# Tube structures with forms defined on closed manifolds

Giuliano Zugliani IMECC-Unicamp

Joint work with Jorge Hounie (DM-UFSCar)

October 13<sup>th</sup>, 2022

Financial support: FAPESP

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()



The system under study

Statement when M is a surface

**Global solutions** 

Final remarks





#### The system under study

Statement when M is a surface

**Global solutions** 

Final remarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let *c* be a smooth closed 1-form defined on a closed manifold *M*. We consider the operator  $\mathbb{L} : C^{\infty}(M \times \mathbb{S}^1) \to C^{\infty}(M \times \mathbb{S}^1, \Lambda^{(1,0)})$ :

$$\mathbb{L} u = d_t u + c(t) \wedge \partial_x u \,.$$

Assuming that  $(t_1, \ldots, t_n)$  are local coordinates on M and C a local primitive of c, we have the vector fields

$$L_j = \frac{\partial}{\partial t_j} + \frac{\partial C}{\partial t_j}(t) \frac{\partial}{\partial x}, \quad j = 1, \dots, n.$$

Let *c* be a smooth closed 1-form defined on a closed manifold *M*. We consider the operator  $\mathbb{L} : C^{\infty}(M \times \mathbb{S}^1) \to C^{\infty}(M \times \mathbb{S}^1, \Lambda^{(1,0)})$ :

$$\mathbb{L} u = d_t u + c(t) \wedge \partial_x u \,.$$

Assuming that  $(t_1, \ldots, t_n)$  are local coordinates on M and C a local primitive of c, we have the vector fields

$$L_j = \frac{\partial}{\partial t_j} + \frac{\partial C}{\partial t_j}(t) \frac{\partial}{\partial x}, \quad j = 1, \dots, n.$$

They are local generators of  $\mathcal{V} \doteq (T')^{\perp} \subset \mathbb{C} \otimes T(M \times \mathbb{S}^1)$  where T' is the line sub-bundle of  $\mathbb{C} \otimes T^*(M \times \mathbb{S}^1)$  generated by the 1-form dx - c. Any involutive structure defines in a natural way a complex of differential operators - which in the case of  $\mathcal{V}$  is given by  $\mathbb{L}$  when acting on distributions:

 $\mathscr{D}'(M \times \mathbb{S}^1) \stackrel{\mathbb{L}}{\longrightarrow} \mathfrak{U}^1(M \times \mathbb{S}^1) \stackrel{\mathbb{L}^1}{\longrightarrow} \\ \stackrel{\mathbb{L}^1}{\longrightarrow} \mathfrak{U}^2(M \times \mathbb{S}^1) \stackrel{\mathbb{L}^2}{\longrightarrow} \cdots \stackrel{\mathbb{L}^{n-1}}{\longrightarrow} \mathfrak{U}^n(M \times \mathbb{S}^1) \stackrel{\mathbb{L}^n}{\longrightarrow} 0.$ 

They are local generators of  $\mathcal{V} \doteq (T')^{\perp} \subset \mathbb{C} \otimes T(M \times \mathbb{S}^1)$  where T' is the line sub-bundle of  $\mathbb{C} \otimes T^*(M \times \mathbb{S}^1)$  generated by the 1-form dx - c. Any involutive structure defines in a natural way a complex of differential operators - which in the case of  $\mathcal{V}$  is given by  $\mathbb{L}$  when acting on distributions:

$$\mathscr{D}'(M \times \mathbb{S}^1) \xrightarrow{\mathbb{L}} \mathfrak{U}^1(M \times \mathbb{S}^1) \xrightarrow{\mathbb{L}^1} \\ \xrightarrow{\mathbb{L}^1} \mathfrak{U}^2(M \times \mathbb{S}^1) \xrightarrow{\mathbb{L}^2} \cdots \xrightarrow{\mathbb{L}^{n-1}} \mathfrak{U}^n(M \times \mathbb{S}^1) \xrightarrow{\mathbb{L}^n} 0.$$

$$\mathbb{L}u = d_t u + c(t) \wedge \partial_x u = f,$$

when f is smooth.

