \text { in } B_{R}
$$

with $0 \leq u \leq M$ in B_{R}, then for any $s \geq\left(g_{0}+1\right)^{2} N=: \theta N$ and $\sigma \in(0,1)$, there is a constant $c=c\left(N, g_{0}, k, R, M, \sigma\right)$ such that

$$
\sup _{B_{\sigma R}} u^{2} \leq c\left(\int_{B_{R}} u^{s} d x\right)^{\frac{1}{s}}
$$

Moreover, there is $k_{0} \in \mathbb{N}$ depending only on N, σ and R such that

$$
c<\frac{2 R^{2}}{M}\left(\exp (M / R)^{2}-1\right)
$$

provided that $k \geq k_{0}$.

Theorem (Harnack's inequality)

Let $R \in\left(0, c_{N}^{-1 / N}\right)$, where c_{N} is the constant given by the John and Nirenberg lemma. For any

- $\sigma \in(0,1)$,

Theorem (Harnack's inequality)

Let $R \in\left(0, c_{N}^{-1 / N}\right)$, where c_{N} is the constant given by the John and Nirenberg lemma. For any

- $\sigma \in(0,1)$,
- $M>0$

Theorem (Harnack's inequality)

Let $R \in\left(0, c_{N}^{-1 / N}\right)$, where c_{N} is the constant given by the John and Nirenberg lemma. For any

- $\sigma \in(0,1)$,
- $M>0$ and
- $k \geq k_{0}$ with $k_{0}=k_{0}\left(N, \sigma, R, \delta_{0}\right)$

Theorem (Harnack's inequality)

Let $R \in\left(0, c_{N}^{-1 / N}\right)$, where c_{N} is the constant given by the John and Nirenberg lemma. For any

- $\sigma \in(0,1)$,
- $M>0$ and
- $k \geq k_{0}$ with $k_{0}=k_{0}\left(N, \sigma, R, \delta_{0}\right)$
given by Theorem [Local maximum principle], supposing that $u \in W^{1, G_{k}}\left(B_{R}\right)$ satisfies

$$
-\operatorname{div}\left(g_{k}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right)=0, \quad \text { in } B_{R}
$$

Theorem (Harnack's inequality)

Let $R \in\left(0, c_{N}^{-1 / N}\right)$, where c_{N} is the constant given by the John and Nirenberg lemma. For any

- $\sigma \in(0,1)$,
- $M>0$ and
- $k \geq k_{0}$ with $k_{0}=k_{0}\left(N, \sigma, R, \delta_{0}\right)$
given by Theorem [Local maximum principle], supposing that $u \in W^{1, G_{k}}\left(B_{R}\right)$ satisfies

$$
-\operatorname{div}\left(g_{k}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right)=0, \quad \text { in } B_{R}
$$

with $0 \leq u \leq M$ in B_{R}.

Theorem (Harnack's inequality)

Let $R \in\left(0, c_{N}^{-1 / N}\right)$, where c_{N} is the constant given by the John and Nirenberg lemma. For any

- $\sigma \in(0,1)$,
- $M>0$ and
- $k \geq k_{0}$ with $k_{0}=k_{0}\left(N, \sigma, R, \delta_{0}\right)$
given by Theorem [Local maximum principle], supposing that $u \in W^{1, G_{k}}\left(B_{R}\right)$ satisfies

$$
-\operatorname{div}\left(g_{k}(|\nabla u|) \frac{\nabla u}{|\nabla u|}\right)=0, \quad \text { in } B_{R}
$$

with $0 \leq u \leq M$ in B_{R}. Then there is a positive constant C depending only on R and M such that

$$
\sup _{B_{\sigma R}} u \leq C \inf _{B_{\sigma R}} u
$$

Interesting Result

Theorem (Harnack's inequality for the degenerate case)

