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The Problem

In this talk we are concerned with the minimization problem

for the
functional

J(u) =
∫
Ω

G(|∇u|)dx

in the class

K =
{

u ∈ L1(Ω) : u = f on ∂Ω and LN({u > 0}) = α
}

for a prescribed function
f ∈ L∞(Ω) with
f ≥ 0;
Ω is a smooth bounded domain in RN , N ≥ 2;
LN(E) denotes the N dimensional Lebesgue measure of the set
E in RN .
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The starting point of the study of this problem is the seminal work by
Aguilera, Alt and Caffarelli1 for the case G(t) = t2.

The case G(t) = tp, with 1 < p < ∞, was considered by Bonder,
Martı́nez and Wolanski.2 and by Oliveira and Teixeira3.

Martı́nez4 studied this problem under the following natural condition
that allows a different behavior of G(t) when t is close to zero or
infinity:

(1) 0 < δ0 ≤ tg′(t)
g(t)

≤ g0, ∀ t > 0,

where g(t) = G′(t).

1N. Aguilera, H. Alt, L. Caffarelli, SIAM J.Control Optim., 1986.
2J. Fernández Bonder, S. Martı́nez, N. Wolanski, J. Differential Equations, 2006.
3K. Oliveira and E.V. Teixeira, Differential Integral Equations, 2006.
4S. Martı́nez, J. Math. Anal. Appl., 2008.
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Condition (1) was used by Liberman5

and its meaning is that the
Euler-Lagrange equation associated with

J (u) =
∫
Ω

G(|∇u|)dx

is uniformly elliptic if and only if (1) (Lieberman’s condition) holds.

5G.M. Lieberman, Comm. Partial Differential Equations 1991.
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Rossi and Teixeira6 considered the free boundary optimization
problem
(2)

min

{∫
Ω
|∇u|pdx : u ∈ W 1,p(Ω),u = f on ∂Ω

and LN({u > 0}) ≤ α

}
and studied the asymptotic behavior as p → ∞ to find a limiting free
boundary problem given by the infinity Laplacian operator

∆∞u = DuD2uDu

6J. D. Rossi and E. V. Teixeira, Trans. Amer. Math. Soc. 2012
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In the present work we are interested in a degenerate case.

We
consider the minimization problem

min{J(u) : |∇u| ∈ KΦ(Ω),u = f on ∂Ω,LN({u > 0}) = α},

for a prescribed
f ∈ C(Ω);
|∇f | ∈ KΦ(Ω) ⇔

∫
ΩΦ(|∇f |) < +∞;

f ≥ 0
and the functional J is given by

J(u) =
∫
Ω
Φ(|∇u|)dx , |∇u| ∈ KΦ(Ω),

where
Φ(t) = exp(t2)− 1
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The function
Φ(t) = exp(t2)− 1

satisfies

1 ≤ ϕ′(t)t
ϕ(t)

and lim
t→+∞

ϕ′(t)t
ϕ(t)

= ∞,

where ϕ(t) = Φ′(t), that is δ0 = 1 and g0 = ∞ in condition (1). So, in
this case observe that the function Φ does not assume the Liberman
condition.
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Our problem

Since

Φ does not satisfy ∆2-condition7,

the Banach space

W 1,Φ(Ω) is neither separable nor reflexive,

as a result, the use of minimizing sequences to find solutions to the
minimization problem breaks down.
To overcome this difficulty and ”others”, for each k ∈ N, we consider
the truncated function Gk defined for t ∈ R by

Gk (t) =
k∑

n=1

|t |2n

n!
, t ∈ R.

7A satisfies the ∆2-condition if there is a constant k > 0 such that A(2t) ≤ kA(t)
for all t ≥ 0.
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Since

f ∈ W 1,Gk (Ω) ∩ C(Ω) for sufficiently large k ,8

the result of Martı́nez implies the existence of a minimizer uk to the
minimization problem

(4) min

{∫
Ω

Gk (|∇u|) dx : u = f on ∂Ω,LN({u > 0}) = α

}

8because f ∈ W 1,Φ(Ω), with |∇f | ∈ KΦ(Ω), and the immersion of W 1,Φ(Ω) in
W 1,Gk (Ω) is continuous (for every k ) and in C(Ω) (for k sufficiently large)
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Existence
Theorem (1)
Let

uk ∈ W 1,Gk (Ω) be a minimizer of (4).

