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Instituto de F́ısica y Matemáticas, Universidad Michoacana. Edif. C-3,

Ciudad Universitaria, C.P. 58040. Morelia, Michoacán, México.

Abstract. In this work, we prove the existence of periodic solutions for some

enzyme catalyzed reaction models with periodic input and power-law. Numer-

ical simulations are performed using specific substrate functions to illustrate

our analytical findings.
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1. Introduction

Mathematical models have become important tools in analyzing chemical

reactions, of special interest are enzymatic reactions in biochemical systems.

Enzymes are important in regulating biological processes acting as activators

or inhibitors in a reaction. A basic scheme for a catalyzed reaction is based

into the Michaelis-Menten equation which is fundamental for enzyme kinetics.

It can be described by the following kinetic mechanism:

I(t)
−→ S + E

k1

⇄

k
−1

C
k2

−→ P + E , (1.1)
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where E denotes enzyme, S denotes substrate, P denotes product and C de-

notes enzyme substrate complex. I(t) is the rate of input of the substrate into

the system. Letting [A] denote concentration of a chemical specie A. The law

of mass action is well studied. It assumes that the rate of a reaction is pro-

portional to the concentrations of its reactants; however in the most common

models for chemical concentrations the reactions occur at mixed or crowded

concentrations in intracellular environment. So for to account these aspects

we consider a generalized mass-action law where the rate of a reaction is pro-

portional to the powers of the concentrations of its reactants see Regensburger

(2012). The generalized mass-action law leads to the system of following non-

linear reaction equations

d[S]

dt
= I(t)− k1[S]

α[E]β + k−1[C]γ ,

d[E]

dt
= −k1[S]

α[E]β + (k−1 + k2)[C]γ ,

d[C]

dt
= k1[S]

α[E]β − (k−1 + k2)[C]γ ,

d[P ]

dt
= k2[C]γ .

(1.2)

All of the parameters are positive constants. Since the scheme (1.2) is

reversible then by adding the second and third equations in the system (1.2)

we have ([E] + [C])′ = 0, therefore [E] + [C] = K for all time t for some

positive constant K, using this relation and since the last equation in system

(1.2) decouples from the other equations we can reduce model (1.2) to a two-

dimensional system in terms of [S] and [C] as follows:

d[S]

dt
= I(t)− k1(K − [C])β [S]α + k−1[C]γ ,

d[C]

dt
= k1(K − [C])β [S]α − (k−1 + k2)[C]γ .

(1.3)

In chemical engineering is common that the nutrients are supplied at

periodic form. In the biological context frequently the rate of input of the

substrate I fluctuates in periodic way, due to intrinsic oscillations in living

organisms, see glycolytic oscillations in Stoleriu et al. (2005). Thus, due to the

interest of the chemical industry or for biological reasons, we can assume that

I is a non negative, non constant continuous T -periodic function

I(t+ T ) = I(t) and I(t) ≥ 0, ∀t ∈ R.
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In addition, we consider a controlled situation where the enzyme is entering

the process at a time-dependent oscillatory consumption rate, with an equal

amount of extraction of the compound. Thus, we add the arrows
J(t)
−→ E, C

J(t)
−→,

in (1.1). Because of mass conservation, the non negative, non constant contin-

uous T -periodic function, J(t), need to be subtracted of the rate of compound

[C]. Hence get the system

d[S]

dt
= I(t)− k1(K − [C])β [S]α + k−1[C]γ ,

d[C]

dt
= −J(t) + k1(K − [C])β [S]α − (k−1 + k2)[C]γ .

(1.4)

This kind of model may be useful for the analysis of biochemical reactors

where the enzyme degradation with time is periodically regenerated by replac-

ing exhausted enzyme by fresh active enzyme, see for instance NIIR Board

(2004).

In the study of enzymatic models the analysis of periodic solutions is seen

as an important goal as this periodicity reveals the recurrence of biochemical

rhythms of living organisms. Hence, determining existence of such solutions

under different parameter configurations and input functions is crucial. In this

work, using the theory of cooperative systems, we give sufficient conditions for

the existence of periodic orbits for the above system.

