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S-1 Introduction

The main objective of this supplementary material is to present the full Bayesian Lasso via variational inference

(VI or VB) for linear regression models. Some extensive simulation studies are proposed. We also present

the necessary algebraic developments to facilitate the understanding of the main article. This supplementary

material is organized as follows. In Section S-2 the full Bayesian lasso is introduced. The Jeffreys prior for both

the penalisation and precision parameters are developed exploring Fisher decomposition. The full conditional

posterior distribution, useful for both MCMC and VB, are fully described. All the details are shown in Subsection

S-2.2 and S-2.3. In Section S-3 three simulations studies are described. The first one compares VB and MCMC

computational time and accuracy and the other two exercises simulate data with high correlation and large sparsity

with p >> n.

S-2 The full Bayesian Lasso

Following the hierarchical representation for the Laplace distributions, Park and Casella [2008] shows a Bayesian

formulation of the Lasso regression model. The hierarchical model is defined as:

y|X,β, ϕ ∼ N [Xβ, ϕ−1In]

β|ϕ, τ ∼ N [0, ϕ−1Dτ ], τ = (τ1, . . . , τp)

τj |λ ∼ Exp(λ) with j = 1, . . . , p,

where Dτ = diag(τ1, . . . , τp) and τj |λ are conditionally independent for all j. The model can be completed

with the hyperparameters of the priors ϕ ∼ Ga(a0, b0) and λ ∼ Ga(g0, h0). In Subsection S-2.1 we propose

an independent Jeffreys prior for ϕ and λ to automate the Lasso, and this implies supposing a0, b0, g0 and h0

tending to zero.

Let θ = (β, ϕ, τ , λ) be the vector of the parameters and the latent variables of the model. The posterior dis-

tribution is obtained as proportional to the model distribution times the prior distribution for the latent component

and the parameters:

p(θ|y,X) ∝ p(y|X,β, ϕ) p(β|ϕ, τ ) p(τ |λ) p(ϕ) p(λ).
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For instance, the above joint posterior is often intractable. An almost obvious numerical approach, since the

breakthrough paper of Gelfand and Smith [1990], is to use stochastic simulation.

S-2.1 Jeffreys prior using Fisher decomposition

In order to develop an automatic Bayesian Lasso procedure it is worth to introduce non informative priors

for the hyperparameters involved. Following Fonseca et al. [2019] and exploring the conditional independence

involved in the Lasso model, the Fisher information decomposition for Lasso follows as:

Iy(λ) = Iτ (λ)− Ey [Iβ,τ (λ|y)], (1)

where Iβ,τ (λ|y) is the information obtained from the full conditional distribution p(β, τ |y, λ). We also are using

the conditional independence described by the graph that represents the Bayesian Lasso model.

We will develop, in turn, each of the components in the expression (1). The quantity Iτ (λ) is based on the

independent marginal distribution of τj , leading directly to Iτ (λ) =
p
λ2 .

In order to obtain Iβ,τ (λ|y), we take advantage of the known full conditional distribution of (β, τ |λ,y) (see

(2)). Since (β|τ , λ,y) does not depend on λ, then it is easy to obtain Ey [Iβ,τ (λ|y)] =
p
λ .

Then substituting in (1), it follows Iy(λ) =
p
λ2 + p

λ2 and so the prior for λ is p(λ) ∝ λ−1. This result is

similar to the one reported in Fonseca et al. [2019], using the Uniform Gamma mixture. It is well known that the

Jeffreys prior of ϕ is proportional of ϕ−1.

