Tube structures with forms defined on closed manifolds

Giuliano Zugliani
IMECC-Unicamp

Joint work with Jorge Hounie (DM-UFSCar)

October $13^{\text {th }}, 2022$
Financial support: FAPESP

Summary

The system under study

Statement when M is a surface

Global solutions

Final remarks

Summary

The system under study

Statement when M is a surface

Global solutions

Final remarks

Let c be a smooth closed 1-form defined on a closed manifold M. We consider the operator $\mathbb{L}: C^{\infty}\left(M \times \mathbb{S}^{1}\right) \rightarrow C^{\infty}\left(M \times \mathbb{S}^{1}, \Lambda^{(1,0)}\right)$:

$$
\mathbb{L} u=d_{t} u+c(t) \wedge \partial_{x} u
$$

Assuming that $\left(t_{1}, \ldots, t_{n}\right)$ are local coordinates on M and C a local primitive of c, we have the vector fields

Let c be a smooth closed 1-form defined on a closed manifold M. We consider the operator $\mathbb{L}: C^{\infty}\left(M \times \mathbb{S}^{1}\right) \rightarrow C^{\infty}\left(M \times \mathbb{S}^{1}, \Lambda^{(1,0)}\right)$:

$$
\mathbb{L} u=d_{t} u+c(t) \wedge \partial_{x} u
$$

Assuming that $\left(t_{1}, \ldots, t_{n}\right)$ are local coordinates on M and C a local primitive of c, we have the vector fields

$$
L_{j}=\frac{\partial}{\partial t_{j}}+\frac{\partial C}{\partial t_{j}}(t) \frac{\partial}{\partial x}, \quad j=1, \ldots, n
$$

They are local generators of $\mathcal{V} \doteq\left(T^{\prime}\right)^{\perp} \subset \mathbb{C} \otimes T\left(M \times \mathbb{S}^{1}\right)$ where T^{\prime} is the line sub-bundle of $\mathbb{C} \otimes T^{*}\left(M \times \mathbb{S}^{1}\right)$ generated by the 1 -form $d x-c$. Any involutive structure defines in a natural way a complex of differential operators - which in the case of \mathcal{V} is given by \mathbb{L} when acting on distributions:

They are local generators of $\mathcal{V} \doteq\left(T^{\prime}\right)^{\perp} \subset \mathbb{C} \otimes T\left(M \times \mathbb{S}^{1}\right)$ where T^{\prime} is the line sub-bundle of $\mathbb{C} \otimes T^{*}\left(M \times \mathbb{S}^{1}\right)$ generated by the 1-form $d x-c$. Any involutive structure defines in a natural way a complex of differential operators - which in the case of \mathcal{V} is given by \mathbb{L} when acting on distributions:

$$
\begin{gathered}
\mathscr{D}^{\prime}\left(M \times \mathbb{S}^{1}\right) \xrightarrow{\mathbb{L}} \mathfrak{U} \mathfrak{U}^{1}\left(M \times \mathbb{S}^{1}\right) \xrightarrow{\mathbb{L}^{1}} \\
\xrightarrow{\mathbb{L}^{1}} \mathfrak{U}^{2}\left(M \times \mathbb{S}^{1}\right) \xrightarrow{\mathbb{L}^{2}} \cdots \xrightarrow{\mathbb{L}^{n-1}} \mathfrak{U}^{n}\left(M \times \mathbb{S}^{1}\right) \xrightarrow{\mathbb{L}^{n}} 0 .
\end{gathered}
$$

We study the smooth global solvability of \mathbb{L}, i.e., the possibility of finding a globally defined solution $u \in \mathscr{D}^{\prime}\left(M \times \mathbb{S}^{1}\right)$ to

$$
\mathbb{L} u=d_{t} u+c(t) \wedge \partial_{x} u=f
$$

when f is smooth.
If f is in the range of \mathbb{L} it must satisfy:
(i) $\mathbb{L} f=0$ (a consequence of the complex property $\mathbb{L} \circ \mathbb{L}=0$); (ii) f must be orthogonal to the kernel of the adjoint operator \mathbb{L}^{*}. While (i) is of local nature, the homology of M plays a role in (ii)

We study the smooth global solvability of \mathbb{L}, i.e., the possibility of finding a globally defined solution $u \in \mathscr{D}^{\prime}\left(M \times \mathbb{S}^{1}\right)$ to

$$
\mathbb{L} u=d_{t} u+c(t) \wedge \partial_{x} u=f
$$

when f is smooth.
If f is in the range of \mathbb{L} it must satisfy:
(i) $\mathbb{L} f=0$ (a consequence of the complex property $\mathbb{L} \circ \mathbb{L}=0$);
(ii) f must be orthogonal to the kernel of the adjoint operator \mathbb{L}^{*}. While (i) is of local nature, the homology of M plays a role in (ii).