If f is in the range of  $\mathbb{L}$  it must satisfy:

(i) Lf = 0 (a consequence of the complex property L ∘ L = 0);
(ii) f must be orthogonal to the kernel of the adjoint operator L\*.
While (i) is of local nature, the homology of M plays a role in (ii).

$$\mathbb{L}u = d_t u + c(t) \wedge \partial_x u = f,$$

when f is smooth.

If f is in the range of  $\mathbb{L}$  it must satisfy:

(i)  $\mathbb{L}f = 0$  (a consequence of the complex property  $\mathbb{L} \circ \mathbb{L} = 0$ );

While (i) is of local nature, the homology of *M* plays a role in (ii).

$$\mathbb{L}u = d_t u + c(t) \wedge \partial_x u = f,$$

when f is smooth.

If f is in the range of  $\mathbb{L}$  it must satisfy:

(i)  $\mathbb{L}f = 0$  (a consequence of the complex property  $\mathbb{L} \circ \mathbb{L} = 0$ );

(ii) f must be orthogonal to the kernel of the adjoint operator  $\mathbb{L}^*$ .

While (i) is of local nature, the homology of *M* plays a role in (ii).

$$\mathbb{L}u = d_t u + c(t) \wedge \partial_x u = f,$$

when f is smooth.

If f is in the range of  $\mathbb{L}$  it must satisfy:

(i) Lf = 0 (a consequence of the complex property L ∘ L = 0);
(ii) f must be orthogonal to the kernel of the adjoint operator L\*.
While (i) is of local nature, the homology of M plays a role in (ii).

ション ふゆ く 山 マ ふ し マ うくの

# They are usually referred to as the compatibility conditions for f (we write $f \in \mathbb{E}$ ) and are formulated in several equivalent ways.

We say that the operator  ${\mathbb L}$  is globally hypoelliptic if

 $\mathbb{L} u \in C^{\infty}(M \times \mathbb{S}^1, \Lambda^{(1,0)}) \implies u \in C^{\infty}(M \times \mathbb{S}^1).$ 

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

They are usually referred to as the compatibility conditions for f (we write  $f \in \mathbb{E}$ ) and are formulated in several equivalent ways.

We say that the operator  ${\ensuremath{\mathbb L}}$  is globally hypoelliptic if

$$\mathbb{L} u \in C^{\infty}(M \times \mathbb{S}^1, \Lambda^{(1,0)}) \implies u \in C^{\infty}(M \times \mathbb{S}^1).$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

When c is smooth and exact, we can define a primitive of b on M by  $B(t) = \int_{t_0}^{t} b$ . In [Cardoso; Hounie, 1977] the authors characterized the global solvability as follows:

#### Theorem

If b is exact the following statements are equivalent: (I)  $\mathbb{L}$  is globally solvable. (II) The semilevel sets  $\{t \in M : B(t) < r\}$  and  $\{t \in M : B(t) > r\}$ are connected for every  $r \in \mathbb{R}$ .

When c is smooth and exact, we can define a primitive of b on M by  $B(t) = \int_{t_0}^{t} b$ . In [Cardoso; Hounie, 1977] the authors characterized the global solvability as follows:

#### Theorem

If b is exact the following statements are equivalent: (I)  $\mathbb{L}$  is globally solvable. (II) The semilevel sets  $\{t \in M : B(t) < r\}$  and  $\{t \in M : B(t) > r\}$ are connected for every  $r \in \mathbb{R}$ .