S-2.2 The MCMC formulation

Considering the model and the prior distribution already specified, we know that the posterior distribution in

this case has an unknown form. Therefore, we can use the MCMC to obtain a sample of the posterior distribution

through the full conditional distributions (Gibbs Sampler). Calculations of full conditionals are as follows:

(β|y,X,θ−β) ∼ N

(
(XTX+D−1

τ )−1XTy,
1

ϕ
(XTX+D−1

τ )−1

)
(τj |y,X,θ−τj ) ∼ GIG

(
1

2
, 2λ, β2

jϕ

)
(ϕ|y,X,θ−ϕ) ∼ Ga

(
n

2
+
p

2
+ a0, b0 +

1

2
[(y −Xβ)T (y −Xβ) + βTD−1

τ β]

)

(λ|y,X,θ−λ) ∼ Ga

g0 + p, h0 +

p∑
j=1

τj

 (2)

where θ− stands for the entire vector θ without the parameter followed by symbol ” ”, and GIG denotes the

generalized inverse Gaussian distribution.
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S-2.3 The variational approximation applied to Lasso

In order to obtain a scalable inference procedure, we introduce an alternative methodology.

The joint distribution of the observations, latent components and parameters can easily be followed from

Figure S1 which in turn summarizes the model.
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Figure S1: Directed acyclic graph

It is worth remembering the expression of the mean field posterior approximation for the latent components

and parameters which is given by:

log(q(θ)) = log(q1(β, ϕ)) + log(q2(τ )) + log(q3(λ)).

After quoting Blei et al. [2017] the optimal ql(θl) is proportional to the exponential of the log of the full

conditional distribution that is calculated in (2) as the following:

q∗l (θl) ∝ exp{E−l[log p(θl|θ−l,y)]}, l = 1, 2, 3.

In the first step, the variational distribution for β and ϕ, that maximizes the variational bound L(q) while

3



holding q2(τ ) and q3(λ) fixed, is given by

log q∗1(β, ϕ) = log(p(y|β, ϕ)) + Eτ [log(p(β, ϕ|τ ))] + const

= log

[
(2π)−n/2|ϕ−1In|−1/2 exp

{
−1

2
(y −Xβ)T (ϕIn)(y −Xβ)

}]
+

+Eτ

{
log

[
(2π)−p/2|ϕ−1Dτ |−1/2 exp

{
−1

2
βTϕD−1

τ β

}]}
+

+Eτ {log[ϕa0−1 exp{−ϕb0}]}+ const

=
(n
2
+
p

2
+ a0 − 1

)
log ϕ+

−ϕ
2
{βT [Eτ (D

−1
τ ) +XTX]β + yTy − 2yTXβ + 2b0}+ const

= logN(β|mβ , ϕ
−1Cβ)×Ga(ϕ|aϕ, bϕ)

It is easy to see that this is a normal-gamma distribution with parameters:

C−1

β
= Eτ (D

−1
τ ) +XTX, and mβ = CβX

Ty,

aϕ = a0 + n/2, and bϕ = b0 +
1

2
(yTy −mT

βC
−1

β
mβ).

Next, the variational distribution of τ , that maximizes the variational bound L(q) while holding q3(λ) fixed is

given by

log q∗2(τj) =

= Eλ[log(p(τj |λ))] + Eβ,ϕ[log(p(βj , ϕ|τj))] + const

= Eλ{log[exp{−λτj}]}+ Eβ,ϕ

{
log

[
(ϕ−1τj)

−1/2 exp

{
− ϕ

2τj
β2
j

}]}
+ const

= −1

2
log τj −

1

2

(
2Eλ[λ]τj +

1

τj
Eβ,ϕ[ϕβ

2
j ]

)
+ const

= logGIG(τj |cτ , dτ , fτj )

with GIG being generalized inverse Gaussian distribution, where

cτ =
1

2
; dτ = 2Eλ[λ] ; fτj = Eβ,ϕ[ϕβ

2
j ].

Therefore,

log q∗2(τ ) = log

p∏
j=1

GIG(τj |cτ , dτ , fτj ).
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Finally, we will identify the variational distribution of λ:

log q∗3(λ) = log(p(λ)) + Eτ [log(p(τ |λ))] + const

= log[λg0−1 exp{−h0λ}] + Eτ

log

 p∏
j=1

λ exp{−τjλ}

+ const

= (g0 + p− 1) log λ− λ[h0 +

p∑
j=1

Eτ (τj)] + const

= logGa(λ|gλ, hλ)

which is a gamma distribution with parameters

gλ = g0 + p ; hλ = h0 +

p∑
j=1

Eτ (τj).

