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Abstract. In this manuscript, we study the measure of covariance in a linearly

correlated fuzzy processes. The analysis was done using the Malthusian decay

model, where we compute the covariance of the solution at instants t+ h and

t, and observe its behavior when t tends to infinity.
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1. Introduction

Generally, evolutionary phenomena in time as population dynamics and

epidemiology, involve correlated data(Robinson, 2009; Kelley and Schmidt,

1995; Barlow, 1994). So, it is essential to study interactivity in these processes.

In (Barros and Santo Pedro, 2017), we studied autocorrelated fuzzy processes,

more particularly linearly correlated fuzzy processes, that is, processes which

states are linearly locally correlated. These processes have ideas similar to

processes with memories (time series). In this paper we study concepts of

mean value, variance, measure of interactivity and measure of covariance in

the linearly correlated fuzzy processes, which play a fundamental role in both

possibility and probability theory.
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1.1. Preliminary

In this section we will denote the space of the real numbers by R, the

space of strictly positive real numbers by R
+ and the space of fuzzy number

by RF .

A fuzzy number A is a fuzzy subset in R with normal, fuzzy convex

and continuous membership functions of bounded support. The membership

function of the fuzzy number A is denoted by A(x) and fuzzy numbers can

be considered as possibility distributions (Fullér and Majlender, 2004). The

well-known α-levels sets of the fuzzy number A are given by

[A]α = {x ∈ R : A(x) ≥ α}, for α > 0

and

[A]0 = cl{x ∈ R : A(x) > 0}, for α = 0.

We will denote by

[A]α = [a−(α), a+(α)],

where a−(α), a+(α) are the left and right end points (Barros et al., 2017).

A n-dimensional joint possibility distribution J is a fuzzy subset of Rn

with a normal membership function and a compact support. We denote by

F(Rn) the family of joint possibility distribution of Rn.

Let A1, A2, ..., An be fuzzy numbers and J ∈ F(Rn), then (Carlsson

et al., 2004) defines that J is a joint possibility distribution of A1, A2, ..., An if

max
xj∈R,j 6=i

J(x1, ..., xn) = Ai(xi). (1.1)

Moreover, Ai is called the i-th marginal distribution marginal of J and we

denote Ai = πi(J), where πi is the projection operator in R
n onto ith axis,

i = 1, . . . n (Fullér and Majlender, 2004).

The interactivity between fuzzy numbers is determined from a possibility

distribution (Carlsson et al., 2004).

If J is a possibility distribution of fuzzy numbers A1, A2, ..., An, then the

following relationship holds

J(x1, ..., xn) ≤ min{A1(x1), ..., An(xn)}.

In addition,

[J ]α ⊆ [A1]α × ...× [An]α, ∀α ∈ [0, 1].
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We say that the fuzzy numbers A1, A2, ..., An are non interactive when

J(x1, ..., xn) = min{A1(x1), ..., An(xn)},

or equivalently,

[J ]α = [A1]α × ...× [An]α, ∀α ∈ [0, 1].

Otherwise they are interactive.

Let J be a joint possibility distribution of A1, ..., An ∈ RF and f : Rn →

R a continuous function. The function fJ is said to be the extension principle

of f via J (Carlsson et al., 2004) and will be defined by

fJ(A1, ..., An)(y) =

{

supy=f(x1,...,xn) J(x1, ..., xn) if y ∈ Im(f)

0 if y /∈ Im(f)
. (1.2)

Theorem 1.1 (Carlsson et al., 2004) Let A1, ..., An be completely correlated

fuzzy numbers, J their joint possibility distribution and f : Rn → R a continu-

ous function. Then,

[fJ (A1, ..., An)]α = f([J ]α),

for all α ∈ [0, 1].

From (Fullér and Majlender, 2003), the weighting function w : [0, 1] −→

R, it is a non-negative, monotone increasing and normalized over the unit

interval function, that is,
∫ 1

0

w(s)ds = 1.

Let J be a joint possibility distribution in R
n, let p : Rn −→ R be an

integrable function, and let α ∈ [0, 1]. The central value of p on [J ]α is given

by

C[J]α(p) =
1

∫

[J]α
dx

∫

[J]α

p(x)dx. (1.3)

Additionally, if J is a degenerated set then we compute C[J]α(p) as the

limit case of a uniform approximation of [J ]α with non-degenerated sets (Fullér

and Majlender, 2004).