- We are given a manifold *M* where a real smooth closed 1-form *b* is defined.
- We construct a special covering space  $\overline{M}$  on which a primitive  $\widetilde{B}$  of b is defined.
- Call D the group of deck transformations of M.
- The primitive B is such that

$$\widetilde{B}(\sigma(t)) - \widetilde{B}(t) = b_{\sigma},$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- We are given a manifold *M* where a real smooth closed 1-form *b* is defined.
- We construct a special covering space  $\widetilde{M}$  on which a primitive  $\widetilde{B}$  of *b* is defined.
- Call D the group of deck transformations of  $\widetilde{M}$ .
- The primitive *B* is such that

$$\widetilde{B}(\sigma(t)) - \widetilde{B}(t) = b_{\sigma},$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- We are given a manifold *M* where a real smooth closed 1-form *b* is defined.
- We construct a special covering space  $\widetilde{M}$  on which a primitive  $\widetilde{B}$  of *b* is defined.
- Call D the group of deck transformations of  $\widetilde{M}$ .
- The primitive  $\tilde{B}$  is such that

 $\widetilde{B}(\sigma(t)) - \widetilde{B}(t) = b_{\sigma},$ 

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- We are given a manifold *M* where a real smooth closed 1-form *b* is defined.
- We construct a special covering space  $\widetilde{M}$  on which a primitive  $\widetilde{B}$  of *b* is defined.
- Call D the group of deck transformations of M.
- The primitive  $\widetilde{B}$  is such that

$$\widetilde{B}(\sigma(t)) - \widetilde{B}(t) = b_{\sigma},$$

ション ふゆ く 山 マ チャット しょうくしゃ



Cutting where the periods are zero

<ロ> (四) (四) (三) (三) (三) (三)

$$\int_{\gamma_k} b = c_k, \int_{\delta_k} b = d_k, \text{ and } pc_k + qd_k = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶



The system under study

#### Statement when M is a surface

**Global solutions** 

Final remarks



- Denote by  $\mathscr{A}$  the set of the connected components  $\mathcal{O}$  of regular semilevel sets of  $\widetilde{B}$  such that  $\widetilde{B}$  is bounded on  $\mathcal{O}$ . Then consider the inclusion  $j: \mathcal{O} \hookrightarrow \widetilde{M}$ .
- We will associate to  $\mathcal{O} \in \mathscr{A}$  the vector  $I(\mathcal{O}) = (\int_{\alpha_1} a, \dots, \int_{\alpha_{\mu}} a)$ , where  $\{\alpha_1, \dots, \alpha_{\mu}\}$  is a basis of the free part of  $j^* H_1(\mathcal{O}, \mathbb{Z})$ .

- Denote by  $\mathscr{A}$  the set of the connected components  $\mathcal{O}$  of regular semilevel sets of  $\widetilde{B}$  such that  $\widetilde{B}$  is bounded on  $\mathcal{O}$ . Then consider the inclusion  $j: \mathcal{O} \hookrightarrow \widetilde{M}$ .
- We will associate to  $\mathcal{O} \in \mathscr{A}$  the vector  $I(\mathcal{O}) = (\int_{\alpha_1} a, \ldots, \int_{\alpha_{\mu}} a)$ , where  $\{\alpha_1, \ldots, \alpha_{\mu}\}$  is a basis of the free part of  $j^*H_1(\mathcal{O}, \mathbb{Z})$ .

#### Theorem [Hounie; Zugliani, 2021]

Assume that M is a closed surface and that the 1-form c = a + ib is smooth and closed. The following statements are equivalent: (I)  $\mathbb{L}$  is globally solvable.

(II) One of the conditions below is satisfied:

- 𝒜 = ∅ or, if 𝒴 ∈ 𝒜, 𝒯(𝒴) is neither a rational nor a Liouville vector.
- b is exact, the semilevel sets of B̃ are connected; a is rational, and, if q ∈ Z is such that ql(O) ∈ (2πZ)<sup>μ</sup> for O ∈ A, then qa is integral.

