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Let c be a smooth closed 1-form defined on a closed manifold M.
We consider the operator L : C∞(M × S1)→ C∞(M × S1,Λ(1,0)):

Lu = dtu + c(t) ∧ ∂xu .

Assuming that (t1, . . . , tn) are local coordinates on M and C a
local primitive of c , we have the vector fields

Lj =
∂

∂tj
+
∂C

∂tj
(t)

∂

∂x
, j = 1, . . . , n .
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They are local generators of V .
= (T ′)⊥ ⊂ C⊗ T (M × S1) where

T ′ is the line sub-bundle of C⊗ T ∗(M × S1) generated by the
1-form dx − c . Any involutive structure defines in a natural way a
complex of differential operators - which in the case of V is given
by L when acting on distributions:

D ′(M × S1)
L−→ U1(M × S1)

L1
−→

L1
−→ U2(M × S1)

L2
−→· · · L

n−1
−→ Un(M × S1)

Ln

−→ 0.
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We study the smooth global solvability of L, i.e., the possibility of
finding a globally defined solution u ∈ D ′(M × S1) to

Lu = dtu + c(t) ∧ ∂xu = f ,

when f is smooth.

If f is in the range of L it must satisfy:

(i) Lf = 0 (a consequence of the complex property L ◦ L = 0);

(ii) f must be orthogonal to the kernel of the adjoint operator L∗.

While (i) is of local nature, the homology of M plays a role in (ii).
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They are usually referred to as the compatibility conditions for f
(we write f ∈ E) and are formulated in several equivalent ways.

We say that the operator L is globally hypoelliptic if

Lu ∈ C∞(M × S1,Λ(1,0)) =⇒ u ∈ C∞(M × S1).
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Statement when c is exact

When c is smooth and exact, we can define a primitive of b on M
by B(t) =

∫ t
t0
b. In [Cardoso; Hounie, 1977] the authors

characterized the global solvability as follows:

Theorem
If b is exact the following statements are equivalent:
(I) L is globally solvable.
(II) The semilevel sets {t ∈ M : B(t) < r} and {t ∈ M : B(t) > r}
are connected for every r ∈ R.
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Minimal covering space

We are given a manifold M where a real smooth closed 1-form
b is defined.
We construct a special covering space M̃ on which a primitive
B̃ of b is defined.
Call D the group of deck transformations of M̃.

The primitive B̃ is such that

B̃(σ(t))− B̃(t) = bσ ,

for σ ∈ D, and bσ = 0⇔ σ = 1.
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Denote by A the set of the connected components O of
regular semilevel sets of B̃ such that B̃ is bounded on O. Then
consider the inclusion j : O ↪→ M̃.

We will associate to O ∈ A the vector
I (O) = (

∫
α1

a, . . . ,
∫
αµ

a), where {α1, . . . αµ} is a basis of the
free part of j∗H1(O,Z).
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Theorem [Hounie; Zugliani, 2021]
Assume that M is a closed surface and that the 1-form c = a + ib
is smooth and closed. The following statements are equivalent:
(I) L is globally solvable.
(II) One of the conditions below is satisfied:

A = ∅ or, if O ∈ A , I (O) is neither a rational nor a Liouville
vector.
b is exact, the semilevel sets of B̃ are connected; a is rational,
and, if q ∈ Z is such that qI (O) ∈ (2πZ)µ for O ∈ A , then
qa is integral.



Compatibility conditions

Definition
We say that a 1-form f ∈ C∞(M × S1,Λ1,0) belongs to E if:

for each ξ ∈ Z and each smooth curve γ connecting t to σ(t)
in U with iξcσ ∈ 2πZ,∫

γ
e iξC(s)f̂ (s, ξ) = 0 .

dt(e
iξC(t)f̂ (t, ξ)) = 0 for every ξ ∈ Z.

The conditions come from the computation

dt(e
iξC(t)û(t, ξ)) = e iξC(t)f̂ (t, ξ) .
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iξC(t)û(t, ξ)) = e iξC(t)f̂ (t, ξ) .



Summary

The system under study

Statement when M is a surface

Global solutions

Final remarks



One can compute the Fourier coefficients of a candidate to a
problem’s solution on M̃ by solving a differential equation for
each ξ ∈ Z, which yields

û(t, ξ) =

∫ t

t0

υ + Kξe
ξC(t),

where υ = e iξ[C(s)−C(t)]f̂ (s, ξ).
Imposing the periodicity in order to define a solution on the
manifold, we determine Kξ and the coefficients, namely

û(t, ξ) =
1

eξ(iaσ−bσ) − 1

∫ σ(t)

t
υ,

where C (σ(t))− C (t) = cσ = aσ + ibσ.