Let J be a joint possibility distribution in R
n, let p : Rn −→ R be an

integrable function, and let w be a weighting function. Then the expected value

of p on J with respect to w is given by (Fullér and Majlender, 2004)

Ew(p; J) =

∫ 1

0

C[J]α(p)w(α)dα. (1.4)
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Notice that Ew(p; J) computes the w-weighted average of the central

values of function p on the level sets of J and, for any possibility distribution

J , we have that Ew(·; J) is a linear operator.

Let J be a joint possibility distribution in R
2 with marginal possibility

distributions A = πx(J) and B = πy(J), and let α ∈ [0, 1]. Then the measure

of interactivity between the α-level sets of A and B (with respect to [J ]α) is

given by (Fullér and Majlender, 2004)

Iα(πx, πy) = C[J]α(πxπy)− C[J]α(πx)C[J]α(πy) =

1
∫

[J]α
dxdy

∫

[J]α

xy dxdy −

(

1
∫

[J]α
dxdy

∫

[J]α

x dxdy

)(

1
∫

[J]α
dxdy

∫

[J]α

y dxdy

)

,

for all α ∈ [0, 1].

The measure of covariance between A and B (with respect their joint

possibility distribution J and weighting function w) is given by

Covw(A,B) = Ew(p; J) =

∫ 1

0

Iα(A,B)w(α)dα, (1.5)

where p is the interactivity function associated with [J ]α, α ∈ [0, 1]. In other

words, the covariance between A and B is computed as the expected value of

the interactivity function on the joint distribution J . That is, the equation

(1.5) is the average interactivity between the levels of A and B (by w).

Carlsson, Fúller and Majlender (Carlsson et al., 2004) introduced the

concept of completely correlated fuzzy numbers using the concept of possibility

distribution.

Let A1 and A2 be fuzzy numbers. Then, (Carlsson et al., 2004) defines

that A1 and A2 are completely correlated fuzzy numbers if exist q 6= 0 and r

real numbers, such that their joint possibility distribution is given by

C(x1, x2) = A1(x1)X{qx1+r=x2}(x1, x2)

= A2(x2)X{qx1+r=x2}(x1, x2),
(1.6)

where X{qx1+r=x2}(x1, x2) is the characteristic function of the line {(x1, x2) ∈

R
2 : qx1 + r = x2}.

Barros and Santo Pedro (2017), introduced the concept of linearly corre-

lated fuzzy numbers, in order to avoid the knowledge of the joint distribution.

Two fuzzy numbers A and B are called linearly correlated (Simões, 2017) if

there exist q, r ∈ R such that

[B]α = q[A]α + r,
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for all α ∈ [0, 1].

When q > 0 (q < 0), we say that A and B are linearly positively (nega-

tively) correlated.

Now let us assume that A,B ∈ RF \ R are linearly correlated and the

joint possibility distribution is given by C in (1.6). The covariance between

A and B, with respect to their joint possibility distribution C, is (Fullér and

Majlender, 2004)

Covw(A,B) =

∫ 1

0

Iα(A,B)w(α)dα

= ±
1

12

∫ 1

0

[a+(α)− a−(α)][b+(α)− b−(α)]w(α)dα,

(1.7)

where the sign is positive if A and B are linearly positive and negative if A and

B are linearly negative.

From the fact that A and B are fuzzy numbers linearly correlated, we

have that there exists q > 0 (or q < 0), such that B = qA+ r and

b+(α)− b−(α) = q(a+(α)− a−(α)), ∀α ∈ [0, 1].

Thereby,

Covw(A,B) =
q

12

∫ 1

0

[a+(α)− a−(α)]2w(α)dα. (1.8)

1.2. Linearly correlated fuzzy process and interactive deriva-

tive.

A fuzzy process F : [a, b] −→ RF is a fuzzy-valued function which,

for each t, associates a fuzzy number. The level sets of F (t) are non-empty,

compact and convex subsets of R.

The process F is called autocorrelated fuzzy process when, for h with

absolute value sufficiently small, there is a joint possibility distribution that

relates F (t+ h) with F (t) for all t, t+ h ∈ [a, b].

In particular, when there exist q(h) and r(h), for h with absolute value

sufficiently small, such that, in levels, we have

[F (t+ h)]α = q(h)[F (t)]α + r(h), (1.9)

then we say that F is a locally linearly correlated fuzzy process.
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The equation (1.9) means that the future value F (t+ h) is linearly cor-

related with the present value F (t), for each h with absolute value sufficiently

small.

The metric used is the Pompieu-Hausdorff distance d∞ : R×R → R+ ∪

{0}, and it is defined (Barros et al., 2017) by

d∞(A,B) = sup
0≤α≤1

max {|a−(α)− b−(α)|, |a+(α)− b+(α)|},

where A,B ∈ RF , [A]α = [a−(α), a+(α)] and [B]α = [b−(α), b+(α)].