We study the smooth global solvability of \mathbb{L}, i.e., the possibility of finding a globally defined solution $u \in \mathscr{D}^{\prime}\left(M \times \mathbb{S}^{1}\right)$ to

$$
\mathbb{L} u=d_{t} u+c(t) \wedge \partial_{x} u=f
$$

when f is smooth.
If f is in the range of \mathbb{L} it must satisfy:
(i) $\mathbb{L} f=0$ (a consequence of the complex property $\mathbb{L} \circ \mathbb{L}=0$);
(ii) f must be orthogonal to the kernel of the adjoint operator \mathbb{L}^{*}.

While (i) is of local nature, the homology of M plays a role in (ii).

We study the smooth global solvability of \mathbb{L}, i.e., the possibility of finding a globally defined solution $u \in \mathscr{D}^{\prime}\left(M \times \mathbb{S}^{1}\right)$ to

$$
\mathbb{L} u=d_{t} u+c(t) \wedge \partial_{x} u=f
$$

when f is smooth.
If f is in the range of \mathbb{L} it must satisfy:
(i) $\mathbb{L} f=0$ (a consequence of the complex property $\mathbb{L} \circ \mathbb{L}=0$);
(ii) f must be orthogonal to the kernel of the adjoint operator \mathbb{L}^{*}.

While (i) is of local nature, the homology of M plays a role in (ii).

They are usually referred to as the compatibility conditions for f (we write $f \in \mathbb{E}$) and are formulated in several equivalent ways.

We say that the operator \mathbb{L} is globally hypoelliptic if

They are usually referred to as the compatibility conditions for f (we write $f \in \mathbb{E}$) and are formulated in several equivalent ways.

We say that the operator \mathbb{L} is globally hypoelliptic if

$$
\mathbb{L} u \in C^{\infty}\left(M \times \mathbb{S}^{1}, \Lambda^{(1,0)}\right) \Longrightarrow u \in C^{\infty}\left(M \times \mathbb{S}^{1}\right)
$$

Statement when c is exact

When c is smooth and exact, we can define a primitive of b on M by $B(t)=\int_{t_{0}}^{t} b$. In [Cardoso; Hounie, 1977] the authors characterized the global solvability as follows:

Statement when c is exact

When c is smooth and exact, we can define a primitive of b on M by $B(t)=\int_{t_{0}}^{t} b$. In [Cardoso; Hounie, 1977] the authors characterized the global solvability as follows:

Theorem
If b is exact the following statements are equivalent:
(I) \mathbb{L} is globally solvable.
(II) The semilevel sets $\{t \in M: B(t)<r\}$ and $\{t \in M: B(t)>r\}$ are connected for every $r \in \mathbb{R}$.

Minimal covering space

- We are given a manifold M where a real smooth closed 1-form b is defined.
- We construct a special covering space M on which a primitive B of b is defined.
- Call D the group of deck transformations of M.
- The primitive \widetilde{B} is such that

$$
\widetilde{B}(\sigma(t))-\widetilde{B}(t)=b_{\sigma},
$$

for $\sigma \in \mathrm{D}$, and $b_{\sigma}=0 \Leftrightarrow \sigma=1$.

Minimal covering space

- We are given a manifold M where a real smooth closed 1-form b is defined.
- We construct a special covering space \widetilde{M} on which a primitive \widetilde{B} of b is defined.
- Call D the group of deck transformations of M.
- The primitive \widetilde{B} is such that

$$
\widetilde{B}(\sigma(t))-\widetilde{B}(t)=b_{\sigma}
$$

for $\sigma \in \mathrm{D}$, and $b_{\sigma}=0 \Leftrightarrow \sigma=1$.

Minimal covering space

- We are given a manifold M where a real smooth closed 1-form b is defined.
- We construct a special covering space \widetilde{M} on which a primitive \widetilde{B} of b is defined.
- Call D the group of deck transformations of \widetilde{M}.
- The primitive \widetilde{B} is such that

$$
\widetilde{B}(\sigma(t))-\widetilde{B}(t)=b_{\sigma}
$$

for $\sigma \in \mathrm{D}$, and $b_{\sigma}=0 \Leftrightarrow \sigma=1$.

