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1. Introduction

The species in an ecosystem will interact in different ways. These are

mutualism and commensalism (regarded as positive interactions), and competi-

tion, amensalism, parasitism and predation (regarded as negative interactions).

In this paper we are interested in the commensal interactions. Commen-

sal and mutualistic interactions occur frequently between species of terrestrial

vertebrates (Dickman, 1992). Commensalism is a symbiotic relationship in

which one partner benefits and the other partner appears neither to lose nor

to gain from the relationship. Literature on the commensal interactions often
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argue for it in two way. The first is simply to assume that there is very little

cost to the host (Goto et al., 2007; Lee et al., 2009). The second way argues

that if large numbers of symbionts are tolerated by the host, then that means

that they are harmless (Browne and Kingsford, 2005; Dvoretsky and Dvoretsky,

2009).

Mathematical modelling of interacting populations can provide valuable

insights into variations of populations over time. Literature on the mathemati-

cal modelling of the negative interactions between species is very abundant, but

modelling of positive interspecific interactions, particularly mutualistic ones,

has generated interest in recent years (Graves et al., 2006; Legovióc and Geek,

2012; Sun and Wei, 2003; Zhang, 2012).

Historically the first models that describes facultative mutualism are the

following systems of ordinary differential equations (Addicott, 1981; Murray,

2002),

dn1

dt
= r1n1

[
1− n1

K1
+ b12

n2

K1

]
,
dn2

dt
= r2n2

[
1− n2

K2
+ b21

n1

K2

]
, (1.1)

dn1

dt
= r1n1

[
1− n1

K1 + b12n2

]
,
dn2

dt
= r2n2

[
1− n2

K2 + b21n1

]
, (1.2)

where n1 and n2 are the density of species 1 and 2 at time t, respectively. The

parameters ri, Ki, (i = 1, 2) b12 and b21 are all positive constants and, the ri

are the linear birth rates and the Ki are the carrying capacities. The b12 and

b21 measure the cooperative effect of n2 on n1 and n1 on n2 respectively.

Now we propose ecological models to describe commensalism derivatives

of the mutualist models. Recalling that commensalism (0,+) is the relation in

which one of the species benefits, while another is not affected. The following

conditions are satisfied: b12 = 0 and b21 > 0, the model of mutualism (1.2)

becomes a model of commensalism:

dn1

dt
= r1n1

[
1− n1

K1

]
,

dn2

dt
= r2n2

[
1− n2

K2 + b21n1

]
. (1.3)

Similarly, if b12 = 0 and b21 > 0 the Lotka-Volterra system (1.1) becomes

a Lotka-Volterra commensalism model
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dn1

dt
= r1n1

[
1− n1

K1

]
,

dn2

dt
= r2n2

[
1− n2

K2
+ b21

n1

K2

]
. (1.4)

From the point of view of applications, a most interesting topic in popu-

lation dynamics is the study of the global stability of equilibria. An important

technique in stability theory for nonlinear differential equations is known as

the second method of Lyapunov. A function with particular properties known

as a Lyapunov function is constructed to prove global stability of equilibria in

a given region. The construction of Lyapunov functions is often difficult for

particular systems, but for Lotka-Volterra models, there has been some success.

The Volterra-type Lyapunov function n − n∗ − n∗ ln(n/n∗), has a long

history of application to Lotka-Volterra systems and was originally discovered

by Vito Volterra himself. In Lotka-Volterra models of two-species mutualism

(1.1), Goh (1979) found sufficient conditions for global stability of unique po-

sitive equilibrium.

Recently, Vargas-De-León (2012) prove necessary and sufficient conditi-

ons for global stability of unique positive equilibrium to the mutualistic systems

(1.1) and (1.2) subject to proportional harvesting, by means of elegant Lyapu-

nov functions.

In this paper, we shall construct novel Lyapunov functions to study the

global stability of the positive equilibrium of models of (1.3) and (1.4).

