Contaminação metropolitana do Rio Cuiabá: modelagem e simulação de cenários

Geraldo L. Diniz¹, Luiz F. M. Campos Filho² Matemática – ICET – UFMT, 78.060-900 – Cuiabá/MT.

Resumo: Neste artigo são apresentados o modelo matemático, as aproximações numéricas e as simulações obtidas através do estudo do problema da contaminação de um trecho urbano do rio Cuiabá por esgoto. No estudo foi considerado apenas o meio aquático, tendo como objetivo avaliar a degradação ambiental deste rio, de grande importância para as populações ribeirinhas.

Palavras-chave: dispersão de esgoto, contaminação de rio, método de diferenças finitas.

1. Introdução

O crescimento populacional de Cuiabá e a falta de infra-estrutura vêm causando grandes prejuízos ambientais. As cidades de Cuiabá e Várzea Grande depositam diariamente cerca de 20 toneladas de resíduos sólidos (lixo doméstico) e 400 mil litros de esgoto doméstico e industrial no rio Cuiabá (Wolmuth e Diniz, 2005).

Atualmente, cerca de 31% dos domicílios, em Cuiabá, estão conectados ao sistema de saneamento, mas apenas 14% do esgoto coletado é tratado. Apesar de 80% da cidade ter acesso a água canalizada, apenas 57% dos domicílios tem este serviço 24 horas por dia, o que mostra a necessidade de investimentos do poder público em saneamento básico (Safford, 2009).

Pelos dados acima, observa-se que grande parte do esgoto não é tratada adequadamente. Como solução "imediata" os órgãos responsáveis pelo saneamento básico adotam a escolha do seu lançamento *in natura* nos corpos d'água, comprometendo a qualidade da água, não apenas no local onde o esgoto é despejado, mas em toda a sua bacia hidrográfica (Alegria e Diniz, 2007; Cunha e Ferreira, 2006).

¹geraldo@ufmt.br

 $^{{}^2{\}rm luiz.matematica.ufmt@gmail.com-Bolsista~PIBIC-CNPq-UFMT}$

Para que se possa planejar uma maneira mais eficiente de implantar um sistema de saneamento, que minimize os danos ao rio Cuiabá, é o que motivou o presente trabalho.

Neste sentido, será feito um estudo sobre a contaminação do rio Cuiabá por esgoto, através de um modelo matemático, seguido de sua discretização espacial e temporal, cujos resultados serão apresentados através de simulações computacionais para os cenários das estações úmida e seca.

Como justificado acima, se espera que este trabalho possa servir para diagnóstico e auxílio na adoção de políticas públicas de saneamento e mitigação da contaminação do rio Cuiabá por esgoto Melo e Cunha (2006).

2. Descrição do problema:

Figura 1: Mapa da área de estudo, obtido através do Google Earth.

A área de estudo corresponde ao trecho urbano do rio Cuiabá, compreendido entre a Ponte Nova até a jusante do encontro com o rio Coxipó (ver figura 1). O rio Cuiabá, neste trecho de estudo, possui aproximadamente 6,1 Km de comprimento e 0,2 Km de largura (obtidos através da ferramenta métrica do Google Earth). O clima nesta região é quente tropical semi-úmido, com temperatura média anual de $26\,^{\circ}$ C, com máximas médias diárias ocorrendo nos meses de setembro a novembro e atingem $36\,^{\circ}$ C, as médias mínimas

diárias ocorrem no mês de julho, chegando aos $15\,^{\circ}$ C. A precipitação média anual fica em torno de $1342\,$ mm/ano, de acordo com as séries temporais medidas entre $1989-2000\,$ (INMET, 2000).

3. O modelo matemático:

Neste artigo, serão considerados apenas poluentes oriundos da Estação Elevatória da Prainha, Córrego do Barbado, Rio Coxipó e alguns córregos da cidade de Várzea Grande. Estes poluentes, em relação ao ponto de origem (Ponte Nova), estão assim distribuídos: Estação da Prainha (A) a 1,45 km, Córrego do Barbado (B) a 4,85 km, Córrego do Coxipó (C) a 6,06 km, Afluente 1 de Várzea Grande (D) a 3,86 km e Afluente 2 de Várzea Grande (E) a 4,53km (ver a figura 2, a seguir).

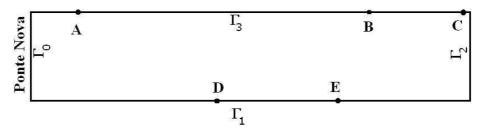


Figura 2: Descrição da localização dos poluentes no domínio simplificado.

No modelo, devem ser avaliados os fenômenos de difusão efetiva, transporte advectivo, a degradação global e as fontes poluidoras.

