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Abstract. In this work, we propose an almost periodic model to describe mu-

tualistic relationships. We prove that when some conditions on the parameters

of the model are satisfied, then there exists a global almost periodic attractor.

Numerical simulations show that if seasonal effects are modeled by periodic

rates rather than by almost periodic ones, then predictions may either under-

estimate or overestimate the real number of individuals in each species. This

miscalculation could be catastrophic from a biodiversity conservation perspec-

tive.
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1. Introduction

In nature, species interact in different ecological relationships such as

prey-predator, victim-exploiter, competition and mutualism, among others.

These ecological relationships have been analyzed from a biological and also

from mathematical perspective. However, mutualism has been studied in a

rather less depth compared to all other relationships mentioned before; see

Hale and Valdovinos (2021).

In a mutualistic interaction, species receive benefits from the interaction

with the partner species, which can affect fitness either directly or indirectly.

For instance, mutualism can increase the intrinsic growth rates and/or the car-

rying capacities of the species; see Addicott (1981); Wolin and Lawlor (1984).

Mutualism is generally divided into facultative or obligate.

In the first attempts to model mutualistic interactions, we could mention

Lotka-Volterra systems were parameters are considered as constant. This type

of models yield two qualitatively distinct predictions depending on the param-

eters. On type of predictions yield a unique nontrivial equilibrium where, each

species reaches a population density which is bigger than if it had grown alone.

In other non-realistic predictions population densities grow up unboundedly.

This unboundedness phenomenon is explained by the fact that the benefits re-

ceived from the interaction is bigger than the cost imposed by the intraspecific

competition; see Moore et al. (2018). In other words, the benefits received

increase without considering mechanisms of population regulation. In conclu-

sion, conditioned interactions need to be implemented in mathematical ecology.

Specifically, in mutualistic models with conditioned interactions both species

are mutualistic at low population densities, while becoming competitors at high

population densities. Thus, coexistence is an effect not only of a mutualistic

interaction but also of competition or victim-exploiter relationships. Moreover,

mutualistic species with conditioned interaction might lead to exclusion of the

partner species, Hernandez and Barradas (2003). Similar results have been ob-

tained when mutualistic relationships are analyzed using resources-consumer

models, Holland et al. (2013).

Besides using differential equations, mutualism can also be analyzed

with delay differential equations, discrete equations, integrodifferential equa-

tions and stochastic differential equations, see for instance Li and Xu (2001);

Ding and Guo (2012); Yang and Li (2007); Liu et al. (2008); Li et al. (2016); Xie

et al. (2015); Xue et al. (2015). In this direction, Hale and Valdovinos (2021)
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show a semi-chronological list of differential models describing historically the

development of autonomous mutualistic models. On the other hand, the study

of non-autonomous mutualistic models is rather scarce. Nonetheless, we could

mention some works under time-dependence assumption such as Li (2001); Liu

et al. (2019); Xia et al. (2013).

Amon time-dependent models, seasonal effects are modeled through pe-

riodic functions such as sin(t) and cos(t) or by trigonometric polynomials, see

Dembele and Yakubu (2009); Korman (2016). However, seasonal rates that are

affected by seasonal drivers might be non periodic. A wider family of models

is possible by using almost periodic functions Wang et al. (2019); Dumont and

Thulliez (2016).

In this work, we propose an almost periodic model to describe mutualism

between two species. We prove that a unique global almost periodic attrac-

tor exists when some conditions on the parameters are satisfied. In Section 2,

we present the almost periodic model. In Section 3, we give some preliminary

results about almost periodic functions and some results about cooperative sys-

tems. In Section 4, we write down our main result of existence and uniqueness

of almost periodic solutions, giving the corresponding proof. In Section 5, we

show numerical simulations of solutions. Finally, in Section 6, we discuss some

conclusion about the results we have obtained.

2. The model

In this section, we show an almost periodic model to describe seasonal

effects in mutualism. To describe seasonal effects in a mutualistic relationship,

we use as a baseline the model proposed in Gopalsamy (1992), p. 191. In con-

trast with Gopalsamy’s model, we assume that rates ri(t), αi(t), βi(t), ki(t) ≥ 0

and ai(t) ≥ 0 are continuous almost periodic functions. Additionally, we sup-

pose that αi(t)− ki(t)βi(t) ≥ 0. The proposed model is

dN1

dt
= r1(t)N1

(

k1(t) + α1(t)N2

1 + β1(t)N2

− a1(t)N1

)

,

dN2

dt
= r2(t)N2

(

k2(t) + α2(t)N1

1 + β2(t)N1

− a2(t)N2

)

. (2.1)

The system (2.1) describes a facultative mutualism since the dynamics of

each population is described by a logistic model when species are not interact-
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ing. For i = 1, 2, the rates ri(t) describe the intrinsic growth rate for species i,

while the rates ai(t) describes the intraspecific competition among individuals

of the species i. The term αi(t) describe the benefits received by species i by

the interaction with the species j. A factor of regulation of benefits is given by

1 + βi(t)Nj , where βi(t) is the seasonal mutualistic per capita effect of Nj on

Ni, j 6= i.