Let $R \in\left(0, c_{N}^{-1 / N}\right)$, where c_{N} is the constant given by the John and Nirenberg lemma. For any $\sigma \in(0,1)$ given by Theorem [Local maximum principle], supposing that $u_{k} \in W^{1, G_{k}}(\Omega)$ is a minimizer of the

$$
\min \left\{\int_{\Omega} G_{k}(|\nabla u|) d x: u=f \text { on } \partial \Omega\right\}
$$

such that

$$
u_{k} \rightarrow v_{\Phi}, \text { uniformly on } \bar{\Omega}
$$

and $v_{\Phi} \in W^{1, \Phi}(\Omega)$ is a minimizer of the

$$
\min \left\{\int_{\Omega} \Phi(|\nabla u|) d x: u=f \text { on } \partial \Omega\right\}
$$

Then there is a positive constant C depending only on R and M such that

$$
\sup _{B_{0}} v_{\Phi} \leq C \inf _{B_{\sigma R}} v_{\Phi}, \sigma \in(0,1)
$$

Recently

Theorem (Beck and Mingione CPAM 2020)

If u is a local minimizer of the functional

$$
J(v)=\int_{\Omega} \Phi(|\nabla v|) d x
$$

Then

$$
|\nabla u|_{L \infty\left(B_{R / 2}\right)} \leq \Phi^{-1}\left(\frac{1}{\left|B_{R}\right|} \int_{B_{R}} \Phi(|\nabla u|) d x\right)+1
$$

Regarding Regularity

As a consequence of Theorem 2, we are able to prove that the solution to (5), given by Theorem 1, is Lipschitz continuous along the free boundary $\partial\left\{u_{\Phi}>0\right\}$.

Regarding Regularity

As a consequence of Theorem 2, we are able to prove that the solution to (5), given by Theorem 1, is Lipschitz continuous along the free boundary $\partial\left\{u_{\Phi}>0\right\}$.

Corollary

Let
u_{Φ} be the solution to problem (5)

Regarding Regularity

As a consequence of Theorem 2, we are able to prove that the solution to (5), given by Theorem 1, is Lipschitz continuous along the free boundary $\partial\left\{u_{\Phi}>0\right\}$.

Corollary

Let
u_{Φ} be the solution to problem (5)
and

$$
x_{0} \in \partial\left\{u_{\Phi}>0\right\} \cap \Omega
$$

Regarding Regularity

As a consequence of Theorem 2, we are able to prove that the solution to (5), given by Theorem 1, is Lipschitz continuous along the free boundary $\partial\left\{u_{\Phi}>0\right\}$.

Corollary

Let

u_{Φ} be the solution to problem (5)
and

$$
x_{0} \in \partial\left\{u_{\Phi}>0\right\} \cap \Omega .
$$

Then there exists a positive constant $c>0$ depending only N, such that

$$
u_{\Phi}(x) \leq c\left|x-x_{0}\right|
$$

for $x \in\left\{u_{\Phi}>0\right\}$ near x_{0}.

Since the quasilinear operator

$$
\Delta u+2 \Delta_{\infty} u \text { is elliptic, }
$$

${ }^{11}$ L. C. Evans and C. K. Smart, Calc. Var. Partial Differential Equations 2011.

Since the quasilinear operator

$$
\Delta u+2 \Delta_{\infty} u \text { is elliptic, }
$$

a theorem of Evans and C. K. Smart ${ }^{11}$ says that
u_{Φ} is locally Lipschitz continuous within its set of positivity, $\left\{u_{\Phi}>0\right\}$.
${ }^{11}$ L. C. Evans and C. K. Smart, Calc. Var. Partial Differential Equations 2011.

Since the quasilinear operator

$$
\Delta u+2 \Delta_{\infty} u \text { is elliptic, }
$$

a theorem of Evans and C. K. Smart ${ }^{11}$ says that
u_{Φ} is locally Lipschitz continuous within its set of positivity,

$$
\left\{u_{\Phi}>0\right\}
$$

If we combine this with the corollary, we see that any minimizer of (5) belongs to $C_{\text {loc }}^{0,1}(\Omega)$.
${ }^{11}$ L. C. Evans and C. K. Smart, Calc. Var. Partial Differential Equations 2011.