2. Results

We first review the cooperative systems this material is included for com-

pleteness and to fix some of the notation, for a brief introduction to cooperative

systems see (Smith, 1995). For two points u, v ∈ R
n denote the partial order

u ≤ v if ui ≤ vi for each i, also denote u < v if u ≤ v and u 6= v. Consider a

system

ẋ = f(t, x(t), y(t))

ẏ = g(t, x(t), y(t)),
(2.5)

where f, g are C1 in an open D ⊂ R
2 and continuous T -periodic functions on

t, recall that (2.5) is said a cooperative system in R×D if

fy(t, x, y) ≥ 0, and gx(t, x, y) ≥ 0, ∀ t ∈ R, (x, y) ∈ D. (2.6)
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The cooperative systems have very important properties for example:

the monotonicity of the local flow generated by (2.5).

We say that a pair of T -periodic differentiable functions (a(t), b(t)) is a

subsolution pair of (2.5) if

ȧ ≤ f(t, a(t), b(t))

ḃ ≤ g(t, a(t), b(t)), for all t,
(2.7)

analogously a pair of T -periodic differentiable functions (A(t), B(t)) is a super-

solution pair if

Ȧ ≥ f(t, A(t), B(t))

Ḃ ≥ g(t, A(t), B(t)), for all t.
(2.8)

We say that sub and supersolution pairs are ordered if for all t we have

a(t) < A(t) and b(t) < B(t).

An important feature for cooperative system (2.5) about periodic orbits

was established in Korman (2016), Theorem 2.1. More precisely, the following

result holds

Theorem 2.1 Assume that the system (2.5) is cooperative and has ordered

sub- and super- solution pairs (a(t), b(t)) and (A(t), B(t)). Then the system

has a T -periodic solution (x(t), y(t)), satisfying a(t) < x(t) < A(t), b(t) <

x(t) < B(t), ∀t.

For a T periodic continuous function M : [0, T ] → R, we set

M∗ := max
t∈[0,T ]

M(t) and M∗ := min
t∈[0,T ]

M(t). (2.9)

Now we state our main result

Theorem 2.2 Assume α, β, γ, k1, k2, k−1,K are positive constant and I(t), J(t)

are non constant continuous T -periodic functions. If

I∗ < k2K and I∗ − J∗ ≥ 0, (2.10)

then there is at least one T -periodic solution [S(t)], [C(t)] of (1.4) whose com-

ponents are positive.
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Proof: By straightforward calculation for the system (1.4) condition (2.6) is

verified,

k1β(K − [C])β−1 + γk−1[C]γ−1 ≥ 0, αk1(K − [C])β [S]α−1 ≥ 0.

Therefore (1.4) is a cooperative system.

So, to establish the existence of periodic solutions of at least one periodic

solution of (1.4) via the Theorem 2.1 we need to construct ordered sub- and

super-solution pairs.

For a sub-solution pair; we consider

a(t) := S1,

b(t) := 0,
(2.11)

with S1 a positive constant to be chosen. Calling f(t, x, y) and g(t, x, y) the

right sides in equation (1.4). By the condition of subsolution pair (2.7) we need

to verify

f(t, S1, 0) ≥ 0,

g(t, S1, 0) ≥ 0.

So, we take

g = −J(t) + k1K
β [S1]

α ≥ −J∗ + k1K
β [S1]

α, (2.12)

therefore doing

[S1] =

(

J∗

k1Kβ

)
1

α

,

We obtain g ≥ 0. Now replacing this [S1] in f(t, S1, 0) and using (2.10), we get

f = I(t)− k1K
β J∗

k1Kβ
= I(t)− J∗ ≥ I∗ − J∗ ≥ 0. (2.13)

Thus considering (2.12) and (2.13), we satisfy both inequalities in (2.7).

Therefore they constitute a sub-solution pair.

For constructing a super-solution pair, we propose

A(t) := S2,

B(t) := C2.

with S2, C2 two constants to be determined. By the condition of subsolution

pair (2.8) we need to verify

f(t, S2, C2) ≤ 0,

g(t, S2, C2) ≤ 0.
(2.14)
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Substituting in the first equation of the previous system, we have

f(t, S2, C2) = I(t)−k1(K−C2)
βSα

2 +k−1C
γ
2 ≤ I∗−k1(K−C2)

βSα
2 +k−1C

γ
2 = 0.