In the following section, we give some results about almost periodic

functions and cooperative systems.

3. Almost periodic functions and cooperative sys-

tems

In this first part we summarize some well known basic facts about the

almost periodic functions and cooperative systems. Almost periodic functions

are nowadays a very active theme. We give here only a very basic introduction

to the topic and refer the reader to Bohr (1947); Corduneanu (1989) for much

more details.

Definition 1 A function φ ∈ C0(R) is almost periodic if, for all ǫ > 0 there

exist a set of real numbers T (ǫ) ⊆ R altogether with a length l(ǫ) > 0 such that

for any interval of length l(ǫ), there is at least one point τ ∈ T (ǫ) contained in

that interval such that

|φ(x+ τ)− φ(x)| < ǫ

for each x ∈ R.

The above collection of all almost periodic functions, which is a Banach space

endowed with the usual sup−norm, will be denoted by AP (R). Note that a

periodic function is a special case of an almost periodic function.

For any almost periodic function ϕ, it is possible to associate a unique

Fourier series:

ϕ ∼
∑

n∈N

a(λn)e
iλnx. (3.2)

The exponents λn are called the frequencies of φ. Another well-known result

in this area is that, for every almost periodic function there exists the mean

value

M(φ) := lim
T→∞

1

T

∫ T

0

φ(x)dx,
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which defgines a bounded linear function M : AP (R) → R having the following

features Corduneanu (1989).

Properties 1 1. φ ≥ 0 implies M [φ] ≥ 0.

2. The Parseval equality holds:

M [|φ|2] =
∑

n∈N

|a(λn)|2. (3.3)

3. Given φ1, φ2 almost periodic functions with φ2(t) ≥ φ1(t) ≥ 0, M [φ1] =

M [φ2], then φ1(t) = φ2(t), ∀t ∈ R.

Now we review some aspects about cooperative systems, for a brief in-

troduction to cooperative systems see Smith (1995). For two points x, y ∈ R
2

denote the partial order u ≤ v if ui ≤ vi for each i, also denote u < v if u ≤ v

and u 6= v. Let f, g : R×D ⊆ R
3 → R be a couple of differentiable and almost

periodic functions on the first variable. We consider the system:

x′(t) = f(t, x(t), y(t))

y′(t) = g(t, x(t), y(t)),
(3.4)

where we suppose that f(t, x, y), g(t, x, y) are both uniformly almost periodic

with respect to (x, y) ∈ C for every compact C ⊆ D, i.e., the set of translation

numbers, τ(ǫ), is independent of (x, y) ∈ C.

More specifically, if f have generalized Fourier expansions,

f(t, x, y) ∼ f(x, y) +

∞
∑

n=0

a(f, λn) cos(λnt) + b(f, λn) sin(λnt),

f is uniformly almost periodic, whenever the frequencies λn do not depend on

(x, y), see Corduneanu (1989) Chapter VI.

Definition 2 System (3.4) is said to be of cooperative type if for all t ∈ R,

x ∈ (a(t), A(t)), y ∈ (b(t), B(t)) we have

fy(t, x, y) ≥ 0, gx(t, x, y) ≥ 0.

We will say that (a(t), b(t)) are a sub-solution pair if

a′(t) ≤ f(t, a(t), b(t)) (3.5)

b′(t) ≤ g(t, a(t), b(t)), (3.6)
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For every t ∈ R. A super-solution (A(t), B(t)) is defined similarly with

the reversing inequalities. We will say that a sub-solution (a(t), b(t)) and a

supersolution (A(t), B(t)) are ordered if a(t) ≤ A(t) and b(t) ≤ B(t) for all

t ∈ R.

An important feature for cooperative system (3.4) related to almost-

periodic orbits was established in Dı́az-Maŕın et al. (2022), Theorem 2. Explic-

itly the following result holds.

Theorem 1 Consider an ordered pair of a sub-solution pair (a(t), b(t)) and a

super-solution pair (A(t), B(t)) of the system (3.4) such that a(t) < A(t), and

b(t) < B(t). Suppose that there is no equilibrium point (x0, y0) such that a(t) ≤
x0 ≤ A(t) and b(t) ≤ y0 ≤ B(t). If the system is of cooperative type, then it has

an almost periodic solution satisfying a(t) ≤ x(t) ≤ A(t) and b(t) ≤ x(t) ≤ B(t)

for all t ∈ R. Furthermore, if (x(t), y(t)), (x(t), y(t)), denote the minimal and

maximal almost periodic solutions having initial data satisfying a(0) < x(0) <

A(0) and b(0) < y(0) < B(0). Then any solution of (3.4), having such initial

condition, converges to the product of strips (x(t), x(t))× (y(t), y(t)).