Consequences of the non-degeneracy

- Uniform positive density. Given any domain

$$
D \subset \subset \Omega,
$$

Consequences of the non-degeneracy

- Uniform positive density. Given any domain

$$
D \subset \subset \Omega,
$$

there exists a constant $\theta>0$ such that if

$$
x_{0} \in \Omega \cap \partial\left\{u_{\Phi}>0\right\}
$$

Consequences of the non-degeneracy

- Uniform positive density. Given any domain

$$
D \subset \subset \Omega,
$$

there exists a constant $\theta>0$ such that if

$$
x_{0} \in \Omega \cap \partial\left\{u_{\Phi}>0\right\}
$$

then

$$
\frac{\mathcal{L}^{N}\left(B_{r}\left(x_{0}\right) \cap\left\{u_{\Phi}>0\right\}\right)}{\mathcal{L}^{N}\left(B_{r}\left(x_{0}\right)\right)} \geq \theta
$$

for every $r \in(0, \operatorname{dist}(\partial D, \partial \Omega))$,

Consequences of the non-degeneracy

- Uniform positive density. Given any domain

$$
D \subset \subset \Omega,
$$

there exists a constant $\theta>0$ such that if

$$
x_{0} \in \Omega \cap \partial\left\{u_{\Phi}>0\right\}
$$

then

$$
\frac{\mathcal{L}^{N}\left(B_{r}\left(x_{0}\right) \cap\left\{u_{\Phi}>0\right\}\right)}{\mathcal{L}^{N}\left(B_{r}\left(x_{0}\right)\right)} \geq \theta
$$

for every $r \in(0, \operatorname{dist}(\partial D, \partial \Omega))$, where $\mathcal{L}^{N}(E)$ denotes the N-dimensional Lebesgue measure of the set E.

Therefore the region $\left\{u_{\Phi}>0\right\}$ can not present cusps along the free boundary in the direction of the phase $\left\{u_{\Phi}=0\right\}$.

Figure: The free boundary has no cusp points.

Consequences of the non-degeneracy

- Hausdorff dimension. The set
$\partial\left\{u_{\Phi}>0\right\} \cap \Omega$ has Hausdorff dimension strictly less than N.

Consequences of the non-degeneracy

- Hausdorff dimension. The set
$\partial\left\{u_{\Phi}>0\right\} \cap \Omega$ has Hausdorff dimension strictly less than N.
As a consequence,
$\partial\left\{u_{\Phi}>0\right\}$ has Lebesgue measure zero $\left(\mathcal{L}^{N}\left(\partial\left\{u_{\Phi}>0\right\}\right)=0\right)$.

An Asymptotic result

Repeating the argument used in the proof of Theorem 1,

An Asymptotic result

Repeating the argument used in the proof of Theorem 1, for each $\ell>0$ there is a solution u_{ℓ}

An Asymptotic result

Repeating the argument used in the proof of Theorem 1, for each $\ell>0$ there is a solution u_{ℓ} to the minimization problem
(6) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,

An Asymptotic result

Repeating the argument used in the proof of Theorem 1, for each $\ell>0$ there is a solution u_{ℓ} to the minimization problem
(6) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

An Asymptotic result

Repeating the argument used in the proof of Theorem 1, for each $\ell>0$ there is a solution u_{ℓ} to the minimization problem
(6) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

and

$$
\Phi_{\ell}(t)=\exp \left(t^{2} / \ell\right)-1
$$

An Asymptotic result

Repeating the argument used in the proof of Theorem 1, for each $\ell>0$ there is a solution u_{ℓ} to the minimization problem
(6) $\quad \min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

and

$$
\Phi_{\ell}(t)=\exp \left(t^{2} / \ell\right)-1
$$

Our objective now is to obtain an asymptotic result for solutions u_{ℓ} for sufficiently small ℓ.

A central issue in Rossi and Teixeira is the study of optimal design problems ruled by degenerate quasilinear operators.

