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1. Introduction

The disease called COVID-19 by the World Health Organization is of

unknown origin. The outbreak of this disease began in December 2019, causing

respiratory infections. This disease is due to a new virus from the coronavirus

family. There are three types of coronavirus known since the beginning of the

millennium: SARS, MERS and COVID-19. The primary source of this virus

is the bat, however another animal may be the intermediary for transmission

to humans Guo et al. (2020). As pointed out in Zou et al. (2020), apparently

there is a greater chance of transmission at the early stage of symptoms, which

is when the viral ribonucleic acid (RNA) is at its highest level.

This article proposes to model the number of cumulative cases of COVID-

19. This dynamics presents a logistic behavior, which considers growth limited

by a carrying capacity, that is, similar to the classical logistic model given

by a first order nonlinear ordinary differential equation. However, this simple

model must consider uncertainties and memory effect, which can be done by an

extension of the classical model through tools of fractional and fuzzy calculus.

Fractional differential equations (FDEs) are generalizations of the ordi-

nary differential equations whose order is not necessarily a positive integer, that

is, involve derivatives of arbitrary order. FDEs have attracted much attention

due to their ability to model complex phenomena with memory and they have

been widely used in engineering, physics, chemistry, biology, and other fields

Zheng and Zhang (2017); Ibe (2013).

Fractional differential equation theory arise as a mathematical tool able

to model systems with memory or even hysteresis. Hysteresis is a phenomenon

associated with the memory effect on a system, when memory is related to

the entire past period, and that usually occurs in epidemiological systems with

behavioral effects on disease transmission. For example, the locomotion and

habits of bats that contract rabies are altered, affecting the spread of this dis-

ease. What also generates this effect is the change in habits and behaviors of

individuals due to control measures, such as social isolation, which have been

applied to prevent and contain the spread of COVID-19. Thus, it is reason-

able to consider the phenomenon of hysteresis in an epidemiological model of

COVID-19 and, therefore, to use fractional differential equations Pimenov et al.

(2012).

Moreover, classical models of differential equations do not consider the

presence of uncertainties in the modelled phenomena. In order to incorporate
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uncertainties in the study of dynamic systems, many researchers have used

fuzzy numbers to represent parameters and/or state variables of initial value

problems (IVPs) Barros et al. (2017); Bede (2013). This approach leads to the

class of problems called fuzzy initial value problems (FIVPs) Seikkala (1987).

There are several methods to solve FIVPs, many of which generally deal only

with first or second order (integer) differential equations, which are based, for

example, on the Zadeh and sup-J extension principles De Barros and Santo Pe-

dro (2017); Esmi et al. (2021); Mizukoshi et al. (2007) or on the notion of fuzzy

derivatives Kaleva (1987); Bede and Gal (2005).

As already mentioned, COVID-19 is a new disease and since its emer-

gence it has overloaded the health systems of several countries around the world

(including developed ones). Thus, estimating the number of cases in a region

is still a complex and important biological problem, since knowledge about

the dynamics of this new disease is still preliminary, that is, there is a lot of

uncertainty.

This paper proposes to combine the theories of fuzzy sets and FDEs to

study the cumulative cases of COVID-19. Since we assume the phenomenon of

hysteresis occurs in the spread of COVID-19 disease, we use fractional logistic

system to model the cumulative cases of COVID-19 in a specific region or

in a country. Moreover, we employ fuzzy numbers in order to deal with the

uncertainty over the estimation of the carrying capacity and growth rate in the

logistic equation. Finally, we employ the Zadeh extension principle to produce

fuzzy solutions for the proposed fuzzy fractional logistic model.

This paper is organized as follows. In Section 2, we briefly review the

classical logistic model, fractional calculus, some numerical methods for solv-

ing differential equations and some basic concepts and results from fuzzy set

theory. In Section 3, we describe the proposed fuzzy fractional logistic model,

the methodology to estimate the fuzzy parameters and establish a fuzzy solu-

tion via the Zadeh extension principle. Section 4 presents the fuzzy solutions

for cumulative cases in five countries affected by COVID-19: China, France,

Austria, Germany and South Korea. Finally, the final remarks and summary

of the main contributions of this work is presented in Section 5.
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2. Preliminary

This section introduces the main mathematical concepts used in this

paper. First, we briefly review the classical logistic model. Then, the basic

results of fractional calculus and numerical methods for solving differential

equations are provided. Finally, some concepts from fuzzy set theory are also

remembered.