Chamando de C(x,y,t) a concentração de esgoto – medida em ppm – no ponto (x,y) e instante t, o modelo pode ser descrito, genericamente, por:

$$\frac{\partial C}{\partial t} = -\text{difusão} + \text{advecção} - \text{decaimento} + \text{fonte}$$

onde,

Difusão =
$$div(-\alpha \nabla C)$$
 - cf. Marchuk (1986);
Advecção = $div(VC)$ - cf. Marchuk (1986);
Decaimento = σC - cf. Bassanesi e Ferreira Jr. (1988);

Assim, como apresentado em Meyer et al. (2004), a equação evolutiva que modela a concentração de esgoto é dada por:

$$\frac{\partial C}{\partial t} = -div\left(-\alpha\nabla C\right) + div\left(\vec{V}C\right) - \sigma C + f \tag{3.1}$$

sendo,

 α = a constante de difusibilidade efetiva no meio aquático.

 \vec{V} = o campo de velocidades.

 $\sigma=$ a taxa de decaimento total no meio aquático.

Para o domínio Ω , cuja fronteira $\partial\Omega=\Gamma_0\cup\Gamma_1\cup\Gamma_2\cup\Gamma_3$, se tem as seguintes condições de contorno:

$$C\Big|_{\Gamma_0} = 0, \quad -\alpha \frac{\partial C}{\partial \eta}\Big|_{\Gamma_1} = K_1 C, \quad -\alpha \frac{\partial C}{\partial \eta}\Big|_{\Gamma_2} = K_2 C, \quad -\alpha \frac{\partial C}{\partial \eta}\Big|_{\Gamma_3} = K_3 C \tag{3.2}$$

4. Discretização do modelo:

Na construção de soluções aproximadas para equações diferenciais parciais, em primeiro lugar, será feita a discretização do domínio e, para isso, se introduz uma malha sobre a qual está definida a solução aproximada.

Seja R o conjunto de pontos onde a equação está definida e S o contorno deste conjunto, sendo que a malha tem pontos igualmente espaçados nas duas direções, ou seja, $\Delta x = \Delta y = h$.

A figura 3 ilustra a malha onde os pontos que estão representados por + são os pontos de S e os demais são pontos de R.

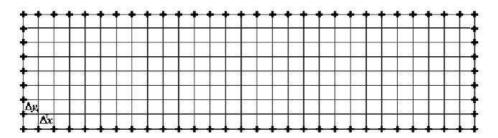


Figura 3: Discretização do domínio simplificado.

Para a discretização espacial será utilizado o método de diferenças finitas centradas, esta discretização envolve em cada ponto da malha, além do valor da solução neste ponto, os valores que a solução assume nos quatro pontos adjacentes (Cunha, 2008).

4.1. Discretização espacial - método de diferenças finitas centradas.

A escolha do método de diferenças finitas centradas para a discretização espacial é justificada por sua maior precisão. Ela é uma aproximação da ordem de ${\bf h}^2$ enquanto as

fórmulas avante (forward) e retrógradas (backward) fornecem uma aproximação da ordem de h.

No método de diferenças finitas centradas, as derivadas que aparecem na equação diferencial (3.1) e (3.2) são substituídas pelas aproximações descritas por (4.3) a (4.12) a seguir:

Difusão:

$$div\left(-\alpha\nabla C\right) = \nabla\left(-\alpha\left(\frac{\partial C}{\partial x}, \frac{\partial C}{\partial y}\right)\right) = -\alpha\left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2}\right) \tag{4.3}$$

Advecção:

$$div\left(\vec{V}C\right) = V_1(y)\frac{\partial C}{\partial x} + V_2(x,y)\frac{\partial C}{\partial y}$$
(4.4)

cuja aproximação discretizada é dada por:

$$\frac{\partial C}{\partial x} = \frac{C_{i+ny} - C_{i-ny}}{2\Delta x} \tag{4.5}$$

$$\frac{\partial C}{\partial y} = \frac{C_{i+1} - C_{i-1}}{2\Delta y} \tag{4.6}$$

$$\frac{\partial^2 C}{\partial x^2} = \frac{C_{i+ny} - 2C_i + C_{i-ny}}{2\Delta^2 x} \tag{4.7}$$

$$\frac{\partial^2 C}{\partial y^2} = \frac{C_{i+1} - 2C_i + C_{i-1}}{2\Delta^2 y} \tag{4.8}$$

Em Γ_0 , se tem:

$$C_i = 0 \quad \forall i = 1, \cdots, ny \tag{4.9}$$

Em Γ_1 , se tem:

$$-\alpha \frac{\partial C}{\partial \eta} = K_1 C \Rightarrow -\alpha \left(\frac{-3C_i + 4C_{i+1} - C_{i+2}}{2\Delta y} \right) = K_1 C_i \tag{4.10}$$