A central issue in Rossi and Teixeira is the study of optimal design problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility condition upon the Lipschitz constant of the boundary data f,

A central issue in Rossi and Teixeira is the study of optimal design problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility condition upon the Lipschitz constant of the boundary data f, Ω

A central issue in Rossi and Teixeira is the study of optimal design problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility condition upon the Lipschitz constant of the boundary data f, Ω and α

A central issue in Rossi and Teixeira is the study of optimal design problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility condition upon the Lipschitz constant of the boundary data f, Ω and α to prove that any sequence of solutions to problem
$\min \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W^{1, p}(\Omega), u=f\right.$ on $\partial \Omega$ and $\left.\mathcal{L}^{N}(\{u>0\}) \leq \alpha\right\}$
converges uniformly to the unique minimizer u_{∞}

A central issue in Rossi and Teixeira is the study of optimal design problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility condition upon the Lipschitz constant of the boundary data f, Ω and α to prove that any sequence of solutions to problem
$\min \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W^{1, p}(\Omega), u=f\right.$ on $\partial \Omega$ and $\left.\mathcal{L}^{N}(\{u>0\}) \leq \alpha\right\}$
converges uniformly to the unique minimizer u_{∞} for problem

$$
\min \left\{\operatorname{Lip}(u): u \in W^{1, \infty}(\Omega), u=f \text { on } \partial \Omega \text { and } \mathcal{L}^{N}(\{u>0\}) \leq \alpha\right\}
$$

A central issue in Rossi and Teixeira is the study of optimal design problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility condition upon the Lipschitz constant of the boundary data f, Ω and α to prove that any sequence of solutions to problem
$\min \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W^{1, p}(\Omega), u=f\right.$ on $\partial \Omega$ and $\left.\mathcal{L}^{N}(\{u>0\}) \leq \alpha\right\}$
converges uniformly to the unique minimizer u_{∞} for problem

$$
\min \left\{\operatorname{Lip}(u): u \in W^{1, \infty}(\Omega), u=f \text { on } \partial \Omega \text { and } \mathcal{L}^{N}(\{u>0\}) \leq \alpha\right\}
$$

where $\operatorname{Lip}(u)$ is the Lipschitz constant of u.

Furthermore, u_{∞} satisfies a PDE

Furthermore, u_{∞} satisfies a PDE governed by the infinity-Laplacian operator

Furthermore, u_{∞} satisfies a PDE governed by the infinity-Laplacian operator and it is given by the formula

$$
u_{\infty}(x)=\max _{y \in \partial \Omega}\left(f(y)-\lambda^{*}|x-y|\right)_{+}
$$

Furthermore, u_{∞} satisfies a PDE governed by the infinity-Laplacian operator and it is given by the formula

$$
u_{\infty}(x)=\max _{y \in \partial \Omega}\left(f(y)-\lambda^{*}|x-y|\right)_{+}
$$

for some positive real number λ^{*} uniquely determined.

Bocea and Mihăilescu ${ }^{12}$ study the limit behavior of the solution u_{ℓ}
${ }^{12}$ M. F. Bocea, M. Mihăilescu, Israel J. Math., 2019.

Bocea and Mihăilescu ${ }^{12}$ study the limit behavior of the solution u_{ℓ} of the problems
(7)

$$
\left\{\begin{array}{lr}
\ell \Delta u+2 \Delta_{\infty} u=0 & \text { in } \Omega \\
u=f & \text { on } \partial \Omega
\end{array}\right.
$$

${ }^{12}$ M. F. Bocea, M. Mihăilescu, Israel J. Math., 2019.

Bocea and Mihăilescu ${ }^{12}$ study the limit behavior of the solution u_{ℓ} of the problems
(7)

$$
\left\{\begin{array}{lr}
\ell \Delta u+2 \Delta_{\infty} u=0 & \text { in } \Omega \\
u=f & \text { on } \partial \Omega
\end{array}\right.
$$

as $\ell \rightarrow 0^{+}$to explore the connections between these solutions and infinity harmonic maps.
${ }^{12}$ M. F. Bocea, M. Mihăilescu, Israel J. Math., 2019.