We wish to prove that {û(t, ξ)} decays rapidly.



One can compute the Fourier coefficients of a candidate to a
problem’s solution on M̃ by solving a differential equation for
each ξ ∈ Z, which yields
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Regarding the proof of (II) =⇒ (I)

If a ≡ 0, we will have the desired control for ξ > 0 if along the curve

B(s) > B(t) +
1

1 + |ξ|
,

holds true, since

û(t, ξ) = Cξ

∫ t+(2π,0)

t
e−ξ[B(s)−B(t)]︸ ︷︷ ︸

6e
−ξ· 1

1+|ξ|

f̂ (s, ξ)︸ ︷︷ ︸
|f̂ (s,ξ)|6 CN

(1+|ξ|)N

.
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Lemma [Maire, Comm. Partial Differential Equations, 1980]
Let O be an open set in Rm and Φ ∈ Cω(O). For s ∈ O with
∇Φ(s) 6= 0, the solution γs : [0, δ(s))→ O of y ′ =

∇Φ(y)

‖∇Φ(y)‖
y(0) = s .

satisfies
Φ(γs(τ)) > Φ(s) + C0τ

1
1−θ ,

for τ ∈ [0, δ(s)).

Proposition [Teissier, Acta Math., 1983]
Given a compact set K ⊂ U, there exists C1

.
= C1(K ) > 0 such

that, for every r ∈ B†(K ), any pair of points in a component of
(B†)−1(r) ∩K can be joined by a real analytic path in
(B†)−1(r) ∩K with length less than C1.
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Regarding the proof of (II) =⇒ (I)

The approach will depend on b: if b is not exact, we consider a
division of the pairs (t, ξ) ∈ M̃ × Z− in two classes.

The class (A) will consist of the pairs (t, ξ) for which there is
σ ∈ D with bσ < 0 such that

t and σ(t) are in the same component of Ω
B̃(t)+ 1

1+|ξ|
.

As for the pairs in the class (B), for each σ ∈ D with bσ < 0,

t and σ(t) are in different components of Ω
B̃(t)+ 1

1+|ξ|
.
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Lemma
For each pair (t, ξ) in the class (B), there is a piecewise smooth
closed curve γ(t, ξ) in M̃ based on t such that:

γ(t, ξ) is contained in Ω
B̃(t)+ 1

1+|ξ|
;

|γ(t, ξ)| 6 C0(1 + |ξ|) ;∣∣∣e iξ ∫γ(t,ξ) a − 1
∣∣∣ > K

|ξ|s
, for K > 0.

The hypothesis on the dimension is not required here as well.

A similar division and statement are true when b is exact.
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Example 1
Assume that M is a closed manifold and b has only isolate singular
points. The following statements are equivalent:
(I) L is globally solvable.
(II) One of the two conditions below is satisfied:

The local primitives of b are open at any singular point.
The form b is exact, the semilevel sets {t ∈ M : B̃(t) > r}
and {t ∈ M : B̃(t) < r} are connected for every r ∈ R, and a
is integral.



Example 2
Assume that M is a closed manifold and rank(b) = 1. The
following statements are equivalent:
(I) L is globally solvable.
(II) A = ∅, or, for every O ∈ A , I (O) is neither a rational nor a
Liouville vector.



Levitt’s Theorem
Every Morse foliation on a surface of genus g > 1 having only
saddles as critical points (and not connected by leaves of the
foliation), there are 3g − 3 pairwise disjoint cycles, transversal to
the foliation, decomposing the surface into pants. There is only one
saddle on each pant.















Global solvability X Local solvability —Morse case

The operator L = dt + ib(t)∂x is said to be locally solvable at
p = (t, x) ∈ M × S1 if any given neighborhood U of p contains
another neighborhood V of p such that for every f ∈ C∞(U,Λ1,0)
with Lf = 0 there is u ∈ C∞(V ) satisfying Lu = f on V .

Theorem [Treves, 1976]
The operator L is locally solvable at (tj , x) if and only if the index
of the critical point tj is not 1 neither n − 1.
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