Minimal covering space

- We are given a manifold M where a real smooth closed 1-form b is defined.
- We construct a special covering space \widetilde{M} on which a primitive \widetilde{B} of b is defined.
- Call D the group of deck transformations of \widetilde{M}.
- The primitive \widetilde{B} is such that

$$
\widetilde{B}(\sigma(t))-\widetilde{B}(t)=b_{\sigma}
$$

for $\sigma \in \mathrm{D}$, and $b_{\sigma}=0 \Leftrightarrow \sigma=1$.

Cutting where the periods are zero

$$
\int_{\gamma_{k}} b=c_{k}, \int_{\delta_{k}} b=d_{k}, \text { and } p c_{k}+q d_{k}=0
$$

Summary

The system under study

Statement when M is a surface

Global solutions

Final remarks

- Denote by \mathscr{A} the set of the connected components \mathcal{O} of regular semilevel sets of \widetilde{B} such that \widetilde{B} is bounded on \mathcal{O}. Then consider the inclusion $j: \mathcal{O} \hookrightarrow \widetilde{M}$.
- We will associate to $\mathcal{O} \in \mathscr{A}$ the vector $I(\mathcal{O})=\left(\int_{\alpha_{1}} a, \ldots, \int_{\alpha_{\mu}} a\right)$, where $\left\{\alpha_{1}, \ldots \alpha_{\mu}\right\}$ is a basis of the free part of $j^{*} H_{1}(\mathcal{O}, \mathbb{Z})$.
- Denote by \mathscr{A} the set of the connected components \mathcal{O} of regular semilevel sets of \widetilde{B} such that \widetilde{B} is bounded on \mathcal{O}. Then consider the inclusion $j: \mathcal{O} \hookrightarrow \widetilde{M}$.
- We will associate to $\mathcal{O} \in \mathscr{A}$ the vector $I(\mathcal{O})=\left(\int_{\alpha_{1}} a, \ldots, \int_{\alpha_{\mu}} a\right)$, where $\left\{\alpha_{1}, \ldots \alpha_{\mu}\right\}$ is a basis of the free part of $j^{*} H_{1}(\mathcal{O}, \mathbb{Z})$.

Theorem [Hounie; Zugliani, 2021]
Assume that M is a closed surface and that the 1-form $c=a+i b$ is smooth and closed. The following statements are equivalent:
(I) \mathbb{L} is globally solvable.
(II) One of the conditions below is satisfied:

- $\mathscr{A}=\emptyset$ or, if $\mathcal{O} \in \mathscr{A}, I(\mathcal{O})$ is neither a rational nor a Liouville vector.
- b is exact, the semilevel sets of \widetilde{B} are connected; a is rational, and, if $q \in \mathbb{Z}$ is such that $q I(\mathcal{O}) \in(2 \pi \mathbb{Z})^{\mu}$ for $\mathcal{O} \in \mathscr{A}$, then $q a$ is integral.

Compatibility conditions

Definition

We say that a 1-form $f \in C^{\infty}\left(M \times \mathbb{S}^{1}, \Lambda^{1,0}\right)$ belongs to \mathbb{E} if:

- for each $\xi \in \mathbb{Z}$ and each smooth curve γ connecting t to $\sigma(t)$ in \mathscr{U} with $i \xi c_{\sigma} \in 2 \pi \mathbb{Z}$,

$$
\int_{\gamma} e^{i \xi C(s)} \hat{f}(s, \xi)=0
$$

- $d_{t}\left(e^{i \xi C(t)} \hat{f}(t, \xi)\right)=0$ for every $\xi \in \mathbb{Z}$.

The conditions come from the computation
$d_{t}\left(e^{i \xi C(t)} \hat{u}(t, \xi)\right)=e^{i \xi C(t) \hat{f}(t, \xi) .}$

Compatibility conditions

Definition

We say that a 1-form $f \in C^{\infty}\left(M \times \mathbb{S}^{1}, \Lambda^{1,0}\right)$ belongs to \mathbb{E} if:

- for each $\xi \in \mathbb{Z}$ and each smooth curve γ connecting t to $\sigma(t)$ in \mathscr{U} with $i \xi c_{\sigma} \in 2 \pi \mathbb{Z}$,

$$
\int_{\gamma} e^{i \xi C(s)} \hat{f}(s, \xi)=0
$$

- $d_{t}\left(e^{i \xi C(t)} \hat{f}(t, \xi)\right)=0$ for every $\xi \in \mathbb{Z}$.