Bocea and Mihăilescu ${ }^{12}$ study the limit behavior of the solution u_{ℓ} of the problems
(7)

$$
\left\{\begin{array}{lr}
\ell \Delta u+2 \Delta_{\infty} u=0 & \text { in } \Omega \\
u=f & \text { on } \partial \Omega
\end{array}\right.
$$

as $\ell \rightarrow 0^{+}$to explore the connections between these solutions and infinity harmonic maps. More precisely, the sequence
$\left\{u_{\ell}\right\}$ is bounded in $W^{1,2 m}(\Omega)$, for every integer $m>N$.
${ }^{12}$ M. F. Bocea, M. Mihăilescu, Israel J. Math., 2019.

Bocea and Mihăilescu ${ }^{12}$ study the limit behavior of the solution u_{ℓ} of the problems
(7)

$$
\left\{\begin{array}{lr}
\ell \Delta u+2 \Delta_{\infty} u=0 & \text { in } \Omega \\
u=f & \text { on } \partial \Omega
\end{array}\right.
$$

as $\ell \rightarrow 0^{+}$to explore the connections between these solutions and infinity harmonic maps. More precisely, the sequence
$\left\{u_{\ell}\right\}$ is bounded in $W^{1,2 m}(\Omega)$, for every integer $m>N$.
As $\ell \rightarrow 0^{+}$, the sequence $\left\{u_{\ell}\right\}$ converges uniformly in $\bar{\Omega}$

[^15]Bocea and Mihăilescu ${ }^{12}$ study the limit behavior of the solution u_{ℓ} of the problems
(7)

$$
\left\{\begin{array}{lr}
\ell \Delta u+2 \Delta_{\infty} u=0 & \text { in } \Omega \\
u=f & \text { on } \partial \Omega
\end{array}\right.
$$

as $\ell \rightarrow 0^{+}$to explore the connections between these solutions and infinity harmonic maps. More precisely, the sequence
$\left\{u_{\ell}\right\}$ is bounded in $W^{1,2 m}(\Omega)$, for every integer $m>N$.
As $\ell \rightarrow 0^{+}$, the sequence $\left\{u_{\ell}\right\}$ converges uniformly in $\bar{\Omega}$ to the unique viscosity solution to the problem
(8)

$$
\left\{\begin{array}{lr}
\Delta_{\infty} u=0 & \text { in } \Omega \\
u=f & \text { on } \partial \Omega
\end{array}\right.
$$

${ }^{12}$ M. F. Bocea, M. Mihăilescu, Israel J. Math., 2019.

For fixed $\ell>0$,

For fixed $\ell>0$, consider the minimization problem
(9) $\quad \min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,

For fixed $\ell>0$, consider the minimization problem
(9) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

For fixed $\ell>0$, consider the minimization problem
(9) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

and

$$
\Phi_{\ell}(t)=\exp \left(t^{2} / \ell\right)-1
$$

For fixed $\ell>0$, consider the minimization problem
(9) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

and

$$
\Phi_{\ell}(t)=\exp \left(t^{2} / \ell\right)-1
$$

and the function
$f: \bar{\Omega} \rightarrow \mathbb{R}$ is positive

For fixed $\ell>0$, consider the minimization problem
(9) $\quad \min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

and

$$
\Phi_{\ell}(t)=\exp \left(t^{2} / \ell\right)-1
$$

and the function
$f: \bar{\Omega} \rightarrow \mathbb{R}$ is positive and uniform Lipschitz continuous.

Combining the arguments of Bocea- Mihăilescu and Rossi-Teixeira,

Combining the arguments of Bocea- Mihăilescu and Rossi-Teixeira, we establish the optimal shape for the limiting problem as $\ell \rightarrow 0^{+}$.