## Compatibility conditions

#### Definition

We say that a 1-form  $f \in C^{\infty}(M \times \mathbb{S}^1, \Lambda^{1,0})$  belongs to  $\mathbb{E}$  if:

• for each  $\xi \in \mathbb{Z}$  and each smooth curve  $\gamma$  connecting t to  $\sigma(t)$ in  $\mathscr{U}$  with  $i\xi c_{\sigma} \in 2\pi\mathbb{Z}$ ,

$$\int_\gamma e^{i\xi C(s)} \widehat{f}(s,\xi) = 0$$
 .

• 
$$d_t(e^{i\xi C(t)}\hat{f}(t,\xi))=0$$
 for every  $\xi\in\mathbb{Z}.$ 

The conditions come from the computation

$$d_t(e^{i\xi C(t)}\hat{u}(t,\xi)) = e^{i\xi C(t)}\hat{f}(t,\xi).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

## Compatibility conditions

#### Definition

We say that a 1-form  $f \in C^{\infty}(M \times \mathbb{S}^1, \Lambda^{1,0})$  belongs to  $\mathbb{E}$  if:

• for each  $\xi \in \mathbb{Z}$  and each smooth curve  $\gamma$  connecting t to  $\sigma(t)$ in  $\mathscr{U}$  with  $i\xi c_{\sigma} \in 2\pi\mathbb{Z}$ ,

$$\int_{\gamma} e^{i \xi \mathcal{C}(s)} \widehat{f}(s,\xi) = 0$$
 .

• 
$$d_t(e^{i\xi C(t)}\hat{f}(t,\xi)) = 0$$
 for every  $\xi \in \mathbb{Z}$ .

The conditions come from the computation

$$d_t(e^{i\xi C(t)}\hat{u}(t,\xi)) = e^{i\xi C(t)}\hat{f}(t,\xi).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●



The system under study

Statement when M is a surface

**Global solutions** 

Final remarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

One can compute the Fourier coefficients of a candidate to a problem's solution on *M* by solving a differential equation for each ξ ∈ Z, which yields

$$\widehat{u}(t,\xi) = \int_{t_0}^t \upsilon + K_{\xi} e^{\xi C(t)},$$

where 
$$v = e^{i\xi[C(s)-C(t)]}\hat{f}(s,\xi)$$
.

 Imposing the periodicity in order to define a solution on the manifold, we determine K<sub>ξ</sub> and the coefficients, namely

$$\widehat{u}(t,\xi) = rac{1}{e^{\xi(ia_\sigma-b_\sigma)}-1}\int_t^{\sigma(t)} v,$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where  $C(\sigma(t)) - C(t) = c_{\sigma} = a_{\sigma} + ib_{\sigma}$ .

• We wish to prove that  $\{\widehat{u}(t,\xi)\}$  decays rapidly.

One can compute the Fourier coefficients of a candidate to a problem's solution on *M* by solving a differential equation for each ξ ∈ Z, which yields

$$\widehat{u}(t,\xi) = \int_{t_0}^t \upsilon + K_{\xi} e^{\xi C(t)},$$

where  $v = e^{i\xi[C(s)-C(t)]}\hat{f}(s,\xi)$ .

 Imposing the periodicity in order to define a solution on the manifold, we determine K<sub>ξ</sub> and the coefficients, namely

$$\widehat{u}(t,\xi) = rac{1}{e^{\xi(ia_\sigma-b_\sigma)}-1}\int_t^{\sigma(t)} v,$$

where  $C(\sigma(t)) - C(t) = c_{\sigma} = a_{\sigma} + ib_{\sigma}$ .

• We wish to prove that  $\{\widehat{u}(t,\xi)\}$  decays rapidly.

One can compute the Fourier coefficients of a candidate to a problem's solution on *M* by solving a differential equation for each ξ ∈ Z, which yields

$$\widehat{u}(t,\xi) = \int_{t_0}^t \upsilon + K_{\xi} e^{\xi C(t)},$$

where  $v = e^{i\xi[C(s)-C(t)]}\hat{f}(s,\xi)$ .