Em Γ_2 , se tem:

$$-\alpha \frac{\partial C}{\partial \eta} = K_2 C \Rightarrow -\alpha \left(\frac{-3C_i + 4C_{i-ny} - C_{i-2ny}}{2\Delta x} \right) = K_2 C_i \tag{4.11}$$

Em Γ_3 , se tem:

$$-\alpha \frac{\partial C}{\partial \eta} = K_3 C \Rightarrow -\alpha \left(\frac{-3C_i + 4C_{i-1} - C_{i-2}}{2\Delta y} \right) = K_3 C_i \tag{4.12}$$

4.2. Discretização temporal - método Crank-Nicolson

Para a discretização temporal, será usado o método de Crank-Nicolson, por se tratar de um método incondicionalmente estável, exceto para os casos de descontinuidade da variável de estado, o que não é o caso. Daí, serão feitas as aproximações dadas por (4.12) e (4.13), a seguir.

$$\frac{dC_i}{dt}\left(t_n + \frac{\Delta t}{2}\right) \approx \frac{C_i(t_{n+1} - C_i(t_n))}{\Delta t}$$
(4.13)

$$C_i \left(t_n + \frac{\Delta t}{2} \right) \approx \frac{C_i (t_{n+1} - C_i (t_n))}{2}$$
 (4.14)

Para as aproximações dadas anteriormente, o erro é de ordem de $(\Delta t)^2$, cf. Carnahan et al. (1969). Assim, quanto menor o passo no tempo, melhor a precisão da aproximação.

Substituindo os termos dados pelas equações (4.3) a (4.12) nas equações (3.1) e (3.2), que após a manipulação algébrica das equações, se obtém o sistema algebrico de equações lineares, representado matricialmente na forma:

$$\mathcal{A}C^{n+1} = \mathcal{B}C^n + d^{n+\frac{1}{2}} \tag{4.15}$$

Após a construção dos códigos numéricos se obteve a solução aproximada, conforme as simulações computacionais apresentadas a seguir.

5. Resultados e discussão

Para o coeficiente de difusão, Carreras e Menendez (1990) apresentam o valor de 0,23 km²/h para esgoto. Esse dado foi obtido através de um arremesso gerado por uma descarga de esgoto, na cidade de Buenos Aires, no rio da Prata, cuja bacia hidrográfica e comportamento são os mesmos do rio Cuiabá, utilizando uma técnica executada no sistema computacional MANCHAS.

O parâmetro de decaimento total do meio aquático foi estimado aleatoriamente, com base no que foi apresentado por Cunha e Ferreira (2006), pois não foi possível um valor específico na literatura.

Em Rocha (2003), foi obtida a média anual de velocidades para o trecho do rio em estudo, onde é apresentado que a menor média ocorre no mês de julho, mês da estação seca, cujo valor de 1,7 km/h e a maior média ocorre no mês de dezembro, mês da estação chuvosa, cujo valor é de 3,0 km/h. Com isto, foram adotados os valores de 1,7 km/h e de 3,0 km/h para as estações seca e chuvosa, respectivamente.

 ${\bf A}$ tabela abaixo mostra os valores dos parâmetros adotados para fazer as simulações de Cenários.

Tabela 1: Parâmetros utilizados na simulação dos cenários

Parâmetros	Valores		Unidades
	Estação Seca	Estação Chuvosa	Unidades
α	0,23	0,23	km^2/h
σ	0,1	0,1	1/h
V_1	1,7	3,0	Km/h
V_2 (Estação Prainha)	-0,1	-0,1	Km/h
V_2 (Córrego do Barbado)	-0,1	-0,1	Km/h
V_2 (Córrego do Coxipó)	-1,3	-1,3	Km/h
V_2 (Afluente 1 de VG)	0,1	0,1	Km/h
V_2 (Afluente 2 de VG)	0,2	0,2	Km/h

Com estes dados, foram obtidas as simulações apresentadas para as estações seca (figura 4) e chuvosa (figura 5).

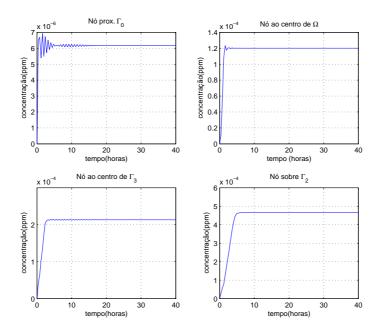


Figura 4: Concentração para 4 nós do domínio ao longo do tempo na estação seca.

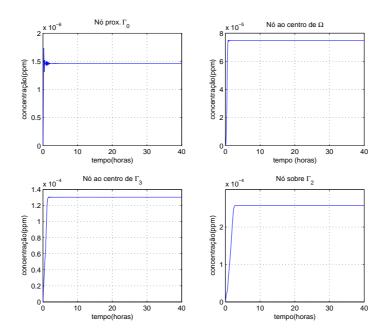


Figura 5: Concentração para 4 nós do domínio ao longo do tempo na estação chuvosa.