Let F : [a, b] → RF be an linearly correlated fuzzy process. According

to (Barros and Santo Pedro, 2017), F is called L-differentiable at t0, if there

exists a fuzzy number F
′

L(t0) such that the limit

lim
h→0

F (t0 + h)−L F (t0)

h

exists and is equal to F
′

L(t0) using the metric d∞. In addition, F
′

L(t0) is called

linearly correlated fuzzy derivative of F at t0. At the endpoints of [a, b], we

consider only one-sided derivative.

2. Interactive Malthusian Model

2.1. Malthusian decay

Consider the fuzzy initial value problem given by the Malthusian decay
{

X
′

(t) = −λX

X(t0) = X0

, (2.10)

where λ > 0 and X0 is a triangular fuzzy number.

In Barros and Santo Pedro (2017) we can see that FIVP (2.10) can be

written in levels by:
{

[(x+
t )

′

(α), (x−
t )

′

(α)] = [−λx+
t (α), x

−
t (α)] if 0 < q(h) < 1

[(x−
t )

′

(α), (x+
t )

′

(α)] = [−λx+
t (α), x

−
t (α)] if q(h) > 1

, (2.11)

and the solution is given, in levels, by:

[X(t)]α = [x−
0 (α), x

−
0 (α)]e

−λ t if 0 < q(h) < 1. (2.12)
{

x−
α (t) = c−(α)eλt + c+(α)e−λt

x+
α (t) = −c−(α)eλt + c+(α)e−λt

if q(h) > 1 (2.13)
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where

c−(α) =
x−
0 (α)− x+

0 (α)

2
and c+(α) =

x−
0 (α) + x+

0 (α)

2
.

Therefore, by equation (1.8), we have:

– for 0 < q(h) < 1

Covw(X(t), X(t+ h)) =
e−λ(2t+h)

12

∫ 1

0

[x+
0 (α)− x−

0 (α)]
2w(α)dα; (2.14)

– for q(h) > 1

Covw(X(t), X(t+ h)) =
eλ(2t+h)

12

∫ 1

0

[x+
0 (α)− x−

0 (α)]
2w(α)dα. (2.15)

Figure 1: Solutions of the Malthusian model (2.10). The 0-level (continuous

curve) of the solution with 0 < q2 < 1, the 0-level (dashed curve) of the

solution with q2 > 1 and the 1-level (dash-point curve) of both. We consider

x0 = (0.6; 1; 1.4) and λ = 0.02.

ConsiderX0 = (0.6; 1; 1.4) the triangular fuzzy number such that [X0]α =

[0.6 + 0.4α, 1.4− 0.4α] and λ = 0.02. Next we compute Covw(X(t+ h), X(t))

for some weighting functions w.
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Example 2.1 Let us consider

w(α) =

{

2α, α ∈ [0, 1]

0, other wise
.

So,

– for (2.14)

Covw(X(t), X(t+ h)) =
e−0.02(2t+h)

12

∫ 1

0

[0.8− 0.8α]22αdα

=
0.1067e−0.02(2t+h)

12
= 0.0089e−0.02(2t+h);

(2.16)

– for (2.15)

Covw(X(t), X(t+ h)) =
e0.02(2t+h)

12

∫ 1

0

[0.8− 0.8α]22αdα

=
0.1067e0.02(2t+h)

12
= 0.0089e0.02(2t+h).

(2.17)

Example 2.2 Consider the weighting function given by

w(α) =











2α
k
, α ∈ [0, k]

2(α−1)
k−1 , α ∈ [k, 1]

0, other wise

,

where k ∈ (0, 1), so we have

– for (2.14)

Covw(X(t), X(t+ h)) =
e−0.02(2t+h)

12

(
∫ k

0

[0.8− 0.8α]2
2α

k
dα

+

∫ 1

k

[0.8− 0.8α]2
2(α− 1)

k − 1
dα

)

=(0.32k3 − 0.8533k2 + 0.64k + 0.32(k − 1)3)
e−0.02(2t+h)

12
;

(2.18)
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– for (2.15)

Covw(X(t), X(t+ h)) =
e0.02(2t+h)

12

(
∫ k

0

[0.8− 0.8α]2
2α

k
dα

+

∫ 1

k

[0.8− 0.8α]2
2(α− 1)

k − 1
dα

)

=(0.32k3 − 0.8533k2 + 0.64k + 0.32(k − 1)3)
e0.02(2t+h)

12
.

