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An example

Suppose you are given the following 100 observations.

-0.16 -0.68 -0.32 -0.85 0.89 -2.28 0.63 0.41 0.15 0.74
1.30 -0.13 0.80 -0.75 0.28 -1.00 0.14 -1.38 -0.04 -0.25

-0.17 1.29 0.47 -1.23 0.21 -0.04 0.07 -0.08 0.32 -0.17
0.13 -1.94 0.78 0.19 -0.12 -0.19 0.76 -1.48 -0.01 0.20

-1.97 -0.37 3.08 -0.40 0.80 0.01 1.32 -0.47 2.29 -0.26
-1.52 -0.06 -1.02 1.06 0.60 1.15 1.92 -0.06 -0.19 0.67
0.29 0.58 0.02 2.18 -0.04 -0.13 -0.79 -1.28 -1.41 -0.23
0.65 -0.26 -0.17 -1.53 -1.69 -1.60 0.09 -1.11 0.30 0.71

-0.88 -0.03 0.56 -3.68 2.40 0.62 0.52 -1.25 0.85 -0.09
-0.23 -1.16 0.22 -1.68 0.50 -0.35 -0.35 -0.33 -0.24 0.25

Do they come from N(0,1)?



The Kolmogorov-Smirnov Test

Suppose that we have observations X1, . . . , Xn, which we think
come from a distribution P .
The Kolmogorov-Smirnov Test is used to test

H0 : the samples come from P ,

against
H1 : the samples do not come from P .



Cumulative Distribution Function and Empirical
Distribution Function

The cumulative distribution function F (x) of a random variable X,
is

F (x) = P(X ≤ x).

The cumulative distribution function uniquely characterizes a
probability distribution.

Given observations x1, . . . , xn the empirical distribution function
Fobs(x) gives the proportion of the data that lies below x,

Fobs(x) =
#observations below x

#observations
.

If we order the observations y1 ≤ y2 ≤ · · · ≤ yn, then

Fobs(yi) =
i

n
.



The Kolmogorov-Smirnov statistic

We want to compare the empirical distribution function of the
data, Fobs, with the cumulative distribution function associated
with the null hypothesis, Fexp (expected CDF).

The Kolmogorov-Smirnov statistic is

Dn = max
x
|Fexp(x)− Fobs(x)|.



The practical approach
In practice, order the data:

Then compute the empirical distribution function:

Fobs(−3.68) =
1

100
, Fobs(−2.28) =

2

100
, . . . , Fobs(3.08) = 1.

If our data is ordered, x1 being the least and xn being the largest,
then

Fobs(xi) =
i

100
.



The practical approach

For each observation xi compute Fexp(xi) = P (Z ≤ xi).

In this case the expected distribution function is standard normal
so use the normal table.



The practical approach

Compute the absolute differences between the entries in the two
tables.

The Kolmogorov-Smirnov statistic Dn = 0.092 is the maximum
shown here in blue.



The Kolmogorov-Smirnov Statistic

We have calculated the maximum absolute distance between the
expected and observed distribution functions, in green in the plot
below.



What is the Critical Value?

I At the 95% level the critical value is approximately given by

Dcrit,0.05 =
1.36√
n
.

I Here we have a sample size of n = 100 so Dcrit = 0.136.

I Since 0.092 < 0.136 do not reject the null hypothesis.



Kolmogorow Smirnov for Two Samples
Given two samples, test if their distributions are the same.
Compute the observed cumulative distribution functions of the two
samples and compute their maximum difference.

X : 1.2, 1.4, 1.9, 3.7, 4.4, 4.8, 9.7, 17.3, 21.1, 28.4

Y : 5.6, 6.5, 6.6, 6.9, 9.2, 10.4, 10.6, 19.3.

I We sort the combined sample, in order to compute the
empirical cdf’s:

1.2 1.4 1.9 3.7 4.4 4.8 5.6 6.5 6.6 6.9

Fx 0.1 0.2 0.3 0.4 0.5 0.6 0.6 0.6 0.6 0.6
Fy 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.4 0.5

9.2 9.7 10.4 10.6 17.3 19.3 21.1 28.4

Fx 0.6 0.7 0.7 0.7 0.8 0.8 0.9 1.0
Fy 0.6 0.6 0.8 0.9 0.9 1.0 1.0 1.0



Kolmogorow Smirnov for Two Samples

The Kolmogorov-Smirnov statistic is again the maximum absolute
difference of the two observed distribution functions. Here

Dn = 0.6.