2.1. Classical logistic model

The classical logistic equation is given by the following initial value prob-

lem Edelstein-Keshet (2005):





x′(t) = rx(t)

(
1−

x(t)

k

)
,

x(0) = x0,

(1)

where x(t) represents a biological population (for example, animals or viruses),

r is the growth rate, k the carrying capacity, and x(0) is an initial value for

this population. In general, it is assumed that r, k, x0 ∈ R
+) Edelstein-Keshet

(2005); Britton (2012). Moreover, in a classic logistic model, the carrying capac-

ity (k) may be conceptualized as the maximum population that an ecosystem

can sustainably support Edelstein-Keshet (2005); Britton (2012). In our case,

k refers to the maximum number of individuals infected with COVID-19 that

a given country can reach.

In this work, instead of using the first order logistic differential equation

given in (1), we consider a fractional order logistic differential equation to

include the hysteresis phenomenon in the proposed model for the spread of

COVID-19.

2.2. Fractional Calculus

This subsection presents some concepts of fractional calculus.

Let (L[a, b],R) be the set of all Lebesgue integrate functions from [a, b]

to R and let (AC[a, b],R) be the set of all absolutely continuous functions from

[a, b] to R.

Definition 1. Podlubny (1998) The Riemann-Liouville fractional integral of
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order γ ∈ (0, 1] for f ∈ (L[a, b],R) is given by

(Iγ
a+f)(t) =

1

Γ(γ)

∫ t

a

(t− s)γ−1f(s)ds, for t > a,

where Γ(γ) stands for the gamma function.

Note that if γ = 1, we have (I1
a+f)(t) =

∫ t

a
f(s)ds. Next, we obtain the

Riemann-Liouville derivative in terms of the fractional integral of Riemann-

Liouville.

Definition 2. Podlubny (1998) The Riemann-Liouville derivative of order γ ∈

(0, 1] is given by

(RLD
γ

a+f)(t) =
d

dt
I
1−γ

a+ f(t) =
1

Γ(1− γ)

d

dt

∫ t

a

(t− s)−γf(s)ds, for t > a.

Definition 3. Podlubny (1998) Let f ∈ (L[a, b],R) and suppose there exists
RLD

γ

a+f on [a, b]. The Caputo fractional derivative CD
γ

a+f is given by

(CDγ

a+f)(t) =

(
RLD

γ

a+ [f(·)− f(a)]

)
(t), for t ∈ (a, b].

Besides that, Podlubny Podlubny (1998) showed that if f ∈ AC([a, b],R), then

(CDγ

a+f)(t) =
1

Γ(1− γ)

∫ t

a

(t− s)−γf ′(s)ds, ∀t ∈ (a, b] (2)

and

(RLD
γ

a+f)(t) = (CDγ

a+f)(t) +
(t− a)−γ

Γ(1− γ)
f(a), ∀t ∈ (a, b].

For convenience of notation, we use the symbol Dγx instead of CD
γ

0+x to refer

to the Caputo fractional derivative given in (2) with a = 0.

In this work, we extend the first order logistic model given in (1) by

considering the Caputo fractional derivative of order γ. Thus, we obtain the

following fractional-order logistic equation given by




Dγx(t) = rx(t)

(
1−

x(t)

k

)
,

x(0) = x0,

(3)

where r, k, x0 ∈ R
+ and γ ∈ (0, 1] is the fractional order of the fractional

differential equation. Note that, we obtain the classical logistic model (1) if

γ = 1. Existence and uniqueness of solution for the initial value problem (3)

are established in El-Sayed et al. (2007).

Parameter estimation and numerical solution methods for initial value

problem of the form (3) are described in the next subsection.
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2.3. Parameter estimation and numerical solution

In this paper, we use the least squares method to determine all the

parameters (r, k, γ) of the fractional logistic model (3). Then, we employ the

predictor-corrector PECE method of Adams-Bashforth-Moulton Diethelm and

Freed (1998) to produce a numerical solution of (3).

In the logistic model, the carrying capacity is uncertain and its estima-

tion is usually a difficult task. Factors such as culture and specific population

behavior impact the estimation of the maximum number (carrying capacity)

of COVID-19 cases in a country. Furthermore, uncertainties about the be-

havior and propagation of this new disease, together with underreporting and

inaccurate data, also motivate the use of fuzzy set theory as a mathematical

tool to model and manipulate uncertain parameters in the proposed model.