(2.19)

Taking k = 0.5 in (2.18) and (2.19), we have, respectively, Covw(X(t), X(t+

h)) = 0.1067e−0.02(2t+h) and Covw(X(t), X(t+ h)) = 0.1067e−0.02(2t+h).

Example 2.3 Consider the weighting function given by

w(α) = β(α) =
αa−1(1− α)b−1

B(a, b)
, α ∈ [0, 1]

where B(a, b) =
∫ 1

0
αa−1(1− α)b−1 is the beta function. The beta function can

we written by B(a, b) = Γ(a)Γ(b)
Γ(a+b) , where Γ(z) =

∫∞

0
αz−1e−αdα (Barros, 2015).

According to (Gupta and Nadarajah, 2004), this weighting function is suitable

for variables measure on interval (0, 1), for example, rates and proportions. So

we have

– for (2.14)

Covw(X(t), X(t+ h)) =
e−0.02(2t+h)

12

∫ 1

0

[0.8− 0.8α]2
αa−1(1− α)b−1

B(a, b)
dα

=

(

16Γ(a)Γ(b+ 2)

25B(a, b)Γ(a+ b+ 2)

)

e−0.02(2t+h)

12
,

(2.20)

where Γ(α) is the gamma function;

– for (2.15)

Covw(X(t), X(t+ h)) =
e0.02(2t+h)

12

∫ 1

0

[0.8− 0.8α]2
αa−1(1− α)b−1

B(a, b)
dα

=

(

16Γ(a)Γ(b+ 2)

25B(a, b)Γ(a+ b+ 2)

)

e+0.02(2t+h)

12
,

(2.21)

where Γ(α) is the gamma function.
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In (2.20) and (2.21), taking a = 3 and b = 1, we have, respectively,

Covw(X(t), X(t+ h)) = 0.005e−0.02(2t+h) and Covw(X(t),

X(t+h)) = 0.005e−0.02(2t+h), and taking a = 4 and b = 1, we have, respectively,

Covw(X(t), X(t+ h)) = 0.003e−0.02(2t+h) and

Covw(X(t), X(t+ h)) = 0.003e−0.02(2t+h).

Notice that β distribution with a = 1 = b is a uniform distribution on the

interval [0, 1] and we have, respectively, Covw(X(t), X(t+h)) = 0.0178e−0.02(2t+h)

and Covw(X(t), X(t+ h)) = 0.0178e−0.02(2t+h).

Remark 2.1 (Malthusian growth) If we consider the fuzzy initial value prob-

lem given by the Malthusian growth
{

X
′

(t) = λX

X(t0) = X0

, (2.22)

Figure 2: Solutions of the Malthusian model (2.22). The 0-level (continuous

curve) of the solution with 0 < q2 < 1, the 0-level (dashed curve) of the

solution with q2 > 1 and the 1-level (dash-point curve) of both. We consider

x0 = (0.6; 1; 1.4) and λ = 0.02.

where λ > 0 and X0 is a triangular fuzzy number. Then, by equation (1.8), we

have:
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– for 0 < q(h) < 1,

Covw(X(t), X(t+ h)) =
e−λ(2t+h)

12

∫ 1

0

[x+
0 (α)− x−

0 (α)]
2w(α)dα; (2.23)

– for q(h) > 1

Covw(X(t), X(t+ h)) =
eλ(2t+h)

12

∫ 1

0

[x+
0 (α)− x−

0 (α)]
2w(α)dα. (2.24)

We obtain the same covariance for systems (2.10) and (2.22). This result

shows us that when the parameter q from L-derivative is between 0 and 1, the

covariance decreases and when it is bigger than 1, the covariance increases

over time no matter what is the signal of λ. Thus, what influences in the

measure of covariance is the parameter q in the L-derivative and not the signal

of parameter λ. Following, we have the final comments.

3. Conclusion

In this paper, we compute the covariance between X(t + h) and X(t),

where X is a linearly correlated fuzzy process and the solution of FIVP (2.10).

By computing the covariance, we conclude, by (2.14) and (2.15), that for any

weighting function w, when t → ∞, we have

– for 0 < q(h) < 1: Covw(X(t), X(t+ h)) → 0;

– for q(h) > 1: Covw(X(t), X(t+ h)) → ∞.

In this way, we also conclude that the parameter q in L - derivative is the one

that determines if the fuzziness of the dynamic system increases or decreases

over time (fuzziness in the sense of solution diameter) and not the signal of

the parameter λ in (2.10). Thus, when modeling a phenomenon, we need to

use a suitable derivative, i.e., a derivative that is capable of capturing the

interactivity presented in the problem.
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