The expected values involved in the definition of the above variational distributions are computed as follows

(see Jørgensen [1982] for details).

It is worth pointing out that if X ∼ GIG(p, a, b), then its density is

f(x|p, a, b) =
(ab )

p
2

2κp(
√
ab)

xp−1 exp{−(ax+ b/x)/2}, x > 0,

where κp(·) is a modified Bessel function of the second kind, with

E[X] =

√
b

a

κp+1(
√
ab)

κp(
√
ab)

and V ar[X] =

(
b

a

)κp+2(
√
ab)

κp(
√
ab)

−

(
κp+1(

√
ab)

κp(
√
ab)

)2


E[X−1] =

√
a

b

κp+1(
√
ab)

κp(
√
ab)

− 2p

b

Therefore,

Eτ [D
−1
τ ] = diag(Eτ (τ

−1
1 ), . . . , Eτ (τ

−1
p )),

Eτ (τ
−1
j ) =

√
dτκcτ+1(

√
dτfτj )√

fτjκcτ (
√
dτfτj )

− 2cτ
fτj

, Eτ (τj) =

√
fτjκcτ+1(

√
dτfτj )√

dτκcτ (
√
dτfτj )

,

Eλ(λ) =
gλ
hλ
.

For the calculus of Eβ,ϕ[ϕβ
2
j ], let x|y ∼ N(µx, y

−1σx) and y ∼ Ga(a, b), so

E[X2Y ] = E[E(X2Y |Y )] = E[Y (E2(X|Y ) + V ar(X|Y ))] = µ2
xE(Y ) + σx =

aµ2
x

b
+ σx.
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Thus,

Eβ,ϕ[ϕβ
2
j ] = m2

βj
aϕ/bϕ + (Cβ)jj .

Evidence Lower Bound

The evidence lower bound (ELBO) for this model consists of:

L(q) = Eβ,ϕ
(log p(y|X,β, ϕ)) + Eβ,ϕ,τ (log p(β, ϕ|τ )) + Eτ ,λ(log p(τ |λ)) +

+Eλ(log p(λ))− Eβ,ϕ
(log q1(β, ϕ))− Eτ ,λ(log q2(τ ))− Eλ(log q3(λ))

Each of the above terms are evaluated as function of the variational parameters, as follows:

Eβ,ϕ
(log p(y|X,β, ϕ)) =

n

2
(ψ(aϕ)− log bϕ − log 2π) +

−1

2

[
aϕ
bϕ

(y −Xmβ)
T (y −Xmβ) + tr(XTXCβ)

]
Eβ,ϕ,τ (log p(β, ϕ|τ )) =

p

2
(ψ(aϕ)− log bϕ − log 2π) + (a0 − 1)(ψ(aϕ)− log bϕ) +

−b0
aϕ
bϕ

+
1

2

p∑
j=1

Eτ (log τj) +

−1

2

p∑
j=1

[
mβj

aϕ
bϕ

+ (Cβ)jj

]
Eτ

(
1

τj

)

Eτ ,λ(log p(τ |λ)) = p(ψ(gλ)− log hλ)−
gλ
hλ

p∑
j=1

Eτ (τj)

Eλ(log p(λ)) = g0 log h0 − log Γ(g0) + (g0 − 1)(ψ(gλ)− log hλ)− h0
gλ
hλ

Eβ,ϕ
(log q1(β, ϕ)) =

p

2
(ψ(aϕ)− log bϕ − log 2π)− 1

2
log |Cβ |+ aϕ log bϕ +

− log Γ(aϕ) + (aϕ − 1)(ψ(aϕ)− log bϕ)− aϕ

Eτ ,λ(log q2(τ )) =

p∑
j=1

[
cτ
2

log
dτ
fτj

− log 2− log κcτ (
√
dτfτj ) +

+ (cτ − 1)Eτ (log τj)−
dτ
2
Eτ (τj) +

fτj
2
Eτ

(
1

τj

)]
Eλ(log q3(λ)) = − log Γ(gλ) + (gλ − 1)ψ(gλ) + log hλ − gλ

The second order Taylor expansion for log τj at E(τj) is used to obtain the approximation for its expected

value: E(log τj) ≈ logE(τj)− V ar(τj)
2E2(τj)

where the mean and the variance of τj are are specified above.