The conditions come from the computation

$$
d_{t}\left(e^{i \xi C(t)} \hat{u}(t, \xi)\right)=e^{i \xi C(t)} \hat{f}(t, \xi)
$$

Summary

The system under study

Statement when M is a surface

Global solutions

Final remarks

- One can compute the Fourier coefficients of a candidate to a problem's solution on \widetilde{M} by solving a differential equation for each $\xi \in \mathbb{Z}$, which yields

$$
\widehat{u}(t, \xi)=\int_{t_{0}}^{t} v+K_{\xi} e^{\xi C(t)}
$$

where $v=e^{i \xi[C(s)-C(t)]} \hat{f}(s, \xi)$.

- Imposing the periodicity in order to define a solution on the manifold, we determine K_{ξ} and the coefficients, namely

where $C(\sigma(t))-C(t)=c_{\sigma}=a_{\sigma}+i b_{\sigma}$.
- We wish to prove that $\{\widehat{u}(t, \xi)\}$ decays rapidly.
- One can compute the Fourier coefficients of a candidate to a problem's solution on \widetilde{M} by solving a differential equation for each $\xi \in \mathbb{Z}$, which yields

$$
\widehat{u}(t, \xi)=\int_{t_{0}}^{t} v+K_{\xi} e^{\xi C(t)}
$$

where $v=e^{i \xi[C(s)-C(t)]} \hat{f}(s, \xi)$.

- Imposing the periodicity in order to define a solution on the manifold, we determine K_{ξ} and the coefficients, namely

$$
\widehat{u}(t, \xi)=\frac{1}{e^{\xi\left(i_{\sigma}-b_{\sigma}\right)}-1} \int_{t}^{\sigma(t)} v
$$

where $C(\sigma(t))-C(t)=c_{\sigma}=a_{\sigma}+i b_{\sigma}$.

- We wish to prove that $\{\widehat{u}(t, \xi)\}$ decays rapidly.
- One can compute the Fourier coefficients of a candidate to a problem's solution on \widetilde{M} by solving a differential equation for each $\xi \in \mathbb{Z}$, which yields

$$
\widehat{u}(t, \xi)=\int_{t_{0}}^{t} v+K_{\xi} e^{\xi C(t)}
$$

where $v=e^{i \xi[C(s)-C(t)]} \hat{f}(s, \xi)$.

- Imposing the periodicity in order to define a solution on the manifold, we determine K_{ξ} and the coefficients, namely

$$
\widehat{u}(t, \xi)=\frac{1}{e^{\xi\left(i_{\sigma}-b_{\sigma}\right)}-1} \int_{t}^{\sigma(t)} v
$$

where $C(\sigma(t))-C(t)=c_{\sigma}=a_{\sigma}+i b_{\sigma}$.

- We wish to prove that $\{\widehat{u}(t, \xi)\}$ decays rapidly.

Regarding the proof of $(\mathrm{II}) \Longrightarrow$ (I)

If $a \equiv 0$, we will have the desired control for $\xi>0$ if along the curve

$$
B(s) \geqslant B(t)+\frac{1}{1+|\xi|}
$$

holds true, since

Regarding the proof of $(\mathrm{II}) \Longrightarrow$ (I)

If $a \equiv 0$, we will have the desired control for $\xi>0$ if along the curve

$$
B(s) \geqslant B(t)+\frac{1}{1+|\xi|},
$$

holds true, since

$$
\widehat{u}(t, \xi)=C_{\xi} \int_{t}^{t+(2 \pi, 0)} \underbrace{e^{-\xi[B(s)-B(t)]}}_{\leqslant e^{-\xi \cdot \frac{1}{1+|\xi|}}} \underbrace{\widehat{f}(s, \xi)}_{|\hat{f}(s, \xi)| \leqslant \frac{c_{N}}{(1+|\xi|)^{N}}} .
$$

Lemma [Maire, Comm. Partial Differential Equations, 1980] Let O be an open set in \mathbb{R}^{m} and $\Phi \in C^{\omega}(O)$. For $s \in O$ with $\nabla \Phi(s) \neq 0$, the solution $\gamma_{s}:[0, \delta(s)) \rightarrow O$ of

