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Abstract. The texture patterns recognition in the tree trunk has been evalu-

ated as an alternative to support species identification. However, the growing

demand for extracting more patterns requires an approach able to treat redun-

dant information. The present study aims at evaluating the use of multivariate

analysis for improving the performance of trunk texture patterns as tree species

indicators. For the experimental procedures, 1188 samples were obtained from

11 arboreal species. By processing on grayscale images, texture patterns were

extracted based on first and second order statistics. Then, synthetic variables

were obtained by transformations using multivariate analyzes, and used as

input in a predictive modeling process. As a result, the multivariate analy-

sis provided an expressive dimensionality reduction, decreasing the number of

predictor variables in 85.7%. By optimizing the computational effort, the fall

in the error rate achieved 71.4% during the machine learning. Furthermore,

a significant increase in the generalization capability was observed during the

validation test, achieving 98.6% accuracy. In conclusion, multivariate anal-

ysis can be considered a promising approach, but in future studies the use

of soft class labels could also be evaluated, to further improving the arboreal

identification using computational intelligence.
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1. Introduction

The arboreal identification can be difficult and even unfeasible in certain

conditions, fostering the development of methods based on computational intel-

ligence, but there are still issues to overcome (Bressane et al., 2015; Yanikoglu

et al., 2014; Machado et al., 2013). The current computer-based techniques

have focused on leaves features, leading to limitations in cases that those struc-

tures are not available. In these cases, the pattern recognition of tree trunk

texture could be an alternative, but it is still an ongoing research issue.

The tree trunk features are relatively uniform by species, so that can be

useful for a broad identification (Wojtech and Wessels, 2011; Vaucher, 2010).

Roughness, thickness, presence of lenticels, aculeus, and stretch marks, among

other morphological features, in different directions and denseness, create trunk

textures characteristics of each tree species. Nevertheless, taking into account

that the trunk texture is a biological feature, its natural variability requires

the continuous evaluation of new patterns to overcome the dissimilarity within

species, even as the similarity between some of them.

On the other hand, the extraction and inclusion of more patterns also

requires an approach able to treat redundant information, owing to the possi-

bility of these new patterns are correlated. Thus, the use multivariate analysis

techniques, as the Principal Component Analysis (PCA), Fisher Discriminant

Analysis (FDA), and Exploratory Factor Analysis (EFA), could be experienced.

An important difference among such techniques is that the PCA operates

without foreknowledge on class labels (unsupervised). In turn, FDA is a super-

vised technique in which the class information is considered. Similarly, the EFA

also considers the data structure. In spite of this, the performance afforded by

a given technique is not necessarily superior to another, being recommended

a comparative assessment case-by-case (Martinez and Kak, 2001). In com-

mon, such techniques find a coordinate system that maximizes the variance

explained in the data, producing synthetic variables by linear combinations of

original measured variables. Thus, synthetic variables produced by such tech-

niques could avoid the use of predictors with little explanatory power, allowing

the compress information and dimensionality reduction, even as optimizing the

computational effort during machine learning (Bro and k. Smilde, 2014; Abdi
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and Williams, 2010; Jolliffe, 2002). Hence, the use of the synthetic variables as

indicators may provide better results than the original variables.

The present study aims to evaluate the use of multivariate analysis for

improving the performance of trunk texture patterns as tree species indicators

features, in order to support its identification using computational intelligence.

2. Methods

2.1 Data collection for the experimental analysis

The experimental analysis were performed using outer bark images of

11 deciduous tree species, native from the Brazilian flora. These images were

taken at different heights of the trunk, all around the trees, with 50 mm of

distance from the digital camera to the target. Then, a central area was cut

from each image and, using a moving mask with 512 x 512 pixels, 108 samples

per species were thus obtained (see Figure 1).