Note that the variational bound depends on the quantities mβ , Cβ , bϕ, dτ , fτj e hλ. The algorithm updates

these quantities in each iteration. The ELBO is maximized and reaches a plateau with stabilization of those

quantities. Convergence can be achieved by analyzing changes to ELBO in consecutive iterations or by analyzing
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the quantities on which it depends.

We end this section by showing the predictive distribution. Let yo e yp be the observed and the predicted

vectors, respectively. Finally, let p(β, ϕ|yo) be its variational component. Then, after some algebraic calculations,

we have a Student’s t-distribution (St) as follows:

p(yp|yo,Xp) =

∫ ∫
p(yp|β, ϕ)p(β, ϕ|yo)dβdϕ ≈

∫ ∫
p(yp|β, ϕ)q1(β, ϕ)dβdϕ

= St

(
yp|XTmβ , (1 +XTCβX)

bϕ
(aϕ − 1)

, 2aϕ

)
,

where q1(β, ϕ) is the variational approximation of the posterior distribution, a normal-gamma distribution.

S-3 Simulations Studies

This section proposes 3 exercises with artificial data. The inference procedure assumes Jeffreys prior for ϕ and

λ and a vague prior for β ∼ N(1, 100 Ip+1).

For MCMC, 15,000 iterations were necessary to achieve convergence. The first 5,000 iterations were discarded

as the burn in process and one observation was taken for every ten observations to remove autocorrelation, ending

with a sample size of 10000. These quantities were obtained by using the criterion found in Lewis and Raftery

[1997], that provides the number of iterations needed to guarantee the convergence in the Gibbs Sampler. The

variational inference (or variational bayes - VB) algorithm is repeated until the changes in mβ , Cβ , bϕ, dτ , fτj

and hλ between two consecutive iterations are less than 0.1%.

When used, the classic procedure was implemented using the R software glmnet package, which in turn applies

5-fold cross-validation to estimate the penalty parameter λ.

Considering the linear regression models, the goal of these exercises is twofold. Firstly to compare the esti-

mation methods VB and MCMC (eventually we also use the classic Lasso in the comparison). Secondly, we wish

to compare the credible interval (CI), scaled neighborhood (SN) and posterior ratio (PR) selection criteria (see

Section 3.2 in the principal article for definitions). Moreover, different sparsity scenarios, variations in the sample

size, different correlations between explanatory variables and different values for the accuracy of the model are

considered.

Specifically, exercise 1 aims to estimate Lasso hyperparameters via VB and MCMC. Only one data set is

simulated from which the real values of all parameters and hyperparameters of the model are known. VB presents

results similar to MCMC and computational time 14 times shorter.

Exercise 2 is a simulation study with 100 replicates that presents a lesser sparsity structure. Variations in the

sample size and in the correlation among the explanatory variables are considered. Again, VB and MCMC present

similar and superior results to the classic Lasso. When the CI, SN and PR selection criteria are compared, PR gives

the best results, with high proportions of exclusion for coefficients that are zero and low exclusion proportions for
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coefficients that are different from zero.

Exercise 3 is designed for scenarios with 100 replicates and with greater sparsity when compared to exercise

2. This exercise takes into account cases where n < p and different values for the model’s precision. The results

are similar of those obtained in simulation 2.

S-3.1 Simulation 1: MCMC vs. VB

The purpose of simulation 1 is to compare the MCMC and VB methods to curve fitting and computational

time. For this study we considered n = 100, p = 10 and each column of the matrix X was generated from a

distribution N(0, In). For the parameters, were taken ϕ = 0.4, λ = 5 and τj |λ ∼ Exp(λ), ∀j. The regression

coefficients and observations were generated considering the Lasso regression model.

