

SEMINÁRIO DE EQUAÇÕES DIFERENCIAIS

The initial value problem of a periodic generalized Kawahara/KdVm equation

CEZAR ISSAO KONDO

UFSCAR

14/03/2017 (Terça-Feira)

16:00 horas (Sala 321 do IMECC)

Resumo: We consider the initial value problem for the following generalized Kawahara/KdVm equation

(0.1)
$$\partial_t u + \sum_{k=1}^m \partial_x^{2k+1} u + u \partial_x u = 0, \quad x \in \mathbb{T} \text{ and } t \in \mathbb{R}$$

(0.2)
$$u(x,0) = \varphi(x), \quad x \in \mathbb{T},$$

where $\ensuremath{\mathbb{T}}$ is a circle. We prove that

Theorem 0.1. Let $\sigma \geq 1$, $\delta > 0$, and $s \geq -m/2$. For initial data φ in the space

$$G^{\sigma,\delta,s}(\mathbb{T}) = \{ f \in D'(\mathbb{T}) : ||f||_{G^{\sigma,\delta,s}(\mathbb{T})}^2 = \sum_{n \in \mathbb{Z}} |n|^{2s} e^{2\delta |n|^{1/\sigma}} |\widehat{f}(n)|^2 < \infty \}$$

there exists $T = T(\|\varphi\|_{G^{\sigma,\delta,s}(\mathbb{T})}) > 0$ such that the Cauchy problem (0.1)-(0.2) has a unique solution u(x,t) in $C([-T,T]; G^{\sigma,\delta,s}(\mathbb{T}))$. Furthermore, the data-to-solution map is continuous. Moreover, the regularity of the solution in the time variable is Gevrey of order $(2m+1)\sigma$.