Combining the arguments of Bocea- Mihăilescu and Rossi-Teixeira, we establish the optimal shape for the limiting problem as $\ell \rightarrow 0^{+}$.

To do this, we assume the geometric compatibility condition:
(H)

$$
\mathcal{L}^{N}\left(\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\operatorname{Lip}(f)}}(x) \cap \Omega\right) \geq \alpha
$$

Combining the arguments of Bocea- Mihăilescu and Rossi-Teixeira, we establish the optimal shape for the limiting problem as $\ell \rightarrow 0^{+}$.

To do this, we assume the geometric compatibility condition:

$$
\begin{equation*}
\mathcal{L}^{N}\left(\bigcup_{x \in \partial \Omega} B_{\left.\frac{f(x)}{\operatorname{Lip(t)}}(x) \cap \Omega\right) \geq \alpha .}\right. \tag{H}
\end{equation*}
$$

Figure: Compatibility condition.

Theorem

Suppose that (H) holds

Theorem
Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number

Theorem

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number such that the measure of the set

$$
\Omega^{*}=\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\lambda^{*}}}(x) \cap \Omega
$$

Theorem

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number such that the measure of the set

$$
\Omega^{*}=\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\lambda^{*}}}(x) \cap \Omega
$$

is equal to α.

Theorem

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number such that the measure of the set

$$
\Omega^{*}=\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\lambda^{*}}}(x) \cap \Omega
$$

is equal to α. If u_{ℓ} is a minimizer of (9),

Theorem

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number such that the measure of the set

$$
\Omega^{*}=\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\lambda^{*}}}(x) \cap \Omega
$$

is equal to α. If u_{ℓ} is a minimizer of (9), then
u_{ℓ} converges to u_{0} uniformly in $\bar{\Omega}$ as $\ell \rightarrow 0^{+}$.

Theorem

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number such that the measure of the set

$$
\Omega^{*}=\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\lambda^{*}}}(x) \cap \Omega
$$

is equal to α. If u_{ℓ} is a minimizer of (9), then
u_{ℓ} converges to u_{0} uniformly in $\bar{\Omega}$ as $\ell \rightarrow 0^{+}$.
The function u_{0} is the unique solution

Theorem

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number such that the measure of the set

$$
\Omega^{*}=\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\lambda^{*}}}(x) \cap \Omega
$$

is equal to α. If u_{ℓ} is a minimizer of (9), then
u_{ℓ} converges to u_{0} uniformly in $\bar{\Omega}$ as $\ell \rightarrow 0^{+}$.
The function u_{0} is the unique solution to
(10)

$$
\left\{\Delta_{\infty} u=0 \quad \text { in } \Omega^{*},\right.
$$

Theorem

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number such that the measure of the set

$$
\Omega^{*}=\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\lambda^{*}}}(x) \cap \Omega
$$

is equal to α. If u_{ℓ} is a minimizer of (9), then
u_{ℓ} converges to u_{0} uniformly in $\bar{\Omega}$ as $\ell \rightarrow 0^{+}$.
The function u_{0} is the unique solution to
(10)

$$
\left\{\begin{aligned}
\Delta_{\infty} u=0 & \text { in } \Omega^{*} \\
u=f & \text { on } \partial \Omega
\end{aligned}\right.
$$

Theorem

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number such that the measure of the set

$$
\Omega^{*}=\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\lambda^{*}}}(x) \cap \Omega
$$

is equal to α. If u_{ℓ} is a minimizer of (9), then
u_{ℓ} converges to u_{0} uniformly in $\bar{\Omega}$ as $\ell \rightarrow 0^{+}$.
The function u_{0} is the unique solution to
(10)

$$
\left\{\begin{array}{rll}
\Delta_{\infty} u=0 & \text { in } \Omega^{*} \\
u=f & \text { on } \partial \Omega, \\
u=0 & \text { on } \partial \Omega^{*} \cap \Omega .
\end{array}\right.
$$