Table S1 shows us a posterior summary of the model parameters. There, one can see the mean and the

standard deviation of the approximate posterior obtained by using VB. Also, the posterior mean, the posterior

standard deviation via MCMC and the true value of the parameters. Note that the point estimates obtained by

the VB are close to those obtained by the MCMC. In addition, for both methods, the results are close to the real

values with small standard deviation. This same conclusion can be seen in Figure S2.

In fact, Figure S2 exhibits a graphical comparison between MCMC and VB. The histogram represents the

sample of the posterior distribution obtained via MCMC and the curve in red the approximate posterior density

obtained by the VB. The green dot indicates the true value of the parameters. Note that the curves approximated

by the VB are close to the histograms and both centered on the actual values. The remaining parameters τj show

similar results.

Table S1: Posterior summary.

Parameters Real Mean VB Sd VB Mean MCMC Sd MCMC
β1 0.463 0.557 0.132 0.558 0.139
β2 0.116 -0.046 0.136 -0.048 0.138
β3 -1.251 -1.316 0.153 -1.315 0.160
β4 0.250 0.396 0.161 0.383 0.171
β5 -0.319 -0.078 0.137 -0.079 0.142
β6 0.826 0.844 0.140 0.845 0.148
β7 -0.036 0.091 0.142 0.096 0.149
β8 0.144 0.074 0.136 0.081 0.143
β9 0.064 -0.090 0.131 -0.081 0.134
β10 -0.298 -0.370 0.150 -0.369 0.163
ϕ 0.4 0.473 0.066 0.473 0.070
τ1 0.340 0.233 0.188 0.265 0.326
τ2 0.088 0.137 0.159 0.162 0.250
τ3 0.148 0.401 0.231 0.453 0.398
τ4 0.470 0.201 0.179 0.234 0.359
τ5 0.048 0.140 0.160 0.152 0.209
τ6 0.162 0.296 0.205 0.345 0.333
τ7 0.120 0.142 0.161 0.164 0.266
τ8 0.069 0.139 0.160 0.173 0.365
τ9 0.027 0.140 0.161 0.148 0.244
τ10 0.275 0.194 0.177 0.212 0.278
λ 5 4.745 1.493 5.600 3.776
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Figure S2: Comparison MCMC (histogram) versus VB (solid line). The dot marks the actual value of the
parameter used to generate the data.

Since MCMC and VB present similar results, it is worth to point out the main difference between these

estimation methods, which is computational time. For exercise 1, the computational time of the VB was 0.19

seconds while that of the MCMC was 10.15 seconds. In the following exercises these computational times become

even more discrepant as we will be dealing with simulations with replicates.
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S-3.2 Simulation 2: High correlation

In this exercise a simulation was developed considering 100 replicates p = 8, β = (3, 1.5, 0, 0, 2, 0, 0, 0)T and

the design matrix is generated from a multivariate normal distribution with zero mean, variance 1 and two different

correlation structures between xi e xj : 0 e 0.7|i−j|, ∀i e j. Let’s consider ϕ = 1/9 and 3 nested scenarios varying

the sample size with {nT , nV } = {20, 10}, {100, 50} e {200, 100}, where nT e nV denote the size of the training

set and the size of the validation set, respectively. Therefore, we have a total of 6 different scenarios. Note that

the explanatory variables are standardized to have mean 0 and variance 1. The Table S2 summarize the scenarios

of simulation 2.

Table S2: Simulation 2 with 100 replicates, p = 8 explanatory variables and the vector of coefficients β =
(3, 1.5, 0, 0, 2, 0, 0, 0)T .