Then, there is a subsequence (not renamed) such that

uk → uΦ, as k → ∞, uniformly on Ω,

where

uΦ ∈ W 1,Φ(Ω) is a solution

to problem

(5) min
{

J(u) : u = f on ∂Ω, |∇u| ∈ KΦ(Ω),LN({u > 0}) = α
}
,

where
J(u) =

∫
Ω
Φ(|∇u|)dx .
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Some fine properties of uΦ

Theorem (2)

Let

uΦ ∈ W 1,Φ(Ω) be the solution to (5)

given by Theorem 1,

D ⊂⊂ Ω be any set

and

Br (x) ⊂ D ∩ {uΦ > 0} be a ball touching the free boundary ∂{uΦ > 0}

for r > 0 is sufficiently small.
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Theorem (2)
Then,

(i) Non-degeneracy. There are positive constants
c and C depending only on N and f

such that
cr ≤ uΦ(x) ≤ Cr .

(ii) Harnack inequality in a touching ball. There is a
positive constant

C depending only on r and M := supΩ f
such that

sup
Bσr (x)

uΦ ≤ C inf
Bσr (x)

uΦ,

for any σ ∈ (0,1).
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Figure: A pictorial figure of the non-degeneracy



In order to prove Theorem 2,

we use refined Local maximum principle
and Harnack’s inequality for Gk -subharmonic and harmonic functions,
respectively, developed by Lieberman 9, where Gk is given by

Gk (t) =
k∑

n=1

|t |2n

n!
, t ∈ R.

Such refinement was proved in a joint work with Monari Soares 10

9G.M Lieberman, Comm. Partial Differential Equations, 1991.
10J. Abrantes Santos and S.H. Monari Soares, Rev. Mat. Iberoam., 2020.
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Theorem (Local maximum principle)

Set k ≥ 2 and R ∈ (0,1].

Suppose that u ∈ L∞(BR) ∩ W 1,Gk (BR)
satisfies

−div
(

gk (|∇u|) ∇u
|∇u|

)
≤ 0 in BR,

with 0 ≤ u ≤ M in BR, then for any s ≥ (g0 + 1)2N =: θN and
σ ∈ (0,1), there is a constant c = c(N,g0, k ,R,M, σ) such that

sup
BσR

u2 ≤ c
(∫

BR

us dx
) 1

s

.

Moreover, there is k0 ∈ N depending only on N, σ and R such that

c <
2R2

M

(
exp(M/R)2 − 1

)
provided that k ≥ k0.
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Theorem (Harnack’s inequality)

Let R ∈ (0, c−1/N
N ), where cN is the constant given by the John and

Nirenberg lemma. For any
σ ∈ (0,1),

M > 0 and
k ≥ k0 with k0 = k0(N, σ,R, δ0)

given by Theorem [Local maximum principle], supposing that
u ∈ W 1,Gk (BR) satisfies

−div
(

gk (|∇u|) ∇u
|∇u|

)
= 0, in BR

with 0 ≤ u ≤ M in BR. Then there is a positive constant C depending
only on R and M such that

sup
BσR

u ≤ C inf
BσR

u.
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Interesting Result
Theorem (Harnack’s inequality for the degenerate case)

Let R ∈ (0, c−1/N
N ), where cN is the constant given by the John and

Nirenberg lemma. For any σ ∈ (0,1) given by Theorem [Local
maximum principle], supposing that uk ∈ W 1,Gk (Ω) is a minimizer of
the

min

{∫
Ω

Gk (|∇u|) dx : u = f on ∂Ω

}
,

such that
uk → vΦ, uniformly on Ω

and vΦ ∈ W 1,Φ(Ω) is a minimizer of the

min

{∫
Ω
Φ (|∇u|) dx : u = f on ∂Ω

}
,

Then there is a positive constant C depending only on R and M such
that

sup
BσR

vΦ ≤ C inf
BσR

vΦ, σ ∈ (0,1).



Recently

Theorem (Beck and Mingione CPAM 2020)
If u is a local minimizer of the functional

J(v) =
∫
Ω
Φ(|∇v |)dx .

Then

|∇u|L∞(BR/2) ≤ Φ−1
(

1
|BR|

∫
BR

Φ(|∇u|)dx
)
+ 1.



Regarding Regularity
As a consequence of Theorem 2, we are able to prove that the
solution to (5), given by Theorem 1, is Lipschitz continuous along the
free boundary ∂{uΦ > 0}.

Corollary

Let

uΦ be the solution to problem (5)

and

x0 ∈ ∂{uΦ > 0} ∩ Ω.

Then there exists a positive constant c > 0 depending only N, such
that

uΦ(x) ≤ c|x − x0|

for x ∈ {uΦ > 0} near x0.
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Since the quasilinear operator

∆u + 2∆∞u is elliptic,

a theorem of Evans and C. K. Smart11 says that

uΦ is locally Lipschitz continuous within its set of positivity,
{uΦ > 0}.