Some basic concepts and results of fuzzy set theory are presented in the next

subsection.

2.4. Fuzzy set theory

A fuzzy set A of a universe X is characterized by a function µA : X →

[0, 1] called membership function, where µA(x) represents the membership de-

gree of x in A for all x ∈ X Zadeh (1965). For convenience of notation, we use

the symbol A(x) instead of µA(x). The class of fuzzy subsets of X is denoted

by F(X). Note that each classical subset of X can be uniquely identified with

the fuzzy set whose membership function is given by its characteristic function

Barros et al. (2017).

Let A ∈ F(X), where X is a topological space. The α-levels of A are

defined by

[A]α =




{x ∈ X : A(x) ≥ α}, 0 < α ≤ 1

cl{x ∈ X : A(x) > 0}, α = 0
,

where cl(Y ) stands for the closure of the set Y Bede (2013); Barros et al.

(2017). A fuzzy set A is contained in another fuzzy set B, denoted by A ⊆ B,

if [A]α ⊆ [B]α for all α ∈ [0, 1].

A fuzzy set A of R is said to be a fuzzy number if all α-levels are bounded,

closed and non-empty intervals. Every α-level of a fuzzy number A is denoted

by [A]α = [a−α , a
+
α ]. The class of fuzzy numbers, denoted by RF , includes the

set of real numbers as well as the set of bounded closed intervals of R Barros
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et al. (2017); Gomes et al. (2015). A triangular fuzzy number is another well-

known example of a fuzzy number. Recall that a triangular fuzzy number is

denoted by the triple (a; b; c), with a ≤ b ≤ c, such that [A]α = [a + α(b −

a), c− α(c− b)], ∀α ∈ [0, 1].

The Zadeh extension principle is a mathematical method to extend clas-

sical functions to deal with fuzzy sets as argument inputs. In another words,

the Zadeh extension principle extends classical functions to fuzzy functions.

Definition 4. Zadeh (1975) (Zadeh extension principle) Let f : X → Z. The

Zadeh extension of the function f is the fuzzy function f̂ : F(X) → F(Z) that

associates every fuzzy set A of X to a fuzzy set of Z. The membership function

of f̂(A) is given by

f̂(A)(z) =





sup
f−1(z)

A(x) , if f−1(z) 6= ∅

0 , if f−1(z) = ∅

,

where f−1(z) = {x : f(x) = z}.

The next theorem reveals that the Zadeh extension principle of f at A,

where A ∈ RF , can be determined by means of α-levels.

Theorem 1. Nguyen (1978); Barros et al. (1997) Let X and Z be metric

spaces, f : X −→ Z be a continuous function and A a fuzzy set of X such that

[A]α is compact for all α ∈ [0, 1]. For all α ∈ [0, 1], we have

[f̂(A)]α = f([A]α).

The Zadeh extension principle can be used to solve several problems

such as fuzzy differential equations. Mizukoshi et al. Mizukoshi et al. (2007)

showed that a solution for this type of fuzzy differential equation is given by

the Zadeh extension of the (analytical or numerical) solution of the associated

classical differential equation.

3. Fuzzy fractional logistic model

In this section we present our approach to model cumulative cases of

COVID-19. First, using the data from South Korea, we compare the numerical

solutions of the classical and fractional logistic model to validate the use of the



112 Sánchez, Lopes, Esmi, Pedro, Wasques & Barros

latter. Next, we describe the fuzzy fractional logistic model, whose parameters

are given by fuzzy numbers and the derivative is in the Caputo sense. Finally,

we describe how the fuzzy parameters are determined and present the model

solution.

3.1. Fractional logistic model

Fractional differential equation models can be used to model several

complex biological problems. For instance, FDE models can be used to describe

systems with memory associated with epidemiological problems (like the spread

of COVID-19).