In the case where there is an equilibrium point we could have a stable

equilibrium, instead of a genuine almost periodic orbit.

4. Results

Given an almost periodic function u : R → R, we denote

u∗ := inf
t∈R

u(t) and u∗ := sup
t∈R

u(t).

Now we state our main result

Theorem 2 Assume ri(t), αi(t), βi(t), ki(t) ≥ 0 and ai(t) ≥ 0 are continuous

almost periodic functions (not all constant) with ai∗ > 0, βi∗ > 0, ki∗ > 0 and

that there is no equilibrium point of (2.1) with positive coordinates. Suppose

that αi(t)− ki(t)βi(t) ≥ 0, then

i) There exists at least one almost periodic solution (N1, N2) of (2.1) whose

components are positive.
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ii) If (r1α1)
∗(r2α2)

∗ < (r1a1)∗(r2a2)∗, then there exists a unique almost

periodic solution in R
2

>0
which attracts any other positive solution of (2.1)

as t → ∞.

Proof 1 Firstly we prove the existence claim stated in i). Since αi(t)−ki(t)βi(t) ≥
0 it is straightforward to verify that the system (2.1) is cooperative. We con-

struct sub- and super-solution pairs. For a super-solution pair; we take

(A(t), B(t)) = (N,N) , N > 0,

and require that these functions satisfy the following inequalities,

A′(t) = 0 ≥ r1(t)

(

k∗
1
+ α∗

1
N

1 + β1∗N
− a1∗N

)

N

≥ r1(t)

(

k1(t) + α1(t)N

1 + β1(t)N
− a1(t)N

)

N,

B′(t) = 0 ≥ r2(t)

(

k∗
2
+ α∗

2
N

1 + β2∗N
− a2∗N

)

N

≥ r2(t)

(

k2(t) + α2(t)N

1 + β2(t)N
− a2(t)N

)

N.

Since ai∗ > 0, then by taking N big enough the right side is effectively negative.

Therefore, they constitute a super-solution pair.

For constructing a sub-solution pair, we consider

(a(t), b(t)) = (ǫ, ǫ) , ǫ > 0,

demanding that these functions satisfy the inequalities stated in (3.5),

a′(t) = 0 ≤ r1(t)

(

k1∗ + α1(t)ǫ

1 + β1(t)ǫ
− a∗

1
ǫ

)

ǫ

≤ r1(t)

(

k1(t) + α1(t)ǫ

1 + β1(t)ǫ
− a1(t)ǫ

)

ǫ,

b′(t) = 0 ≤ r2(t)

(

k2∗ + α2(t)ǫ

1 + β2(t)ǫ
− a∗

2
ǫ

)

ǫ

≤ r2(t)

(

k2(t) + α2(t)ǫ

1 + β2(t)ǫ
− a2(t)ǫ

)

ǫ.

Since ki∗ > 0 and any almost periodic function is bounded, then the right side

is not negative for ǫ > 0 small enough. Thus, we have a sub-solution pair.

Therefore, by Theorem 1 there exists at least one almost periodic solution for
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system (2.1). This finishes the proof of the existence of an almost periodic

solution.

We now prove the uniqueness statement. We consider a maximal pair

(N̂1, N̂2) and minimal pair (Ň1, Ň2) of almost periodic solutions. If we recall

M [(ln N̂i)
′] = 0, then

M

[

ri

(

ki(t) + αi(t)N̂j

1 + βi(t)N̂j

)]

= M
[

riaiN̂i

]

, i 6= j, (4.7)

and

M

[

ri

(

ki(t) + αi(t)Ňj

1 + βi(t)Ňj

)]

= M
[

riaiŇi

]

i 6= j. (4.8)

Thus,

M

[

ri

(

ki(t) + αi(t)N̂j

1 + βi(t)N̂j

− ki(t) + αi(t)Ňj

1 + βi(t)Ňj

)]

= M
[

riai

(

N̂i − Ňi

)]

i 6= j.

(4.9)

A straightforward calculation yields

ki(t) + αi(t)N̂j

1 + βi(t)N̂j

− ki(t) + αi(t)Ňj

1 + βi(t)Ňj

≤ αi(t)(N̂j − Ňj).

Therefore, from this inequality and from (4.9), we conclude that

M
[

riai

(

N̂i − Ňi

)]

≤ M
[

riαi

(

N̂j − Ňj

)]

. (4.10)

Hence

(r1a1)∗M
[

N̂1 − Ň1

]

≤ (r1α1)
∗M

[

N̂2 − Ň2

]

≤ (r1α1)
∗(r2α2)

∗

(r2a2)∗
M
[

N̂1 − Ň1

]

.