 Imposing the periodicity in order to define a solution on the manifold, we determine K<sub>ξ</sub> and the coefficients, namely

$$\widehat{u}(t,\xi) = rac{1}{e^{\xi(ia_\sigma-b_\sigma)}-1}\int_t^{\sigma(t)} v,$$

where  $C(\sigma(t)) - C(t) = c_{\sigma} = a_{\sigma} + ib_{\sigma}$ .

• We wish to prove that  $\{\widehat{u}(t,\xi)\}$  decays rapidly.

If  $a \equiv 0$ , we will have the desired control for  $\xi > 0$  if along the curve

$$B(s) \geqslant B(t) + rac{1}{1+|\xi|},$$

holds true, since

$$\widehat{u}(t,\xi) = C_{\xi} \int_{t}^{t+(2\pi,0)} \underbrace{e^{-\xi[B(s)-B(t)]}}_{\leqslant e^{-\xi\cdot\frac{1}{1+|\xi|}}} |\widehat{f}(s,\xi)| \leqslant \underbrace{\frac{C_{N}}{(1+|\xi|)^{N}}}_{(1+|\xi|)^{N}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

If  $a \equiv 0$ , we will have the desired control for  $\xi > 0$  if along the curve

$$B(s) \geqslant B(t) + rac{1}{1+|\xi|},$$

holds true, since

$$\widehat{u}(t,\xi) = C_{\xi} \int_{t}^{t+(2\pi,0)} \underbrace{e^{-\xi[B(s)-B(t)]}}_{\leqslant e^{-\xi \cdot \frac{1}{1+|\xi|}}}_{|\widehat{f}(s,\xi)| \leqslant \frac{C_{N}}{(1+|\xi|)^{N}}}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

•

## Lemma [Maire, Comm. Partial Differential Equations, 1980] Let O be an open set in $\mathbb{R}^m$ and $\Phi \in C^{\omega}(O)$ . For $s \in O$ with $\nabla \Phi(s) \neq 0$ , the solution $\gamma_s : [0, \delta(s)) \to O$ of

$$\begin{cases} y' = \frac{\nabla \Phi(y)}{\|\nabla \Phi(y)\|}\\ y(0) = s. \end{cases}$$

satisfies

$$\Phi(\gamma_s(\tau)) \ge \Phi(s) + C_0 \tau^{\frac{1}{1-\theta}},$$

for  $\tau \in [0, \delta(s))$ .

#### Proposition [Teissier, Acta Math., 1983]

Given a compact set  $\mathscr{K} \subset U$ , there exists  $C_1 \doteq C_1(\mathscr{K}) > 0$  such that, for every  $r \in B^{\dagger}(\mathscr{K})$ , any pair of points in a component of  $(B^{\dagger})^{-1}(r) \cap \mathscr{K}$  can be joined by a real analytic path in  $(B^{\dagger})^{-1}(r) \cap \mathscr{K}$  with length less than  $C_1$ .

## Lemma [Maire, Comm. Partial Differential Equations, 1980] Let O be an open set in $\mathbb{R}^m$ and $\Phi \in C^{\omega}(O)$ . For $s \in O$ with $\nabla \Phi(s) \neq 0$ , the solution $\gamma_s : [0, \delta(s)) \to O$ of

$$\begin{cases} y' = \frac{\nabla \Phi(y)}{\|\nabla \Phi(y)\|} \\ y(0) = s. \end{cases}$$

satisfies

$$\Phi(\gamma_s(\tau)) \ge \Phi(s) + C_0 \tau^{\frac{1}{1-\theta}},$$

for  $\tau \in [0, \delta(s))$ .

#### Proposition [Teissier, Acta Math., 1983]

Given a compact set  $\mathscr{K} \subset U$ , there exists  $C_1 \doteq C_1(\mathscr{K}) > 0$  such that, for every  $r \in B^{\dagger}(\mathscr{K})$ , any pair of points in a component of  $(B^{\dagger})^{-1}(r) \cap \mathscr{K}$  can be joined by a real analytic path in  $(B^{\dagger})^{-1}(r) \cap \mathscr{K}$  with length less than  $C_1$ .