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{\nabla \Phi(y)}{\|\nabla \Phi(y)\|} \\
y(0)=s .
\end{array}\right.
$$

satisfies

$$
\Phi\left(\gamma_{s}(\tau)\right) \geqslant \Phi(s)+C_{0} \tau^{\frac{1}{1-\theta}},
$$

for $\tau \in[0, \delta(s))$.
Proposition [Teissier, Acta Math., 1983]
Given a compact set $\mathscr{K} \subset U$, there exists $C_{1} \doteq C_{1}(\mathscr{K})>0$ such that, for every $r \in B^{\dagger}(\mathscr{K})$, any pair of points in a component of $\left(B^{+}\right)^{-1}(r) \cap \mathscr{K}$ can be joined by a real a
$\left(B^{+}\right)^{-1}(r) \cap \mathscr{K}$ with length less than C_{1}.

Lemma [Maire, Comm. Partial Differential Equations, 1980] Let O be an open set in \mathbb{R}^{m} and $\Phi \in C^{\omega}(O)$. For $s \in O$ with $\nabla \Phi(s) \neq 0$, the solution $\gamma_{s}:[0, \delta(s)) \rightarrow O$ of

$$
\left\{\begin{array}{l}
y^{\prime}=\frac{\nabla \Phi(y)}{\|\nabla \Phi(y)\|} \\
y(0)=s .
\end{array}\right.
$$

satisfies

$$
\Phi\left(\gamma_{s}(\tau)\right) \geqslant \Phi(s)+C_{0} \tau^{\frac{1}{1-\theta}},
$$

for $\tau \in[0, \delta(s))$.
Proposition [Teissier, Acta Math., 1983]
Given a compact set $\mathscr{K} \subset U$, there exists $C_{1} \doteq C_{1}(\mathscr{K})>0$ such that, for every $r \in B^{\dagger}(\mathscr{K})$, any pair of points in a component of $\left(B^{\dagger}\right)^{-1}(r) \cap \mathscr{K}$ can be joined by a real analytic path in $\left(B^{\dagger}\right)^{-1}(r) \cap \mathscr{K}$ with length less than C_{1}.

Regarding the proof of $(\mathrm{II}) \Longrightarrow$ (I)

The approach will depend on b : if b is not exact, we consider a division of the pairs $(t, \xi) \in \widetilde{M} \times \mathbb{Z}^{-}$in two classes.

The class (A) will consist of the pairs (t, ξ) for which there is $\sigma \in \mathrm{D}$ with $b_{\sigma}<0$ such that t and $\sigma(t)$ are in the same component of $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$ As for the pairs in the class (B), for each $\sigma \in \mathrm{D}$ with $b_{\sigma}<0$, t and $\sigma(t)$ are in different components of $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$

Regarding the proof of $(\mathrm{II}) \Longrightarrow$ (I)

The approach will depend on b : if b is not exact, we consider a division of the pairs $(t, \xi) \in \widetilde{M} \times \mathbb{Z}^{-}$in two classes.
The class (A) will consist of the pairs (t, ξ) for which there is $\sigma \in \mathrm{D}$ with $b_{\sigma}<0$ such that
t and $\sigma(t)$ are in the same component of $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$. As for the pairs in the class (B), for each $\sigma \in \mathrm{D}$ with $b_{\sigma}<0$,
t and $\sigma(t)$ are in different components of $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$

Regarding the proof of $(\mathrm{II}) \Longrightarrow$ (I)

The approach will depend on b : if b is not exact, we consider a division of the pairs $(t, \xi) \in \widetilde{M} \times \mathbb{Z}^{-}$in two classes.
The class (A) will consist of the pairs (t, ξ) for which there is $\sigma \in \mathrm{D}$ with $b_{\sigma}<0$ such that
t and $\sigma(t)$ are in the same component of $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$.

As for the pairs in the class (B), for each $\sigma \in \mathrm{D}$ with $b_{\sigma}<0$,
t and $\sigma(t)$ are in different components of $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$.

Lemma

For each pair (t, ξ) in the class (B), there is a piecewise smooth closed curve $\gamma(t, \xi)$ in \widetilde{M} based on t such that:

- $\gamma(t, \xi)$ is contained in $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$;
- $|\gamma(t, \xi)| \leqslant C_{0}(1+|\xi|)$;

The hypothesis on the dimension is not required here as well. A similar division and statement are true when b is exact.