2. Global stability of positive equilibrium

It is easy to see that the non-negative quadrant

R2
+ =

{
(n1, n2) ∈ R2 : n1 ≥ 0, n2 ≥ 0

}

is positively invariant with respect to (1.3) and (1.4), respectively.

Both systems (1.3) and (1.4) have the unique positive equilibrium (n∗
1, n

∗
2)

in int(R2
+) with coordinates given by

n∗
1 = K1, n∗

2 = K2 + b21K1. (2.5)

It follows from equations (2.5) that
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K2

n∗
2

+ b21
n∗
1

n∗
2

= 1. (2.6)

We establish that all solutions of (1.3) and (1.4) in int(R2
+) converge to

(n∗
1, n

∗
2).

Theorem 2.1 The unique positive equilibrium (n∗
1, n

∗
2) of system (1.3) or (1.4)

is globally asymptotically stable in the positive quadrant.

Proof 1 For the system (1.3) we define L1 :
{
(n1, n2) ∈ R2

+ : n1 > 0, n2 > 0
} →

R by

L1(n1, n2) = c1

∫ n1

n∗
1

(θ − n∗
1)

(K2 + b21θ)θ2
dθ + c2

(
ln

n2

n∗
2

+
n∗
2

n2
− 1

)
, (2.7)

where c1 = r2c2(c3 + b21n
∗
1)/r1, c2 > 0 and c3 > 0. The function L1(n1, n2)

is defined, continuous and positive definite for all n1, n2 > 0. Also, the global

minimum L1(n1, n2) = 0 occurs at the positive equilibrium (n∗
1, n

∗
2). Further,

the time derivative of the function (2.7) along the trajectories of system (1.3),

satisfies

dL1

dt
=

r2c2(c3 + b21n
∗
1)

r1(K2 + b21n1)n1

(
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1
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)
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dt
+
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n2

(
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2

n2

)
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dt
,

=
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∗
1)

r1(K2 + b21n1)n1

(
1− n∗

1

n1

)[
r1n1

[
1− n1

K1

]]

+
c2
n2

(
1− n∗

2

n2

)[
r2n2

[
1− n2

K2 + b21n1

]]
,

=
r2c2(c3 + b21n

∗
1)

K2 + b21n1

(
1− n∗

1

n1

)[
1− n1

K1

]

+
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(
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2

n2

)
[K2 + b21n1 − n2] .

Using (2.6), we get
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dL1

dt
=

r2c2(c3 + b21n
∗
1)

K2 + b21n1

(
1− n∗

1

n1

)(
1− n1

n∗
1

)

+
c2r2

K2 + b21n1

(
1− n∗

2

n2

)[
K2

(
1− n2

n∗
2

)
+ b21n

∗
1

(
n1

n∗
1

− n2

n∗
2

)]
,

=
r2c2(c3 + b21n

∗
1)

K2 + b21n1

(
2− n∗

1

n1
− n1

n∗
1

)

+
c2r2

K2 + b21n1

[
K2

(
1− n∗

2

n2

)(
1− n2

n∗
2

)
+ b21n

∗
1

(
1− n∗

2

n2

)(
n1

n∗
1

− n2

n∗
2

)]
,

=
r2c2c3

K2 + b21n1

(
2− n∗

1

n1
− n1

n∗
1

)
+

r2c2
K2 + b21n1

b21n
∗
1

(
2− n∗

1

n1
− n1

n∗
1

)

+
c2r2

K2 + b21n1

[
K2

(
2− n∗

2

n2
− n2

n∗
2

)
+ b21n

∗
1

(
n1

n∗
1

− n2

n∗
2

− n1n
∗
2

n∗
1n2

+ 1

)]
,

dL1

dt
=

r2c2c3
K2 + b21n1
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.