If we combine this with the corollary, we see that any minimizer of (5)
belongs to C0,1

loc (Ω).

11L. C. Evans and C. K. Smart, Calc. Var. Partial Differential Equations 2011.
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Consequences of the non-degeneracy

Uniform positive density. Given any domain
D ⊂⊂ Ω,

there exists a constant θ > 0 such that if
x0 ∈ Ω ∩ ∂{uΦ > 0}

then
LN (Br (x0) ∩ {uΦ > 0})

LN (Br (x0))
≥ θ,

for every r ∈ (0, dist(∂D, ∂Ω)),where LN(E) denotes the
N-dimensional Lebesgue measure of the set E .
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Uniform positive density. Given any domain
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there exists a constant θ > 0 such that if
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then
LN (Br (x0) ∩ {uΦ > 0})
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Therefore the region {uΦ > 0} can not present cusps along the free
boundary in the direction of the phase {uΦ = 0}.

Figure: The free boundary has no cusp points.



Consequences of the non-degeneracy

Hausdorff dimension. The set
∂{uΦ > 0} ∩ Ω has Hausdorff dimension strictly less than N.

As a consequence,
∂{uΦ > 0} has Lebesgue measure zero (LN(∂{uΦ > 0}) = 0).
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An Asymptotic result

Repeating the argument used in the proof of Theorem 1,

for each
ℓ > 0 there is a solution uℓ to the minimization problem

(6) min{Jℓ(u) : |∇u| ∈ KΦℓ
(Ω),u = f on ∂Ω, LN({u > 0}) = α},

where
Jℓ(u) =

∫
Ω
Φℓ(|∇u|)dx ,

and
Φℓ(t) = exp(t2/ℓ)− 1.

Our objective now is to obtain an asymptotic result for solutions uℓ for
sufficiently small ℓ.
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A central issue in Rossi and Teixeira is the study of optimal design
problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility
condition upon the Lipschitz constant of the boundary data f , Ω and α
to prove that any sequence of solutions to problem

min

{∫
Ω
|∇u|p dx : u ∈ W 1,p(Ω), u = f on ∂Ω and LN({u > 0}) ≤ α

}
converges uniformly to the unique minimizer u∞ for problem

min{Lip(u) : u ∈ W 1,∞(Ω),u = f on ∂Ω and LN({u > 0}) ≤ α},

where Lip(u) is the Lipschitz constant of u.



A central issue in Rossi and Teixeira is the study of optimal design
problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility
condition upon the Lipschitz constant of the boundary data f ,

Ω and α
to prove that any sequence of solutions to problem

min

{∫
Ω
|∇u|p dx : u ∈ W 1,p(Ω), u = f on ∂Ω and LN({u > 0}) ≤ α

}
converges uniformly to the unique minimizer u∞ for problem

min{Lip(u) : u ∈ W 1,∞(Ω),u = f on ∂Ω and LN({u > 0}) ≤ α},

where Lip(u) is the Lipschitz constant of u.



A central issue in Rossi and Teixeira is the study of optimal design
problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility
condition upon the Lipschitz constant of the boundary data f , Ω

and α
to prove that any sequence of solutions to problem

min

{∫
Ω
|∇u|p dx : u ∈ W 1,p(Ω), u = f on ∂Ω and LN({u > 0}) ≤ α

}
converges uniformly to the unique minimizer u∞ for problem

min{Lip(u) : u ∈ W 1,∞(Ω),u = f on ∂Ω and LN({u > 0}) ≤ α},

where Lip(u) is the Lipschitz constant of u.



A central issue in Rossi and Teixeira is the study of optimal design
problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility
condition upon the Lipschitz constant of the boundary data f , Ω and α

to prove that any sequence of solutions to problem

min

{∫
Ω
|∇u|p dx : u ∈ W 1,p(Ω), u = f on ∂Ω and LN({u > 0}) ≤ α

}
converges uniformly to the unique minimizer u∞ for problem

min{Lip(u) : u ∈ W 1,∞(Ω),u = f on ∂Ω and LN({u > 0}) ≤ α},

where Lip(u) is the Lipschitz constant of u.



A central issue in Rossi and Teixeira is the study of optimal design
problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility
condition upon the Lipschitz constant of the boundary data f , Ω and α
to prove that any sequence of solutions to problem

min

{∫
Ω
|∇u|p dx : u ∈ W 1,p(Ω), u = f on ∂Ω and LN({u > 0}) ≤ α

}
converges uniformly to the unique minimizer u∞

for problem

min{Lip(u) : u ∈ W 1,∞(Ω),u = f on ∂Ω and LN({u > 0}) ≤ α},

where Lip(u) is the Lipschitz constant of u.