(Af) (Cf) (Cs) (Ct) (Es)

(Gp) (Hc) (Iv) (Sp) (Tg) (Zk)

Figure 1: Outer bark images (512 x 512 pixels) of the tree trunk from:

Anadenanthera falcata (Af), Cedrela fissilis (Cf), Ceiba speciosa (Cs), Cen-

trolobium tomentosum (Ct), Erythrina speciosa (Es), Gochnatia polymorpha

(Gp), Hymenaea courbaril (Hc), Inga vera (Iv), Schizolobiun parahyba (Sp),

Tibouchina granulosa (Tg), and Zanthoxylum kleinii (Zk).

In doing that, 1188 samples were obtained for the experimental analysis,

so that 70% were used for the machine learning (training dataset), and 30%

during the performance assessment (testing dataset, randomly selected).
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2.2 Original variables extraction based on trunk texture

Although some studies have obtained better results in the pattern recog-

nition using color information, it can be more susceptible to variations due to

environmental conditions and image acquisition settings. Moreover, from a bi-

ological point of view, it’s still important to consider that the color features of

the same tree may vary depending on the season. Therefore, in order to obtain

results for supporting the species identification, the images were transformed

from RGB system to HSV space.

Then, using values in the V channel from gray-level images, original

variables (zi) based on first and second order statistics were extracted. The

first-order statistics included the uniformity, entropy, skewness, smoothness,

intensity, and standard deviation. In turn, the second ones were the contrast,

correlation, energy, and homogeneity (Table 1). In the second-order statistics

extraction, the values of each of the four parameters were measured at 16

relative positions (θ), equivalents to distance between pixels equal to 1, 3, 5

and 7, in the directions 0, 45, 90 and 135 degrees, so that were generated 64 co-

occurrence descriptors. Thus, taking in to account the 6 first-order statistics,

the total number of original variables was 70 texture patterns.

2.3 Synthetic variables from multivariate analysis

From the PCA, the synthetic variables (z
′

i) called principal components

(PC) were obtained by uncorrelated linear combinations of the original vari-

ables (zi), i.e, of the texture patterns, and generated in decreasing order of

variance, by solving the characteristic equation of the correlation matrix (R),

given by Bro and k. Smilde (2014):

det (R− λI) = 0 (2.1)

where λi are the eigenvalues, for each of which there is an eigenvector wi, such

that the synthetic variables z
′

i are determined as:

z
′

i = wi1z1 + wi2z2 + ...+ wipzp′ , (i = 1, ..., p
′

) (2.2)

where p is the number of original variables.
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Table 1: Original variables based on first and second order statistics, considering: grey levels

number (L), pixel intensity (φi), image histogram (p(φi)), matrix dimension (δ), relative

position (θ), probability of satisfying θ (pij), mean of rows (mr) and columns (mc).

Pattern Feature Function

Uniformity gray levels proximity u =

L−1
∑

i=0

p2(zi)

Entropy image randomness e = −
L−1
∑

i=0

p(zi) log2 p(zi)

Smoothness gray shades transition s = 1−
1

1 + µ2

2

Intensity average gray level µ1 =

L−1
∑

i=0

zip(zi)

St. deviation gray levels dispersion µ2 =
1

n− 1

n
∑

i=1

(zi − µ1)
2

Skewness asymmetry measure µ3 =

L−1
∑

i=0

(zi − µ1)
2p(zi)

Contrast pixels comparison cφ =
k

∑

i=1

k
∑

j=1

(i− j)2pij

Correlation pixel joint occurrence rφ =
k

∑

i=1

k
∑

j=1

(i−mr)(j −mc)

σr − σc

pij

Energy local intensity variation εφ =
k

∑

i=1

k
∑

j=1

p2ij

Homogeneity gray levels closeness hφ =

k
∑

i=1

k
∑

j=1

pij

1 + |i− j|

In addition, synthetic variables based on oblique components (OC) was

also extracted by means of rotation after PCA, using oblimin method (τ equal

to 0) by allowing orthogonal dimensions (when existing) and at the same time

does not require independent dimensions. In the FDA the wi is also known

as weight vector (or weighting coefficients) of the discriminant functions (DF),

similarly considered as synthetic variables (z
′

i), but with p limited a condition

(p
′

) as in (Russell et al., 2000):

p
′

= min(g − 1, p), (2.3)

where g is the number of classes.
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As an unsupervised technique, the PCA finds the largest total scatter