For the system (1.4), we define L2 :
{
(n1, n2) ∈ R2

+ : n1, n2 > 0
} → R by

L2(n1, n2) = c1

(
ln

n1

n∗
1

+
n∗
1

n1
− 1

)
+ c2

(
ln

n2

n∗
2

+
n∗
2

n2
− 1

)
, (2.8)

where c1 = r2c2(c3 + b21n
∗
1)/r1K2, c2 > 0 and c3 > 0. It is clear that at

(n∗
1, n

∗
2) the function L2(n1, n2) reaches its global minimum in R2

+, and hence

L2(n1, n2) is a Lyapunov function. The derivative of (2.8) with respect to t

along solution curves of (1.4) is given by

dL2

dt
=

r2c2(c3 + b21n
∗
1)
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)
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)
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The derivative calculation of Lyapunov function are similar to the pre-

vious calculations. Using (2.6), we have

dL2

dt
=

r2c2c3
K2

(
2− n∗

1

n1
− n1

n∗
1

)
+ c2r2

(
2− n∗

2

n2
− n2

n∗
2

)

+
r2b21n

∗
1c2

K2

[
3− n∗

1

n1
− n2

n∗
2

− n1n
∗
2

n∗
1n2

]
,

≤ −r2c2c3
K2

n1

n∗
1

(
1− n∗

1

n1

)2

− c2r2
n2

n∗
2

(
1− n∗

2

n2

)2

.

Clearly, dLi(n1, n2)/dt < 0 (i = 1, 2) strictly for all n1, n2 > 0 except the

positive equilibrium (n∗
1, n

∗
2) where dLi/dt = 0. Furthermore, Li(n1, n2) → ∞

as n1 → 0 or n1 → ∞, and Li(n1, n2) → ∞ as n2 → 0 or n2 → ∞. Therefore,

we may conclude that function (2.7) or (2.8) are Lyapunov functions for sys-

tems (1.3) and (1.4) respectively, and that by the Lyapunov asymptotic stability

theorem (Lyapunov, 1992), the positive equilibrium (n∗
1, n

∗
2) is globally asymp-

totically stable in the interior of R2
+, when it exists. This proves Theorem

2.1.

Remark 1 Our Lyapunov constructions are applied to the following two che-

mostat-type commensal models

dn1

dt
= s− dn1(t),

dn2

dt
= r2n2

[
1− n2

K2
+ b21

n1

K2

]
, (2.9)

dn1

dt
= s− dn1(t),

dn2

dt
= r2n2

[
1− n2

K2 + b21n1

]
. (2.10)

The proof of the global stability of the positive equilibria of the models (2.9) and

(2.10) are obtained by the Lyapunov functions (2.11) and (2.12), respectively.

V1(n1, n2) = c1n
∗
1

(
n1

n∗
1

− 1− ln
n1

n∗
1

)
+ c2

(
ln

n2

n∗
2

+
n∗
2

n2
− 1

)
, (2.11)

where c1 = r2c2(c3+b21n
∗
1)/sK2 = r2c2(c3+b21n

∗
1)/dK2n

∗
1, c2 > 0 and c3 > 0.

V2(n1, n2) = c1

∫ n1

n∗
1

(θ − n∗
1)

(K2 + b21θ)θ
dθ + c2

(
ln

n2

n∗
2

+
n∗
2

n2
− 1

)
, (2.12)

where c1 = r2c2(c3 + b21n
∗
1)/s = r2c2(c3 + b21n

∗
1)/dn

∗
1, c2 > 0 and c3 > 0.
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Remark 2 The choice of the constant c1 is crucial in the construction of ne-

gative definiteness of the time derivative of the Lyapunov functions. On the

Lyapunov functions (2.7), (2.8), (2.11) and (2.12) is assumed that c3 > 0, also

be defined as c3 = c2 > 0 or c3 = 0.

Remark 3 The Lyapunov function

ln
n

n∗ +
n∗

n
− 1,

is introduced by Korobeinikov to Leslie-Gower type prey-predator systems (Ko-

robeinikov, 2001; Korobeinikov and Lee, 2009) and recently by Vargas-De-León

(2012) to Lotka-Volterra mutualism systems.
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