# The approach will depend on b: if b is not exact, we consider a division of the pairs $(t,\xi) \in \widetilde{M} \times \mathbb{Z}^-$ in two classes.

The class (A) will consist of the pairs  $(t,\xi)$  for which there is  $\sigma \in D$  with  $b_{\sigma} < 0$  such that

t and  $\sigma(t)$  are in the same component of  $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$  .

As for the pairs in the class (B), for each  $\sigma \in \mathsf{D}$  with  $b_{\sigma} < \mathsf{0}$ ,

t and  $\sigma(t)$  are in different components of  $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$ 

The approach will depend on *b*: if *b* is not exact, we consider a division of the pairs  $(t,\xi) \in \widetilde{M} \times \mathbb{Z}^-$  in two classes.

The class (A) will consist of the pairs  $(t,\xi)$  for which there is  $\sigma \in D$  with  $b_{\sigma} < 0$  such that

t and  $\sigma(t)$  are in the same component of  $\Omega_{\widetilde{\mathcal{B}}(t)+\frac{1}{1+|\xi|}}$  .

As for the pairs in the class (B), for each  $\sigma \in D$  with  $b_{\sigma} < 0$ ,

t and  $\sigma(t)$  are in different components of  $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$ 

The approach will depend on *b*: if *b* is not exact, we consider a division of the pairs  $(t,\xi) \in \widetilde{M} \times \mathbb{Z}^-$  in two classes.

The class (A) will consist of the pairs  $(t,\xi)$  for which there is  $\sigma \in D$  with  $b_{\sigma} < 0$  such that

t and  $\sigma(t)$  are in the same component of  $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$  .

As for the pairs in the class (B), for each  $\sigma \in D$  with  $b_{\sigma} < 0$ ,

t and  $\sigma(t)$  are in different components of  $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$  .

#### Lemma

For each pair  $(t,\xi)$  in the class (B), there is a piecewise smooth closed curve  $\gamma(t,\xi)$  in  $\widetilde{M}$  based on t such that:

• 
$$\gamma(t,\xi)$$
 is contained in  $\Omega_{\widetilde{B}(t)+rac{1}{1+|\xi|}}$ ;

• 
$$|\gamma(t,\xi)|\leqslant C_0(1+|\xi|)$$
 ;

• 
$$\left|e^{i\xi\int_{\gamma(t,\xi)}a}-1\right|\geqslant \frac{K}{|\xi|^s}$$
, for  $K>0$ .

The hypothesis on the dimension is not required here as well. A similar division and statement are true when *b* is exact.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

#### Lemma

For each pair  $(t,\xi)$  in the class (B), there is a piecewise smooth closed curve  $\gamma(t,\xi)$  in  $\widetilde{M}$  based on t such that:

• 
$$\gamma(t,\xi)$$
 is contained in  $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$ ;

• 
$$|\gamma(t,\xi)|\leqslant C_0(1+|\xi|)$$
 ;

• 
$$\left|e^{i\xi\int_{\gamma(t,\xi)}a}-1\right|\geqslant \frac{K}{|\xi|^s}$$
, for  $K>0$ .

The hypothesis on the dimension is not required here as well.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

A similar division and statement are true when b is exact.

#### Lemma

For each pair  $(t,\xi)$  in the class (B), there is a piecewise smooth closed curve  $\gamma(t,\xi)$  in  $\widetilde{M}$  based on t such that:

• 
$$|\gamma(t,\xi)|\leqslant C_0(1+|\xi|)$$
 ;

• 
$$\left|e^{i\xi\int_{\gamma(t,\xi)}a}-1\right|\geqslant \frac{K}{|\xi|^s}$$
, for  $K>0$ .