(ST ) in the data. In turn, the FDA takes into account the data structure, fo-

cusing on maximizing between-classes-scatter (SB), while at the same time the

within-classes-scatter (SW ) is minimized (see Figure 2), finding the eigenvec-

tor (w) associated with the largest eigenvalue (λ) that maximizes the Fischer’s

objective function (F ), given by:

F (w) = wTSBw (wTSww)
−1, ST = SB + Sw. (2.4)

Figure 2: Synthetic variables from linear combination of the original variables

(z1 and z2), correspondent to principal components - PC (a) and discriminant

functions - DF (b), even as their directions with the largest total scatter (ST )

projected by PCA (a’), and maximum F (w) given by FDA (b’).

Similarly the FDA, the EFA aims to provide a causal modeling con-

sidering the data structure. By contrast, whereas the synthetic variables (z
′

i)

produced by PCA and FDA can be considered a composite of the original vari-

ables (zi), in the EFA the opposite occurs (Beavers et al., 2013), as can be seen

in Figure 3.

Figure 3: Causal relationships between synthetic variables (z
′

i) and original ones

(zi) in Principal Component Analysis (PCA), Fischer Discriminant Analysis

(FDA), and Exploratory Factor Analysis (EFA).
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Statistically, the main difference is that the EFA criterion is based on

the communality or common-scatter (SC), i.e, the variance shared among vari-

ables. In the present study, the extraction method was based on principal

factors (PF ), and the communalities (hi) were measured by squared multi-

ple correlations, in order to find eigenvector (w) associated with the largest

eigenvalue (λ) that maximizes the total communality, given by:

p
∑

i=1

hi =

m
∑

i=1

λi, (2.5)

where p is the number of original variables, m is the number of synthetic vari-

ables, and

hi =

m
∑

i=1

l2ij , (2.6)

where lij is correlation between the ith principal factor with jth original vari-

able.

Taking into account that such techniques are sensitive to the relative

scaling of the original variables, before starting multivariate analysis the data

set (x) was standardized, converting all texture patterns to a common scale

with an average (x) of zero and standard deviation (σ) of one, given as in:

z = (x− x)σ−1. (2.7)

Furthermore, as these multivariate analysis operate over the relationship

measures between variables, for non-normal data the synthetic variables are not

necessarily statistically independent, i.e., the mutual information is minimized,

but some redundancy may remain. Therefore, in the present analysis was used

the Spearman’s coefficient, a non-parametric surrogate of the Pearson’s one, re-

garded robust for general distributions (distribution-free), and less sensitive to

outliers due to inherent variability of the phenomenon. Thus, the multivariate

analysis allowed extracting the most important information from the texture

patterns (original variables), in order to represent it as synthetic variables (z
′

i),

correspondent to the PC , DF and PF , used as indicators of the tree species in

the predictive modeling.
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2.4 Predictive modeling and performance assessment

Providing a suitable basis to compare the predictive performance of the

features based on original and synthetic variables was mandatory for assess-

ing the prospective improvement by using multivariate analysis. Therefore,

the predictive modeling procedure was based on a k-Nearest Neighbor (k-NN)

classifier, once it is quite sensitive to features relevance (Lovrek et al., 2008;

Ramirez and Puiggros, 2007; Bao et al., 2002). The k-NN is a non-linear and

non-parametric supervised machine learning method, requiring for the training

process a learning data set (L) composed by pre-classified samples (li) in their

respective arboreal species (A):

L = (l1, sp(l1)), ..., (lN , sp(lN )), (2.8)

where f(li) denotes the class (or arboreal species) of the learning sample li, so

that the f ∈ A = (α1, ..., αnsp
), and nsp is the total number of tree species.