Simulation nT nV cov(Xi, Xj)
S2.1 20 10 0
S2.2 100 50 −
S2.3 200 100 −
S2.4 20 10 0.7|i−j|

S2.5 100 50 −
S2.6 200 100 −

The comparison of the MCMC and VB methods is our main objective in this simulation, however, frequentist

Lasso is also considered through the glmnet package of the R software. For the frequentist Lasso, a 5-fold cross-

validation is used to select the parameter λ. In addition, different variable selection criteria will be compared as

described in Subsection 3.2 of the principal article: credible interval (CI), scaled neighborhood (SN) and ratio of

posteriors (PR).

In order to compare Lasso’s predictive power from the different estimation techniques, MCMC, VB and

frequentist Lasso, the mean absolute error (MAE) was calculated for each replicate of the validation set using the

following expression:

MAE =
1

nV

nV∑
i=1

|yPi − yVi | (3)

where yPi are the predicted values in the validation set, obtained from the fitted model after the selection of the

coefficients. yVi are the observed values in the validation set and nV is the size of the validation set. Note that

MCMC generates a sample of the predictive distribution from each iteration of the method. Then, yPi is obtained

as follows:

p(yPi |y) =
1

AM

AM∑
j=1

p(yPi |θ
(j)),

where AM is MCMC number of iterations and θ is the vector of coefficients.

Figure S3 shows the box-plots of the mean absolute errors for each of the six proposed scenarios. As the
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sample size increases, we observe a smaller difference between the three estimation methods. When the sample is

small, similar results are obtained between MCMC and VB. These have the median MAE and the lowest dispersion

when compared to the frequentist Lasso. Next, we will detail the performance of the selection criteria for each

βj .
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Figure S3: Mean absolute error (MAE) using (S-3.2) for the 6 scenarios of the simulation 2. Estimation methods:
MCMC, VB and frequentist Lasso.

The Table S3 shows the frequency of times that the predictor xj , j = 1, . . . , 8 was excluded in the 100

replicates, considering the three variables selection methods and all six scenarios built in Simulation 2. We present

the proportions only for the VB because so far its results are similar to those of the MCMC. Note that for this

simulation exercise the PR presents the best results in all scenarios, with a greater proportion of exclusion when

the actual values of βj are zero and a small proportion when the β ’s are different from zero. In addition, it is

noted that as the sample size increases, the three criteria tend to correctly choose coefficients that are zero and

the coefficients that are different from zero.

From simulations 1 and 2, one may notice that the approximations of the VB are as good as the results

obtained by the MCMC. Nevertheless, the gain in computational time provided by VB (approximately 0.02

seconds on average in the simulation S2.6, for example) is far superior than MCMC (approximately 16 seconds

on average in the simulation S2.6, for example). In addition, we saw that PR is a variable selection criterion that

presents superior results when compared with CI and SN. In the following subsection we show the performance of

the VB estimation method and the PR selection criterion for a more complex numerical experiment with greater
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sparsity.

Table S3: Comparison of the three methods on variable selection accuracy using VB for the six scenarios (the
frequency of exclusions for the predictor xj , j = 1, . . . , 8) with β = (3, 1.5, 0, 0, 2, 0, 0, 0)T .

Simulation Method β1 β2 β3 β4 β5 β6 β7 β8

S2.1
VB + CI 0.01 0.09 0.64 0.57 0.13 0.66 0.65 0.62
VB + SN 0.02 0.15 0.73 0.71 0.20 0.77 0.75 0.71
VB + PR 0.00 0.09 0.88 0.70 0.13 0.82 0.75 0.92

S2.2
VB + CI 0.00 0.00 0.47 0.51 0.00 0.57 0.67 0.56
VB + SN 0.00 0.00 0.70 0.62 0.00 0.71 0.78 0.72
VB + PR 0.00 0.00 0.73 0.78 0.00 0.73 0.84 0.72

S2.3
VB + CI 0.00 0.00 0.50 0.47 0.00 0.67 0.60 0.58
VB + SN 0.00 0.00 0.71 0.62 0.00 0.71 0.73 0.76
VB + PR 0.00 0.00 0.72 0.73 0.00 0.77 0.80 0.77