Lemma

For each pair (t, ξ) in the class (B), there is a piecewise smooth closed curve $\gamma(t, \xi)$ in \widetilde{M} based on t such that:

- $\gamma(t, \xi)$ is contained in $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$;
- $|\gamma(t, \xi)| \leqslant C_{0}(1+|\xi|)$;
- $\left|e^{i \xi \int_{\gamma(t, \xi)}{ }^{a}}-1\right| \geqslant \frac{K}{|\xi|^{s}}$, for $K>0$.

The hypothesis on the dimension is not required here as well.
A similar division and statement are true when b is exact.

Lemma

For each pair (t, ξ) in the class (B), there is a piecewise smooth closed curve $\gamma(t, \xi)$ in \widetilde{M} based on t such that:

- $\gamma(t, \xi)$ is contained in $\Omega_{\widetilde{B}(t)+\frac{1}{1+|\xi|}}$;
- $|\gamma(t, \xi)| \leqslant C_{0}(1+|\xi|)$;

The hypothesis on the dimension is not required here as well.
A similar division and statement are true when b is exact.

Summary

The system under study
\section*{Statement when M is a surface}
Global solutions

Final remarks

Example 1

Assume that M is a closed manifold and b has only isolate singular points. The following statements are equivalent:
(I) \mathbb{L} is globally solvable.
(II) One of the two conditions below is satisfied:

- The local primitives of b are open at any singular point.
- The form b is exact, the semilevel sets $\{t \in M: \widetilde{B}(t)>r\}$ and $\{t \in M: \widetilde{B}(t)<r\}$ are connected for every $r \in \mathbb{R}$, and a is integral.

Example 2
Assume that M is a closed manifold and $\operatorname{rank}(b)=1$. The following statements are equivalent:
(I) \mathbb{L} is globally solvable.
(II) $\mathscr{A}=\emptyset$, or, for every $\mathcal{O} \in \mathscr{A}, I(\mathcal{O})$ is neither a rational nor a Liouville vector.

Levitt's Theorem

Every Morse foliation on a surface of genus $g>1$ having only saddles as critical points (and not connected by leaves of the foliation), there are $3 g-3$ pairwise disjoint cycles, transversal to the foliation, decomposing the surface into pants. There is only one saddle on each pant.

Global solvability X Local solvability —Morse case

The operator $\mathbb{L}=d_{t}+i b(t) \partial_{x}$ is said to be locally solvable at $p=(t, x) \in M \times \mathbb{S}^{1}$ if any given neighborhood U of p contains another neighborhood V of p such that for every $f \in C^{\infty}\left(U, \Lambda^{1,0}\right)$ with $\mathbb{L} f=0$ there is $u \in C^{\infty}(V)$ satisfying $\mathbb{L} u=f$ on V.

Theorem [Treves, 1976]
The operator \mathbb{L} is locally solvable at $\left(t_{j}, x\right)$ if and only if the index of the critical point t_{j} is not 1 neither $n-1$.

Global solvability X Local solvability —Morse case

The operator $\mathbb{L}=d_{t}+i b(t) \partial_{x}$ is said to be locally solvable at $p=(t, x) \in M \times \mathbb{S}^{1}$ if any given neighborhood U of p contains another neighborhood V of p such that for every $f \in C^{\infty}\left(U, \Lambda^{1,0}\right)$ with $\mathbb{L} f=0$ there is $u \in C^{\infty}(V)$ satisfying $\mathbb{L} u=f$ on V.

Theorem [Treves, 1976]
The operator \mathbb{L} is locally solvable at $\left(t_{j}, x\right)$ if and only if the index of the critical point t_{j} is not 1 neither $n-1$.

References I

圊 Bergamasco；Kirilov，Global solvability for a class of overdetermined systems，J．Funct．Anal． 252 （2007），no．2， 603－629．
囯 Cardoso；Hounie，Global solvability of an abstract complex， Proc．Amer．Math．Soc． 65 （1977），no．1，117－124．

國 Hounie；Zugliani，Global solvability of real analytic involutive systems on compact manifolds，Math．Ann． 369 （2017），no．3， 1117－1209．
图 Hounie；Zugliani，Tube structures of co－rank 1 with forms defined on compact surfaces，J．Geom．Anal． 31 （2021）， 2540－2567．
Treves，Study of a Model in the Theory of Complexes Pseudodifferential Operators，The Annals of Mathematics， Second Series， 104 （Sep．，1976），no．2，269－324．