(2.15)

So, we need take

[S2] =

(

I∗ + k−1C
γ
2

k1(K − C2)β

)
1

α

.

Substituting this [S2] in the second equation in (2.14) and taking C
γ
2

such that I∗ ≤ k2C
γ
2 < k2K, we get

g(t, S2, C2) = −J(t) + k1(K − C2)
β I∗ + k−1C

γ
2

k1(K − C2)β
− (k−1 + k2)C

γ
2

= −J(t) + I∗ − k2C
γ
2 ≤ I∗ − k2C

γ
2 ≤ I∗ − k2K, (2.16)

using (2.10), then g(t, S2, C2) ≤ 0.

Thus considering (2.15) and (2.16), we satisfy both inequalities in (2.8).

Consequently, (A(t), B(t)) form a super-solution pair.

Therefore Theorem 2.1 applies, so there exists at least one T -periodic

solution for system (1.4), which proves the result. ✷

Theorem 2.2, gives a generalization of previous results. In the particular

case of the law of mass action, α = β = γ = 1, without subtraction, J ≡ 0,

Katriel (2007) proved the existence of periodic orbits of (1.4), by using Leray-

Schauder degree theory. Stoleriu et al. (2005) proved the existence of periodic

solutions when the input rate is I := I0(1 + ǫ sin(ωt)) for 0 ≤ ǫ ≤ 1, using

Brouwer’s fixed-point theorem.

2.1. Examples

In the previous section we established analytically the existence of peri-

odic solutions for system (1.2) of enzymatic reactions. We now provide numer-

ical evidence of the existence of periodic solutions. To do so, we numerically

solve these equations using a 4th order accurate Runge-Kutta integrator which

we program in FORTRAN 95.

Example 1. Consider the system

d[S]

dt
= I(t)− k1(K − [C])β [S]α + k−1[C]γ ,

d[C]

dt
= −J(t) + k1(K − [C])β [S]α − (k−1 + k2)[C]γ .

(2.17)
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where parameters are determined by α = β = γ = 1, k1 = 2, k−1 = 1,

k2 = 1.5, and K = 3. The substrate input function is determined by I(t) =

1 + 0.3 sin(2πt) and the subtraction function is given by J(t) = 0.3 + 0.25 cos(2πt),

note that I∗ − J∗ = 0.15 and 0 < I∗ < (3)(1.5) = 4.5. Numerical simulations

are shown in the next figures 1 and 2, which exhibit an oscillatory behavior

according to the Theorem 2.2.

Figure 1: Time plots for enzymatic model

(2.17). We consider the initial conditions S0 =

0.2 and C0 = 0.2.

Figure 2: The solutions converge to the cor-

responding numerical approximation of the pe-

riodic orbit.

Example 2. Consider the system

d[S]

dt
= I(t)− k1(K − [C])β [S]α + k−1[C]γ ,

d[C]

dt
= −J(t) + k1(K − [C])β [S]α − (k−1 + k2)[C]γ .

(2.18)

where parameters are determined by α = 5, β = 2, γ = 3, k1 = 3.5, k−1 = 0.4,

k2 = 1.9 and K = 0.8. The substrate input function is determined by I(t) =

1 + 0.5 sin2(t) and the subtraction function is given by J(t) = 0.3 + 0.2 cos2(t),

note that I∗ − J∗ = 0.5 and 0 < I∗ < (1.9)(0.8) = 1.52. Numerical simulations

are shown in the next figures 3 and 4, which exhibit an oscillatory behavior

according to the Theorem 2.2.
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Figure 3: Time plots for enzymatic model

(2.18). We consider the initial conditions S0 =

2.5 and C0 = 0.7.

Figure 4: The solutions converge to the cor-

responding numerical approximation of the pe-

riodic orbit.

3. Discussion

For applications the analysis of Michaelis-Menten equations require the

localization of fixed points. Under the conditions of periodic substrate and

enzyme supply for a given reaction, applications require the existence of peri-

odic solutions. Our analysis give some description of conditions that warranty

the existence of such limit cycles. This models may be useful for biochemical

reactors. Such applicability remains to be explores. We also may extend this

analysis based on cooperative systems to competitive systems with applications

in other more detailed enzyme reactions.
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