To determine the tree species of the testing sample in the query point

(tq), the similarity was evaluated considering the k closest points, and the

inverse squared distance as weighting factor, so that the nearer neighbors were

more influential than the more distant ones. Thereby, tq correspond to majority

class given by:

f(tq) = argmaxα∈A(

k
∑

i=1

δ(α, f(li)), (2.9)

where δ(α, f(li)) is equal to 1 if α correspond to f(li), or is equal to 0, otherwise.

As similarity measure between two instances xi and xj in the n-dimensional

features space (f) was used the Euclidean distance function (dE), given by:

DE(xi, xj) =

√

√

√

√

n
∑

f=1

(xi − xj)
2. (2.10)

A smaller k nearest points may provide a less stable classifier, but a larger

k tends to be less precise. Therefore, an error rate (Erate) estimated through

v-fold cross-validation (20 folds) was carried out over training data set, in order

to identify the best k neighbors and predictor variables amount, even as the

number of factors to retain. Then, a hold-out validation using the testing

data set also was performed for assessing the generalization ability of synthetic

variables as indicators of tree species, even as the prospective improvement

in comparison with the use of original variables, according to the metrics of
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overall accuracy, precision, sensitivity, specificity, and area under the Receiver

Operating Characteristic (ROC) curve.

Considering all species, the overall accuracy (θ) measures the ratio of

samples correctly classified by the total number of samples (nT ), given by:

θ = n−1

T

nsp
∑

i=1

TPspi, (2.11)

where TPspi is the total number of true positive samples, and nsp is the total

number of tree species.

Precision (P) measures the hit rate for each species (spi), take into

account the total number of samples identified as belonging to spi (Ispi), as in:

P (spi) = TPspi.I
−1

spi = TPspi(TPspi + FPspi)
−1, (2.12)

where FPspi is the total number of false positive samples.

Sensitivity, or true positive rate (tprate), measures the proportion of

positives samples correctly identified as such, taking into account the total

number of samples actually belonging to spi (Vspi), as in:

tprate(spi) = TPspi.V
−1

spi = TPspi(TPspi + FNspi)
−1, (2.13)

where FNspi is the total number of false positive samples.

Specificity, or true negative rate (tnrate), measures the proportion of

negatives samples correctly identified as such, taking into account the total

number of samples actually belonging to others species, as in:

tnrate(spi) = 1− fprate = TNspi(TNspi + FPspi)
−1, (2.14)

where TNspi is the total number of true positive samples, and fprate is the

false positive rate.

From these metrics, the area under the curve (AUC) based on ROC

method (Fawcett, 2005; Landgrebe and Duin, 2007), which provides an inte-

grated measure of true and false positive rates (sensitivity, 1-specificity), was

used to further comparative evaluation among predictor variables with the best

overall accuracy.

3. Results and discussion

By analyzing the Kaiser-Meyer-Olkin measure that resulted in 0.96, it

was noted a good sampling adequacy. Moreover, the Cronbach’s alpha equal
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to 0.90 indicated reliability by the method of internal consistency. In turn,

the Bartlett’s test for eigenvalue significance, which p-value less than 0.001,

confirmed that the correlation between variables is sufficient to perform the

multivariate analysis. As a result from the PCA, FDA, and EFA the eigenval-

ues, cumulative variability explained by synthetic variables, and its respective

projections based on the three first dimensions are shown in Figure 4.

Figure 4: Cumulative variability explained by synthetic variables produced

by Principal Component Analysis (a), Fischer Discriminant Analysis (b), and

Exploratory Factor Analysis (c), even as the respective projections from the

three first principal components (a’), discriminant functions (b’), and principal

factors (c’).