In order to show the advantage of an FDE model to describe this epi-

demiological phenomenon, we present the numerical solutions of the IVPs given

in (1) and (3) to describe the accumulated data of COVID-10 in South Korea,

as we see in Figure 1. For this, we use the methods described in Subsection 2.3

with the data obtained in Worldometers (2022); World Health Organization

(2022). A brief look at Figure 1 reveals that the best approximation for the

spread of COVID-19 in South Korea is based on the fractional logistic model.
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Figure 1: Numerical solutions of the classical and fractional logistic model in

which the carrying capacity, growth rate and order of the fractional derivative

are estimated using the least squares method to fit cumulative COVID-19 case

data from South Korea. The left and right images exhibit the numerical solu-

tions of (1) and (3), respectively. The red lines with circle markers represent

the numerical solutions of the (classical and fractional) models and the blue

lines with asterisk markers represent the current cumulative cases of COVID-19

(until May 23) in South Korea.
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3.2. Fractional Logistic Model with Fuzzy Parameters

In general, the estimation of parameters and numerical solutions for PVIs

can lead to errors in the description of a studied phenomenon. In addition,

there are still many uncertainties about the behavior of COVID-19 and the

availability of real data. Here, we represent the degree of such uncertainty by

considering the parameters of the fractional logistic model (3) as fuzzy numbers.

Therefore, we consider the following two fuzzy models.

First, we consider the carrying capacity as fuzzy number in (3), obtaining

the following fuzzy initial value problem:




Dγx(t) = rx(t)

(
1−

x(t)

K

)

x(0) = x0,

(4)

where K ∈ RF , r, x(0) ∈ R
+ and x(t) represents the fuzzy solution for cumu-

lative cases of COVID-19.

Second, we consider the growth rate as fuzzy number in (3). Thus, we

obtain the fuzzy initial value problem:




Dγx(t) = Rx(t)

(
1−

x(t)

k

)

x(a) = x0,

(5)

where R ∈ RF , k, x(0) ∈ R
+ and x(t) represents the fuzzy solution for cumu-

lative cases of COVID-19.

In the next subsection, we detail how the fuzzy parameters K and R are

estimated. In addition, we describe our approach to obtain a fuzzy solution for

the proposed FIVPs (4) and (5).

3.3. Fuzzy solution

Here, all deterministic parameters (k, r and γ) are determined from the

IVP (3), using the least squares method and taking the cumulative case data

of COVID-19 in Worldometers (2022); World Health Organization (2022).

For the FIVP (4) we consider a fuzzy carrying capacity given by a trian-

gular fuzzy number K = (kmin ; k ; kmax). To determine the values of kmin and

kmax we first find the (day) time t∗ where the inflection point of the logistics

curve occurs, that is, when the number of cumulative cases is approximately
k
2 . Then, kmin

2 and kmax

2 are equal to the number of cases in time t∗ − 1 and

t∗ + 1 respectively.
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For the FIVP (5) we consider the growth rate R as a fuzzy parameter

given by a triangular fuzzy number R = (rmin ; r ; rmax), where rmin = r−0.15r

and rmax = r + 0.15r.

Let U, V be open subsets of R such that [K]0 ⊂ U and [R]0 ⊂ V and

let x(·, k, r, x0) be the numerical solution of (3) obtained using the predictor-

corrector PECE method with parameters k, r, and x0. For every t, we define

the operators St(k) = y(t, k, r, x0) for all k ∈ U and Tt(r) = y(t, k, r, x0) for all

r ∈ V . The fuzzy solution of (4) is given, for every t, by the Zadeh extension of

St at K ∈ RF Mizukoshi et al. (2007); Esmi et al. (2021). Similarly, for every

t, the fuzzy solution of (5) is given by the Zadeh extension of Tt at R ∈ RF .

Since the parameter K (or R) is a fuzzy number, we can use the Zadeh

extension principle Barros et al. (1997) to obtain a fuzzy solution ỹ : [0, T ] →

RF for (4) (or (5)) given by ỹ(t) = Ŝt(K) (or ỹ(t) = Ŝt(K)) for all t ∈ [0, T ]

Mizukoshi et al. (2007); Esmi et al. (2021).

In the next section, we illustrate our approach through an application of

the models (4) and (5) to describe the dynamics of COVID-19.

4. Results and discussion

In this section, we illustrate (see Figures 2-6) our approach by testing

fractional fuzzy models (4) and (5) to describe cumulative cases of COVID-19

in five countries: China, France, Austria, Germany and South Korea. The

logistic behavior is verified in the curve of cases accumulated in the respective

periods related to each “wave” (of active cases). Therefore, we chose only the

first “wave” of each country to verify our models, since the same can be done

with data from the other “waves”. In addition, China does not present more

than one “wave”. Furthermore, in all countries the second “wave” took longer

to start than the following “waves”, allowing a better visualization of stability

in carrying capacity.