A central issue in Rossi and Teixeira is the study of optimal design
problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility
condition upon the Lipschitz constant of the boundary data f , Ω and α
to prove that any sequence of solutions to problem

min

{∫
Ω
|∇u|p dx : u ∈ W 1,p(Ω), u = f on ∂Ω and LN({u > 0}) ≤ α

}
converges uniformly to the unique minimizer u∞ for problem

min{Lip(u) : u ∈ W 1,∞(Ω),u = f on ∂Ω and LN({u > 0}) ≤ α},

where Lip(u) is the Lipschitz constant of u.



A central issue in Rossi and Teixeira is the study of optimal design
problems ruled by degenerate quasilinear operators.

In that paper, Rossi and Teixeira introduce a geometric compatibility
condition upon the Lipschitz constant of the boundary data f , Ω and α
to prove that any sequence of solutions to problem

min

{∫
Ω
|∇u|p dx : u ∈ W 1,p(Ω), u = f on ∂Ω and LN({u > 0}) ≤ α

}
converges uniformly to the unique minimizer u∞ for problem

min{Lip(u) : u ∈ W 1,∞(Ω),u = f on ∂Ω and LN({u > 0}) ≤ α},

where Lip(u) is the Lipschitz constant of u.



Furthermore, u∞ satisfies a PDE

governed by the infinity-Laplacian
operator and it is given by the formula

u∞(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+,

for some positive real number λ∗ uniquely determined.
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Bocea and Mihăilescu12 study the limit behavior of the solution uℓ

of
the problems

(7)

{
ℓ∆u + 2∆∞u = 0 in Ω,

u = f on ∂Ω,

as ℓ → 0+ to explore the connections between these solutions and
infinity harmonic maps. More precisely, the sequence

{uℓ} is bounded in W 1,2m(Ω), for every integer m > N.

As ℓ → 0+, the sequence {uℓ} converges uniformly in Ω to the unique
viscosity solution to the problem

(8)

{
∆∞u = 0 in Ω,

u = f on ∂Ω.
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12M. F. Bocea, M. Mihăilescu, Israel J. Math., 2019.
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For fixed ℓ > 0,

consider the minimization problem

(9) min{Jℓ(u) : |∇u| ∈ KΦℓ
(Ω),u = f on ∂Ω, LN({u > 0}) = α},

where
Jℓ(u) =

∫
Ω
Φℓ(|∇u|)dx ,

and
Φℓ(t) = exp(t2/ℓ)− 1

and the function

f : Ω → R is positive and uniform Lipschitz continuous.
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Combining the arguments of Bocea- Mihăilescu and Rossi-Teixeira,

we establish the optimal shape for the limiting problem as ℓ → 0+.

To do this, we assume the geometric compatibility condition:

(H) LN

( ⋃
x∈∂Ω

B f (x)
Lip(f )

(x) ∩ Ω

)
≥ α.

Figure: Compatibility condition.
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Theorem

Suppose that (H) holds

and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f )

be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number

such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α.

If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9),

then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution

to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,

u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Theorem

Suppose that (H) holds and let λ∗ ≥ Lip(f ) be the unique positive real
number such that the measure of the set

Ω∗ =
⋃

x∈∂Ω
B f (x)

λ∗
(x) ∩ Ω

is equal to α. If uℓ is a minimizer of (9), then

uℓ converges to u0 uniformly in Ω as ℓ → 0+.

The function u0 is the unique solution to

(10)


∆∞u = 0 in Ω∗,

u = f on ∂Ω,
u = 0 on ∂Ω∗ ∩ Ω.

Furthermore, u0 is given by the formula,

(11) u0(x) = max
y∈∂Ω

(f (y)− λ∗|x − y |)+, x ∈ Ω.



Figure: Unique solution u0.



Corollary
If uℓ is a solution

to problem

(12) min{Jℓ(u) : |∇u| ∈ KΦℓ
(Ω),u = f on ∂Ω, LN({u > 0}) = α},

where
Jℓ(u) =

∫
Ω
Φℓ(|∇u|)dx ,

and
Φℓ(t) = exp(t2/ℓ)− 1,

then, for sufficiently small ℓ,

uℓ is uniformly Lipschitz

and
uℓ(x) = max

y∈∂Ω
(f (y)− λ∗|x − y |)+ + oℓ(1), x ∈ Ω.
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Figure: Asymptotic solution uℓ.
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