The hypothesis on the dimension is not required here as well. A similar division and statement are true when b is exact.

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで



The system under study

Statement when M is a surface

**Global solutions** 

Final remarks



#### Example 1

Assume that M is a closed manifold and b has only isolate singular points. The following statements are equivalent:

(I)  $\mathbb{L}$  is globally solvable.

(II) One of the two conditions below is satisfied:

- The local primitives of b are open at any singular point.
- The form b is exact, the semilevel sets  $\{t \in M : \widetilde{B}(t) > r\}$ and  $\{t \in M : \widetilde{B}(t) < r\}$  are connected for every  $r \in \mathbb{R}$ , and a is integral.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

#### Example 2

Assume that M is a closed manifold and  $\operatorname{rank}(b) = 1$ . The following statements are equivalent: (I)  $\mathbb{L}$  is globally solvable. (II)  $\mathscr{A} = \emptyset$ , or, for every  $\mathcal{O} \in \mathscr{A}$ ,  $I(\mathcal{O})$  is neither a rational nor a Liouville vector.

#### Levitt's Theorem

Every Morse foliation on a surface of genus g > 1 having only saddles as critical points (and not connected by leaves of the foliation), there are 3g - 3 pairwise disjoint cycles, transversal to the foliation, decomposing the surface into *pants*. There is only one saddle on each *pant*.





▲□▶ ▲圖▶ ▲園▶ ▲園▶

₹.



▲□▶ ▲圖▶ ▲園▶ ▲園▶

2



▲□▶ ▲圖▶ ▲国▶ ▲国≯



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶



・ロト ・個ト ・モト ・モト



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

### Global solvability X Local solvability —Morse case

The operator  $\mathbb{L} = d_t + ib(t)\partial_x$  is said to be locally solvable at  $p = (t, x) \in M \times \mathbb{S}^1$  if any given neighborhood U of p contains another neighborhood V of p such that for every  $f \in C^{\infty}(U, \Lambda^{1,0})$  with  $\mathbb{L}f = 0$  there is  $u \in C^{\infty}(V)$  satisfying  $\mathbb{L}u = f$  on V.

#### Theorem [Treves, 1976]

The operator  $\mathbb{L}$  is locally solvable at  $(t_j, x)$  if and only if the index of the critical point  $t_j$  is not 1 neither n-1.

うして ふゆう ふほう ふほう うらつ

## Global solvability X Local solvability —Morse case

The operator  $\mathbb{L} = d_t + ib(t)\partial_x$  is said to be locally solvable at  $p = (t, x) \in M \times \mathbb{S}^1$  if any given neighborhood U of p contains another neighborhood V of p such that for every  $f \in C^{\infty}(U, \Lambda^{1,0})$  with  $\mathbb{L}f = 0$  there is  $u \in C^{\infty}(V)$  satisfying  $\mathbb{L}u = f$  on V.

#### Theorem [Treves, 1976]

The operator  $\mathbb{L}$  is locally solvable at  $(t_j, x)$  if and only if the index of the critical point  $t_j$  is not 1 neither n - 1.

うして ふゆう ふほう ふほう うらつ

## References I

- Bergamasco; Kirilov, Global solvability for a class of overdetermined systems, J. Funct. Anal. 252 (2007), no. 2, 603-629.
- Cardoso; Hounie, *Global solvability of an abstract complex*, Proc. Amer. Math. Soc. 65 (1977), no.1, 117-124.
- Hounie; Zugliani, *Global solvability of real analytic involutive systems on compact manifolds*, Math. Ann. 369 (2017), no. 3, 1117-1209.
- Hounie; Zugliani, Tube structures of co-rank 1 with forms defined on compact surfaces, J. Geom. Anal. 31 (2021), 2540–2567.
- Treves, *Study of a Model in the Theory of Complexes Pseudodifferential Operators*, The Annals of Mathematics, Second Series, 104 (Sep., 1976), no.2, 269-324.