In all figures, the left and right images show respectively the fuzzy solu-

tions of (5) and (4). The approximate fuzzy solutions are given in terms of the

Zadeh extension of the numerical solution, as described in the previous section,

and are represented in each figure through different shades of gray. Dashed red

lines represent the 0-level and the gray-scale lines represent the endpoints of the

α-levels for α varying from 0 to 1, where 0 and 1 correspond respectively to the

lightest and darkest tones. Finally, Table 1 presents all estimated parameters.
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Figure 2: Fuzzy solutions of (4) and (5) for cumulative cases of COVID-19 in

China. The dash-dotted yellow lines represent the curve of cumulative cases of

COVID-19 until May 23, 2020.
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Figure 3: Fuzzy solutions of (4) and (5) for cumulative cases of COVID-19 in

France. The dash-dotted yellow lines represent the curve of cumulative cases

of COVID-19 until May 23, 2020.
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Figure 4: Fuzzy solutions of (4) and (5) for cumulative cases of COVID-19 in

Austria. The dash-dotted yellow lines represent the curve of cumulative cases

of COVID-19 until May 23, 2020.
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Figure 5: Fuzzy solutions of (4) and (5) for cumulative cases of COVID-19 in

Germany. The dash-dotted yellow lines represent the curve of cumulative cases

of COVID-19 until May 23, 2020.
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Figure 6: Fuzzy solutions of (4) and (5) for cumulative cases of COVID-19 in

South Korea. The dash-dotted yellow lines represent the curve of cumulative

cases of COVID-19 until May 23, 2020.

k r γ

China 83687 0.3547 0.8439

France 207107 0.3451 0.6487

Austria 18454 0.5151 0.5603

Germany 222942 0.4406 0.5164

South Korea 13145 0.6615 0.4382

Table 1: Approximate parameters for each country

We can see that most of the actual data from cumulative cases of COVID-

19 is contained in the fuzzy solution. Thereby, the models (4) and (5) present

good approximations for the growth rate r and support capacity k of the ana-

lyzed countries, as can be seen in Table 1. The models also allow estimating the

time (in days) in which the disease stabilizes in each country, reaching carrying

capacity.

Moreover, it is worth noting that the parameter γ (derivative order) is

associated with the speed of growth of the cumulative case curve, as well as the

degree of memory effect involved in the dynamics Barros et al. (2021). Thus,

from Figures 2-6 and Table 1 we can conclude that the country with the lowest

memory effect and the fastest growing number of cases is China, followed by

France, then Austria, Germany and South Korea. In fact, China has reached

a carrying capacity of around t = 50 days, while in South Korea this time is

over 150 days. It is worth noting that the slowest growing curve is the so-
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called “flattened curve”. It also makes sense that in China there was the least

memory effect in the first “wave”, given that the pandemic began there, at a

time when less was known about COVID-19.

5. Conclusions

The main contribution of this article is to propose a fuzzy fractional

logistic model that represents well the dynamics of cumulative cases of COVID-

19, which is currently one of the most important global problems.

This model uses a Caputo derivative and the parameters are fuzzy num-

bers, which allows to involve memory effect and uncertainties in the dynamics.

We describe a brief methodology to determine the parameters of the proposed

model with respect to COVID-19. Uncertainty is considered in the growth rate

and also in the carrying capacity of the disease. Then, we find the numerical

solution of the model, which is given in terms of the Zadeh extension principle.

We illustrate our approach using the proposed model to model cumu-

lative cases of COVID-19 from 5 different countries: China, France, Austria,

Germany and South Korea. The fuzzy solution was able to encompass most

of the real data from all countries, as we can see in Figures 2-6. Furthermore,

through the arbitrary order of the derivative it was possible to compare the

degree of the memory effect and the speed of growth of the curve of cumula-

tive cases, showing that in China the memory effect was smaller and the curve

grew faster. Then France, Austria, Germany and South Korea, being the last

countries with the greatest memory effect and where the so-called “flattened

curve” occurred in greater intensity.

Finally, we emphasize that this work uses as an example only the first

“wave”, that is, the spread of the original variant of COVID-19. However, for

the other “waves” the model can be applied, as long as the data are properly

separated in the respective periods of each “wave” of active cases. Therefore,

future works can be guided in this line of research.
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