Theorem

Suppose that (H) holds and let $\lambda^{*} \geq \operatorname{Lip}(f)$ be the unique positive real number such that the measure of the set

$$
\Omega^{*}=\bigcup_{x \in \partial \Omega} B_{\frac{f(x)}{\lambda^{*}}}(x) \cap \Omega
$$

is equal to α. If u_{ℓ} is a minimizer of (9), then
u_{ℓ} converges to u_{0} uniformly in $\bar{\Omega}$ as $\ell \rightarrow 0^{+}$.
The function u_{0} is the unique solution to

$$
\left\{\begin{align*}
& \Delta_{\infty} u= 0 \tag{10}\\
& \text { in } \Omega^{*}, \\
& u=f \text { on } \partial \Omega, \\
& u=0 \text { on } \partial \Omega^{*} \cap \Omega .
\end{align*}\right.
$$

Furthermore, u_{0} is given by the formula,

$$
\begin{equation*}
u_{0}(x)=\max _{y \in \partial \Omega}\left(f(y)-\lambda^{*}|x-y|\right)_{+}, \quad x \in \bar{\Omega} . \tag{11}
\end{equation*}
$$

Figure: Unique solution u_{0}.

Corollary

If u_{ℓ} is a solution

Corollary

If u_{ℓ} is a solution to problem
(12) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,

Corollary

If u_{ℓ} is a solution to problem
(12) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$, where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

Corollary

If u_{ℓ} is a solution to problem
(12) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

and

$$
\Phi_{\ell}(t)=\exp \left(t^{2} / \ell\right)-1
$$

Corollary

If u_{ℓ} is a solution to problem
(12) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

and

$$
\Phi_{\ell}(t)=\exp \left(t^{2} / \ell\right)-1
$$

then, for sufficiently small ℓ,

Corollary

If u_{ℓ} is a solution to problem
(12) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

and

$$
\Phi_{\ell}(t)=\exp \left(t^{2} / \ell\right)-1
$$

then, for sufficiently small ℓ,
u_{ℓ} is uniformly Lipschitz

Corollary

If u_{ℓ} is a solution to problem
(12) $\min \left\{J_{\ell}(u):|\nabla u| \in K_{\Phi_{\ell}}(\Omega), u=f\right.$ on $\left.\partial \Omega, \mathcal{L}^{N}(\{u>0\})=\alpha\right\}$,
where

$$
J_{\ell}(u)=\int_{\Omega} \Phi_{\ell}(|\nabla u|) d x
$$

and

$$
\Phi_{\ell}(t)=\exp \left(t^{2} / \ell\right)-1
$$

then, for sufficiently small ℓ,
u_{ℓ} is uniformly Lipschitz
and

$$
u_{\ell}(x)=\max _{y \in \partial \Omega}\left(f(y)-\lambda^{*}|x-y|\right)_{+}+o_{\ell}(1), \quad x \in \bar{\Omega} .
$$

Figure: Asymptotic solution u_{ℓ}.

Essential references

(1) Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311-361.
(3) Martínez, S. and Wolanski, N.: A minimum problem with free boundary in Orlicz spaces, Adv. Math. 218 (2008), 1914-1971.
(3) Rossi, J.D. and Teixeira, E.V.: A limiting free boundary problem ruled by Aronsson's equation, Trans. Amer. Math. Soc. 364 (2012), 703-719.
(0) Abrantes Santos, J. and Monari Soares, S.H.: A limiting free boundary problem for a degenerate operator in Orlicz-Sobolev spaces, Rev. Mat. Iberoam. v. 36, p. 1687/6-1720, 2020.

- Abrantes Santos, J. and Monari Soares, S.H. : Optimal design problems for a degenerate operator in Orlicz-Sobolev spaces, Calc. Var. Partial Differential Equations, v. 59, p. 1/183-23, 2020.

Thank you for your attention!