Kolmogorow Smirnov for Two Samples

For two samples, the 95% critical value can be approximated by
the formula:

Dcrit,0.05 = 1.36

√
1

nx
+

1

ny
.

In our case nx = 10 and ny = 8 and thus Dcrit = 0.645.

So we retain the null hypothesis.



Power of tests

The power of a test, 1− β, is the probability of rejecting H0 when
it is false.

The power of a test always depends on the alternative: it is the
probability of rejecting the null assuming a specific alternative is
true.



Computing the Power of a test

Consider n observations from a normal distribution with unknown
mean µ and known variance σ2. Test

H0 : µ = µ0, against H1 : µ = µalt.

The power is the probability of rejecting the null at the (1− α)%
confidence level when H1 is true.

Power = P
(
|Z| > z1−α/2 | H1

)
= P

( X̄ − µ0

σ/
√
n

> z1−α/2 | H1

)
+ P

( X̄ − µ0

σ/
√
n

< −z1−α/2 | H1

)
= P

( X̄ − µalt

σ/
√
n

> z1−α/2 +
µ0 − µalt

σ/
√
n
| H1

)
+ P

( X̄ − µalt

σ/
√
n

< −z1−α/2 +
µ0 − µalt

σ/
√
n
| H1

)
= Φ

(
− z1−α/2 +

√
n

σ
(µ0 − µalt)

)
+ 1− Φ

(
z1−α/2 +

√
n

σ
(µ0 − µalt)

)



Power
Set µ0 = 0 and let us have a look at the power as a function of
µalt.
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Figure: Power as a function of µalt for n = 100, α = 0.01,
n = 100, α = 0.05, n = 1000, α = .01, n = 1000, α = .05.

The power increases with the number of samples and as µalt gets
farther from µ0. As µalt → µ0 , the power approaches the level of
the test.

Lowering the level of the test also decreases the power.



Choosing Trial Sizes: An example

I Suppose that drug A has been found to lower blood pressure
on average by µA = 10mmHg with standard deviation σA = 8
mmHg.

I Suppose you want to compare it to a new drug B with
unknown mean effects µB. And σB = σA = σ.

I Recruit subjects, randomly split them in two groups to receive
A and B, respectively.

I Test
H0 : µA = µB, H1 : µA < µB.



Choosing Trial Size

I Then the z-statistic is

z =
b̄− ā

σ
√

2
n + 2

n

.

I Is it worth doing the test? What is our chance of picking up a
difference between µA and µB.

I The power is

Φ
(
− 1.96 +

√
n

σ
(µA− µB)

)
+ 1−Φ

(
1.96 +

√
n

σ
(µA− µB)

)
.

I If µA − µB halves, we need a sample size four times as large
to keep the power fixed.



Figure: Plot of the power against the logarithm of the sample size for
µB − µA = 10, 5 and 1 mmHg.

I One tailed test
µB − µA = 10;

I one-tailed test µB − µA = 5;

I one-tailed test µB − µA = 1;

I two-tailed test
µB − µA = 10;

I two-tailed test µB − µA = 5;

I two-tailed test µB − µA = 1.



Discussion

I The one-tailed test is more powerful when µB − µA is on the
right side.

I If µB − µA is on the wrong side, it is practically useless.

I If we can afford up to 50 subjects and we think we should only
do the test if we have at least 80% chance of finding a
significant result then we should only go ahead if we expect a
difference of at least 5mmHg.

I If we can afford 200 subjects, then we can go ahead if we
expect difference of 2.5 mmHg.

I With 1000 subjects we still have a good chance of picking up
differences as small as 1mmHg.



Power and Non-Parametric Tests

I Non-parametric tests are less powerful than parametric ones
(if their assumptions are satisfied).

I Example: Observe 10 samples from N(µ, 1). Suppose both
mean and variance unknown.

I Test at the 0.05 level

H0 : µ = 0, vs H1 : µ 6= 0.

I How does the power of the t-test compare to that of the
median test or the rank-sum test?



Power and Non-Parametric Tests

Here you can see that the Mann-Whitney test actually does fairly
well compared to the t-test.
On the other hand the median test is a clear loser!


	Choosing Trial Size 