From the scree plots in Figure 4, it can be seen that the variables synthe-

sized by PCA and EFA had quite similar eigenvalues and cumulative variability,

respectively equal to 94.7% and 94.4% explained by three first dimensions. Nev-

ertheless, based on distinct variance criteria, total (PCA) and common (EFA),

these techniques projected different coordinate systems, which particular ef-

fects on its capability to separate the tree species samples. In contrast, the

variability explained by the same dimensions projected by FDA accumulated

only 69.3% of the variance in the data. In spite of this, taking into account

only these three first dimensions, the feature space afforded by FDA seems

to achieve the best outcomes. However, it is also need to consider the other
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dimensions, in order to further the performance comparison.

Based on the best results of v-fold cross validation during the training

process, the number of variables used as predictor in the k-NN classifier was

26 principal components (PC) and 23 oblique components (OC) from PCA,

10 discriminant functions (DF ) from FDA, and 29 principal factors (PF ) from

EFA, in each case with cumulative variability equivalent to about 99.9%. Thus,

the performance results of the evaluated alternatives are presented in Table 2.

Table 2: Performance from k-Nearest Neighbor (k-NN) based on original variables (zi) and

synthesized ones by principal components analysis (PC), PCA-based oblique rotation (OC),

Fischer discriminant analysis (DF ), and Exploratory Factor Analysis (PF ).

Training error Testing accuracy (%)

1-NN 3-NN 5-NN 7-NN 1-NN 3-NN 5-NN 7-NN

70 zi 0.19 0.23 0.25 0.28 91.8 90.1 90.1 89.2

26 PC 0.20 0.23 0.25 0.29 91.8 89.9 89.5 89.2

23 OC 0.10 0.15 0.19 0.23 98.0 96.6 94.5 95.5

10 DF 0.07 0.07 0.08 0.08 98.3 96.9 96.6 95.5

29 PF 0.09 0.15 0.18 0.22 98.6 96.6 95.5 94.4

As a reference for evaluating the performance improvement afforded by

multivariate analysis, it can be seen in Table 2 that original variables had an

error rate of 0.19 during the training (1-NN), achieving an overall accuracy of

91.8% based on hold-out validation with testing data set, decreasing to 90.1%

and 89.2% for more stable settings, with 5 and 7-NN, respectively. These

results can be considered a good performance by combining first and second

order statistics as predictor variables. Notwithstanding, outcomes achieved by

synthetic variables from multivariate analysis were even better.

Analyzing Table 2, it is noted that the principal components have not

improved the initial performance, achieved by original variables. On the other

hand, the performance (error and accuracy) was practically the same, but

with a significant dimensionality reduction (- 62.9%), decreasing the number

of predictors from 70 to 26 variables.

In turn, the oblique components, obtained by rotation from PCA, in-

creased the accuracy in up to 7.2% (with 3-NN) over the original performance.

Moreover, the error rate decrease has achieved 47.4% (for 1-NN), using an even

smaller number of predictors (23 variables). The rotations are often used to
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retrieve as far as possible the meaning of the variables, aiming to enhance their

interpretative. Nevertheless, from such results, it is noted that the PCA-rotated

data can also provide a better performance in classification tasks.

Table 3: Performance metrics afforded by the predicting models with the best overall

accuracy based on 3-NN classifier, according to: precision (P ), sensitivity (tprate), specificity

(tnrate), and area under the curve (AUC).

Arboreal species and performance

Af Gp Cf Sp Cs Hc Iv Es Ct Tg Zk

P 1 1 .94 .97 1 1 1 1 .86 .94 .94

OC tprate 1 .94 .91 1 .91 1 1 .94 1 .97 .97

tnrate 1 1 .99 1 1 1 1 1 .98 .99 .99

AUC 1 .97 .95 1 .96 1 1 .97 .99 .98 .98

P 1 1 .91 1 1 1 1 .94 .91 .97 .94

DF tprate .97 .94 .97 1 .97 1 1 .91 1 .94 .97

tnrate 1 1 .94 1 1 1 1 .99 1 1 .99

AUC .99 .97 .96 1 .98 1 1 .99 1 .97 .98

P 1 1 .93 1 1 1 1 1 .90 .91 .89

PF tprate 1 .97 .84 1 1 1 1 .94 .88 1 1

tnrate 1 1 .99 1 1 1 1 1 .99 .99 .98

AUC 1 .99 .92 1 1 1 1 .97 .94 1 .99

In general, the best performances were obtained by variables synthesized

from FDA and EFA. The FDA provided the most expressive dimensionality

reduction (-85.7%), decreasing from 70 to only 10 predictors. Hence, optimizing

the computational effort during the machine learning, the FDA had the lower

error rate, mainly for a larger k nearest neighbors.