De acordo com as simulações de cenários obtidas, se pode observar que na estação seca há uma dispersão mais lenta e um maior nível de concentração de esgoto, ao contrário da estação chuvosa, que apresentou uma dispersão mais rápida e um menor nível de concentração de esgoto, para o período de tempo estudado (40 horas). Estes resultados foram compatíveis, pois na época de chuvas a velocidade da correnteza é maior.

Em relação a trabalhos anteriores sobre o mesmo tipo de problema (Alegria e Diniz, 2007; Wolmuth e Diniz, 2005; Carreras e Menendez, 1990), este trabalho apresenta algumas melhorias, com a inclusão de mais fontes poluidoras e melhor precisão de resultados, uma vez que foi usada uma malha mais refinada (10.000 nós).

6. Conclusões

Com base nos resultados obtidos nas simulações dos diferentes cenários, se pode concluir que o código elaborado se mostrou eficaz para os parâmetros de velocidade encontrados na literatura e o coeficiente de difusão considerado, de modo a simular o transporte de poluentes no trecho do rio.

Desta forma, se espera que o modelo e o código numérico desenvolvidos sejam

ferramentas úteis, cuja apresentação gráfica dos resultados facilita a compreensão para os não matemáticos, interessados neste tipo de estudo, o que permite a parceria com pesquisadores de outras áreas e utilização por agentes da área ambiental, de forma a servir para diagnóstico e auxílio na adoção de políticas públicas de saneamento e mitigação da contaminação do rio Cuiabá pelo esgoto, que é de grande importância para a planície pantaneira.

Agradecimentos

O segundo autor agradece ao CNPq pela bolsa PIBIC, que permitiu a realização da pesquisa e resultou neste artigo.

Referências

- Alegria, S. A. F. e Diniz, G. L. (2007). Estudo da poluição por esgoto num trecho urbano de rio. *Biomatemática*, 17:73–86.
- Bassanesi, R. C. e Ferreira Jr., W. C. (1988). Equações Diferenciais com Aplicações. Ed. Harbra, São Paulo.
- Carnahan, B., Luther, H. A., e Wilkes, J. O. (1969). Applied Numerical Methods. John Wiley & Sons, N. York.
- Carreras, P. E. e Menendez, A. N. (1990). Mathematical simulation of pollutant dispersion. *Ecological Modelling*, 52:29–40.
- Cunha, C. (2008). Métodos Numéricos para as Engenharias e Ciências Aplicadas. Ed. Unicamp, Campinas/SP.
- Cunha, C. L. N. e Ferreira, A. P. (2006). Modelagem matemática para avaliação dos efeitos dos despejos orgânicos nas condições sanitárias de águas ambientais. Cadernos de Saúde Pública, 22(8):1715–1725.
- INMET, I. N. M. (2000). Boletim da estação 2504600. Ministério da Agricultura e do Abastecimento, Delegacia Federal da Agricultura DFA/MT 9.º Distrito de Metereologia.
- Marchuk, G. I. (1986). Mathematical models in environmental problems, volume 16 de Studies in Mathematical and its Applications. North-Holland, Amsterdan.

- (2006).Melo, С. R. Cunha, Μ. A. C. Estudos hidrológicos informação domeio físico cuiabá, várzea para na região de grande e entorno. Disponível www.cprm.gov.br/rehi/simem: posio/go/ESTUDOS%20HIDROLOGICOS%20PARA%20INFORMACAO%20-DO%20MEIO%20FISICO%20NA%20R, Acesso em: 15/11/2006.
- Meyer, J. F. C. A., Fernandes, J. F. R., e Diniz, G. L. (2004). Dispersão de poluentes num sistema ar-água: modelagem, aproximações e aplicações. Relatório de pesquisa IMMEC/Unicamp RF 08/04.
- Rocha, J. P. (2003). Avaliação das ações antrópicas no meio físico a partir dos impactos sedimentológicos na bacia do rio Coxipó. Dissertação de Mestrado, Mestrado em Engenharia Ambiental, COPPE/UFRJ, Rio de Janeiro.
- Safford, T. G. (2009). Características gerais da bacia do rio Cuiabá. Disponível em: http://www.portalnaturezaviva.org.br/RioCuiaba_CaracteristicasGerais_1.asp, Acesso em: 11/12/2009.
- Wolmuth, L. D. Diniz, G. L. (2005).Contaminação do rio Cuiabá esgoto. Relatório técnico, disponível por em: http://www.ufmt.br/icet/matematica/geraldo/relat_2005_1.pdf, Acesso em: 30/12/2009.