If M
[

N̂1 − Ň1

]

> 0 the we reach a contradiction with respect to condition ii).

Therefore, M
[

N̂1

]

= M
[

Ň1

]

, whence N̂1 = Ň1 by 3) in Properties 1. To see

this argument in detail see Dı́az-Maŕın et al. (2022). By the equation (4.10)

we also get N̂2 = Ň2. Finally, with our construction, we can make the super-

solutions arbitrarily large, and the sub-solutions arbitrarily small. Therefore,

we have a single attractor consisting of an almost periodic orbit in the whole

set R2

>0
. This concludes ii) and therefore ends the proof of Theorem 2.
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5. Numerical examples

In this section, we show the behavior of the solutions of model (2.1) for

some values of the parameters of the model. To do this, we use the almost peri-

odic functions given in (5.11) with r1 = 0.4, r2 = 0.2, k1 = 0.02, k2 = 0.01, α1 =

0.05, α2 = 0.02, β1 = 0.00004, β2 = 0.00002, a1 = 0.095, a2 = 0.09, c1 = 5, c2 =

3, c3 = 1, c4 = 0.66, c5 = 1, c6 = 0.65, η1 =
√
7, s1 = 0.01, s2 = 0.1. These

parameter values guarantee that conditions of Theorem 2 are satisfies, since

αi(t) − ki(t)βi(t) ≥ 0 and (r1α1)
∗(r2α2)

∗ = 0.00084093 < (r1a1)∗(r2a2)∗ =

0.0054487. With In Figure 1, it is shown that solutions go to a global almost

periodic attractor. Figure 1 (a) shows simultaneously both mutualistic pop-

ulation densities. Figure 1 (b) shows that, for different initial conditions, N1

converges to a global almost periodic attractor. In Figure 1 (c), it is shown

that N2 converges to a global almost periodic attractor.

r1(t) = r1 (c1 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) ,

k1(t) = k1 (c1 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) ,

α1(t) = α1 (c3 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) ,

β1(t) = β1 (c1 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) ,

a1(t) = a1 (c4 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) ,

r2(t) = r2 (c2 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) ,

k2(t) = k2 (c2 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) ,

α2(t) = α2 (c5 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) ,

β2(t) = β2 (c2 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) ,

a2(t) = a2 (c6 + 0.18 cos (s12πt) + 0.46 cos (s12πη1t)) .

(5.11)
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Figure 1: Behavior of the solutions of model (2.1). In case (a), species N1 is

shown in red color and N2 is shown in blue color. Case (b) and (c) show that

solutions with different initial conditions converge to an almost periodic solu-

tions. For case (a) N1(0) = 0.3, 1.1, 4.8 and for case (b) N2(0) = 0.01, 0.1, 0.5.

In figure 2, we compare the behavior of the solutions of the almost pe-

riodic model with the behavior of the solutions of the periodic model. To do

this, in the functions given by (5.11), we use η1 =
√
7 for the almost periodic

case while we use η1 = 2 for the periodic case. All the parameter values are

the same as those used in figure 1.
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Figure 2: Figure (a) shows the behavior of N1 in two scenarios: almost periodic

scenario and periodic scenario. In a similar way, figure (b) shows the behavior

of N2 in both scenarios: the almost periodic and the periodic one. For the

numerical simulations N1(0) = 0.3 and N2(0) = 0.01. In the almost periodic

case (periodic case), N1 and N2 are shown in color red and blue (violet and

brown), respectively.

Finally, figure 3 shows that phenological match/mismatch might be ob-

tained by varying the values of the intrinsic growth rates. In figure 3 (a) we

use the values r1 = 0.4 and r2 = 0.8 while in figure 3 (b) we use r1 = 0.4 and

r2 = 1.8. All other parameter values remain the same as those used in Figure

2.

(a)

100 200 300 400 500
Time
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10

15

Individuals

(b)

Figure 3: Figure shows the effects due to mutualistic interaction. Notice that,

when r2 increases, the abundance peak of both species increases.
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6. Conclusions

In this work, we propose an almost periodic model to describe a mutu-

alistic interaction between two species. We proved that solutions converge to a

global almost periodic attractor when some conditions over the parameters of

the model are satisfied. By comparing the almost periodic case with the peri-

odic one, we show that even though the solutions are similar while time remains

small, they separate as time increases. Thus, modeling seasonal effects with

periodic rates can lead either to an underestimation or to an overestimation

of population densities. This miscalculation might lead to wrong conservation

strategies, with catastrophic consequences for sustainability. Therefore, the

analysis of almost periodic mutualistic models can help to decision makers to

design helpful interventions in the maintenance of biodiversity.
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