In this sense, the reduction provided by FDA in the and 63.6% over

EFA in the most stable setting (7-NN). In turn, the EFA provided the best

accuracy (98.6%) among all evaluated settings and techniques, equivalent to

an increasing of 7.4% over original variables performance.

On the order hand, in more stable settings (three or more nearest neigh-

bors) the performance provided by FDA outperforms the EFA. Taking into ac-

count that the 1-NN classifier can be less stable, i.e., more sensitive to different

dataset of learning and testing by considering less information, the predictors

variables with best overall accuracies (OC , DF and PF ) were compared using

the 3-NN results, according to the performance metrics presented in Table 3.
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Analyzing Table 3 it is possible to calculate that the average precision

achieved by the discriminant functions (97.0%) was slightly better than one

provided from principal factors (96.7%) and oblique components (96.8%). In

this sense, the DF was the only one which provided precision superior than 91%

for all species, while the OC achieved 86.5% for the Centrolobium tomentosum

(Ct), and the PF got 88.9% to Zanthoxylum kleinii (Zk).

The same superiority was observed in relation to average sensitivity

(tprate), equal to 96.9% for DF , against 96.6% for both OC and PF . These

results indicate that DF had larger generalization capability to classify sam-

ples truly belonging to each species, making less omission errors. The biggest

omission errors were made by PF, the only predictors set which had sensitivity

lower than 88%, such as 84.4% for Cedrela fissilis (Cf).

On the other hand, the predictors based on the DF had the lowest aver-

age specificity, achieving 99.2%, while the OC and PF obtained 99.6%. Hence,

the DF caused the largest commission errors, but even so in the worst case

the specificity was 93.8% for the Gochnatia polymorpha (Gp), which can be

considered a very high refusal rate when the sample really does not belong to

tree species.

By evaluating the area under the ROC curve (AUC), it is noted that

the PF achieved a perfect performance (100%) for five tree species, while the

OC and DF for only four ones. Nevertheless, the PF had also the lowest AUC

(91.5%), associated with Cedrela fissilis (Cf). As a consequence of this balance

among advantages in one or another aspect, all three predictor sets obtained

the same average AUC (98.1%). Thus, based on an integrated analysis of the

commission and omission errors, it is reasonable to consider that these three

alternatives (OC , DF and PF ) achieved a quite similar ability in supporting

the tree species identification.

4. Conclusion

By reviewing previous studies it was noted that the use of multivariate

analysis represent a lack in the study of the trunk texture as indicator of the

tree species. Then, the use of variables synthesized from multivariate analysis

was compared to the performance of original variables based on trunk texture

patterns, in order to support the arboreal identification using computational

intelligence.
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Regarding to the compress information, all assessed multivariate tech-

niques provided expressive dimensionality reduction, achieving up to 85.7% of

decrease in the number of predictor variables. Thus, by optimizing the com-

putational effort, there was a fall in the error rate that achieved 71.4% during

machine learning. As an expressive result, the best accuracy (98.6%) repre-

sented an increasing of 7.4% over the generalization capability of the original

variables, during the validation test.

In conclusion, the use of variables synthesized from multivariate analysis

can be considered a promising strategy. Nevertheless, a progressive inclusion

of more tree species tends to make its identification more difficult. Therefore,

in future studies an approach able to deal with a more expressive overlapping

of feature values could be experienced, such as the use of patterns with soft

boundaries, aiming at further improving the performance of the computer-aided

tree identification.
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