[^0]: ${ }^{1}$ N. Aguilera, H. Alt, L. Caffarelli, SIAM J.Control Optim., 1986.
 ${ }^{2}$ J. Fernández Bonder, S. Martínez, N. Wolanski, J. Differential Equations, 2006.
 ${ }^{3}$ K. Oliveira and E.V. Teixeira, Differential Integral Equations, 2006.
 ${ }^{4}$ S. Martínez, J. Math. Anal. Appl., 2008.

[^1]: ${ }^{1}$ N. Aguilera, H. Alt, L. Caffarelli, SIAM J.Control Optim., 1986.
 ${ }^{2}$ J. Fernández Bonder, S. Martínez, N. Wolanski, J. Differential Equations, 2006.
 ${ }^{3}$ K. Oliveira and E.V. Teixeira, Differential Integral Equations, 2006.
 ${ }^{4}$ S. Martínez, J. Math. Anal. Appl., 2008.

[^2]: ${ }^{1}$ N. Aguilera, H. Alt, L. Caffarelli, SIAM J.Control Optim., 1986.
 ${ }^{2}$ J. Fernández Bonder, S. Martínez, N. Wolanski, J. Differential Equations, 2006.
 ${ }^{3}$ K. Oliveira and E.V. Teixeira, Differential Integral Equations, 2006.
 ${ }^{4}$ S. Martínez, J. Math. Anal. Appl., 2008.

[^3]: ${ }^{5}$ G.M. Lieberman, Comm. Partial Differential Equations 1991.

[^4]: ${ }^{5}$ G.M. Lieberman, Comm. Partial Differential Equations 1991.

[^5]: ${ }^{6}$ J. D. Rossi and E. V. Teixeira, Trans. Amer. Math. Soc. 2012

[^6]: ${ }^{7} A$ satisfies the Δ_{2}-condition if there is a constant $k>0$ such that $A(2 t) \leq k A(t)$ for all $t \geq 0$.

[^7]: ${ }^{7} A$ satisfies the Δ_{2}-condition if there is a constant $k>0$ such that $A(2 t) \leq k A(t)$ for all $t \geq 0$.

[^8]: ${ }^{8}$ because $f \in W^{1, \Phi}(\Omega)$, with $|\nabla f| \in K_{\Phi}(\Omega)$, and the immersion of $W^{1, \Phi}(\Omega)$ in $W^{1, G_{k}}(\Omega)$ is continuous (for every k) and in $C(\bar{\Omega})$ (for k sufficiently large)

[^9]: ${ }^{8}$ because $f \in W^{1, \Phi}(\Omega)$, with $|\nabla f| \in K_{\Phi}(\Omega)$, and the immersion of $W^{1, \Phi}(\Omega)$ in $W^{1, G_{k}}(\Omega)$ is continuous (for every k) and in $C(\bar{\Omega})$ (for k sufficiently large)

[^10]: ${ }^{9}$ G.M Lieberman, Comm. Partial Differential Equations, 1991.
 ${ }^{10}$ J. Abrantes Santos and S.H. Monari Soares, Rev. Mat. Iberoam., 2020.

[^11]: ${ }^{9}$ G.M Lieberman, Comm. Partial Differential Equations, 1991.
 ${ }^{10}$ J. Abrantes Santos and S.H. Monari Soares, Rev. Mat. Iberoam., 2020.

[^12]: ${ }^{9}$ G.M Lieberman, Comm. Partial Differential Equations, 1991.
 ${ }^{10}$ J. Abrantes Santos and S.H. Monari Soares, Rev. Mat. Iberoam., 2020.

[^13]: ${ }^{9}$ G.M Lieberman, Comm. Partial Differential Equations, 1991.
 ${ }^{10}$ J. Abrantes Santos and S.H. Monari Soares, Rev. Mat. Iberoam., 2020.

[^14]: ${ }^{9}$ G.M Lieberman, Comm. Partial Differential Equations, 1991.
 ${ }^{10}$ J. Abrantes Santos and S.H. Monari Soares, Rev. Mat. Iberoam., 2020.

[^15]: ${ }^{12}$ M. F. Bocea, M. Mihăilescu, Israel J. Math., 2019.