S2.4
VB + CI 0.02 0.09 0.53 0.53 0.19 0.71 0.60 0.64
VB + SN 0.06 0.11 0.70 0.62 0.24 0.75 0.73 0.74
VB + PR 0.02 0.09 0.65 0.80 0.18 0.85 0.81 0.88

S2.5
VB + CI 0.00 0.00 0.57 0.49 0.00 0.60 0.51 0.57
VB + SN 0.00 0.00 0.73 0.68 0.00 0.75 0.70 0.75
VB + PR 0.00 0.00 0.78 0.77 0.00 0.76 0.80 0.82

S2.6
VB + CI 0.00 0.00 0.55 0.47 0.00 0.60 0.46 0.57
VB + SN 0.00 0.00 0.70 0.66 0.00 0.77 0.64 0.75
VB + PR 0.00 0.00 0.77 0.75 0.00 0.79 0.72 0.77

S-3.3 Simulation 3: High sparsity with small n and large p

In this simulation we consider a situation with sparsity given by p = 40 and β = (0T,3T,0T,3T)T , where

0 and 3 are vectors of dimension 10 and each of their entries are 0 and 3 respectively. The design matrix X

is generated from a multivariate normal distribution with mean zero, variance 1 and the correlation between the

columns xi e xj is equal to 0.5, ∀i ̸= j. We analyze 4 different scenarios by varying the sample size and the

precision parameter ϕ. The simulated data were analyzed as follows, {nT , nV } = {20, 10} e {200, 100} where nT

e nV are the size of the training set and the size of the validation set respectively. In addition, we set the precision

parameter as ϕ = 1/9 and ϕ = 1/225. For each scenario we consider 100 replicates. Table S4 summarizes all the

scenarios considered in this simulation exercise 3. It is worth mentioning that in scenarios S3.1 and S3.3 we have

n < p.

Table S4: Scenarios in Simulation 3

Simulation nT nV ϕ
S3.1 20 10 1/9
S3.2 200 100 -
S3.3 20 10 1/225
S3.4 200 100 -

Similarly to simulation 2, the MAE was calculated for each replicate as a predictive measure. Figure S4 shows

the box-plots of each scenario for MCMC, VB and Lasso. One may see that the MCMC and VB present similar
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and superior results to the Lasso when the sample size is small. As the sample increases the results become similar

in the 3 approaches.

S3.1
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Lasso MCMC VB

M
A

E

S3.2

5
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15

Lasso MCMC VB

M
A

E
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20

25

Lasso MCMC VB

M
A

E

S3.4

15
20

25

Lasso MCMC VB

M
A

E

Figure S4: Mean absolute error (MAE) obtained by using (S-3.2) for the 4 scenarios in simulation 3, comparing
the estimation methods MCMC, VB and Lasso.

Figure S5 shows the proportions of exclusions (gray bars) and selections (black bars) for each of the 40

coefficients in the 100 replicates, when comparing the estimation methods, VB and Lasso. MCMC was omitted

for presenting results similar to VB. In the Bayesian context, the selection criterion used in all scenarios was the

PR. It is expected that the black bars will be larger when the true coefficients are different from zero and that the

gray bars will be large when the true coefficients are equal to zero. The proportions of the errors are represented

by the black bars when the coefficients are zero (type I error) and by the gray bars when the coefficients are

different from zero (type II error).

Thus, it can be seen for n < p, both VB and Lasso do not have a good selection and exclusion performance,

with a slight advantage of VB. On the other hand, as the sample increases, the VB presents good results, better

than those presented by Lasso. Also note that when n > p both VB and Lasso have the same type II error.

However, for all coefficients, the type I error is considerably less in VB than in frequentist Lasso. Although the

MCMC and VB present similar results, in terms of the computational time the VB presents 0.06 second on average

and the MCMC 30 seconds on average, both in simulation S3.4.
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Figure S5: Proportion of selected (black) and excluded coefficients (gray) for the 4 scenarios in simulation 3 with
the estimation methods VB (left column ) and Lasso (right column).
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