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Abstract

This paper presents the application of the double integral method (DIM) to

solve problems of transient one-dimensional conduction heat transfer. This

method is a mathematical technique that transforms the non-linear boun-

dary value problem into an initial value problem, whose solution can often

be expressed in a closed analytical form. The partial differential equations

are integrated twice, the first integration being performed within the domain

and the second along the phenomenological distance. This double integration

allows the gradient vector at the surface to be approximated using the simple

integral method (SIM). Thus improvements can be attained by changing the

derivative at the boundary by an integral relation, since the process of diffe-

rentiation amplifies any difference between the assumed temperature profile

and the exact solution. In this the work results obtained were are compared

with exact and approximate analytical solutions found in the literature.

Palavras-chave: Integral Methods; Heat Conduction.

1. Introduction

The proliferation of numerical and computational techniques and the

availability of software packages have neglected analytical methods for solving

heat transfer problems. There is no doubt that the computational programs

represent a breakthrough especially in problems of irregular geometries. Howe-

ver it is important to study and develop exact and approximate analytical
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methods, so that the computational programs can be optimized demanding

less processing time. In this sense, this work has the objective to develop ap-

proximate analytical solutions for transient one-dimensional heat conduction

problems in semi-infinite body. For this purpose, this study uses the double

integral method developed by Volkov (1965) that consists of a refinement of

the widely utilized simple integral method, known as the Karman-Pohlhausen

method for the boundary layer or Goodman method for phase change.

The first application of double integral method in the literature is due

to Volkov (1965), conducting a thorough study on the method of Karman-

Pohlhausen used for solving boundary layer equations. In this article,Volkov

suggests that this method could be improved if the calculation of the gradient

vector at the boundary were expressed by an integral relation, since improve-

ments would result due to the elimination of the differentiation that will not

appear directly, but only as part of an integrand.

It is interesting to notice that Bromley (1952) used a similar strategy

to that used by Volkov (1965) applied to a specific problem to determine the

heat transfer coefficient for the case of high heat convection sensitivity of a

laminar film. However he did not present significant considerations of the cha-

racteristics of the strategy utilized, as well as the increased accuracy respective

to the simple integral method. Tse-Fou Z(1971,1979) published a series of th-

ree articles between 1971 and 1979 where he proposed to solve the momentum

equation including the effect of large variations of the Prandtl number, the

calculation of skin friction on porous plate, and the calculation of transient

heat conduction. In this group of works he utilized the same strategy of Volkov

(1965) to calculate the gradient vector at the surface.

Sucec (1977) applied the simple integral method in transient heat con-

duction problems for step temperature and heat flux variations. This work is

mentioned here, since Sucec (1979)references it extensively when solving the

energy equation for laminar flow over a flat plate, with constant properties, with

specified heat flux at the surface. Sucec (1995) also applied the double integral

method for boundary layer equations with the objective to obtain solutions to

locate the separation point. El-Genk e Cronenberg. (1979) applied this method

to verify the accuracy of the solution in phase change problems.El-Genk e Cro-

nenberg (1979) also produced another paper to obtain an approximate solution

for the growth of a frozen crust in forced flow.

The problems presented here were taken from the chapter 9 Application
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of Integral Methods to Transient Nonlinear Heat Transfer written by Goodman

(1964). This choice is justified, since the application of the double integral

method deals with the boundary conditions using the simple integral method.

Thus, the work of Goodman (1964) serves as a reference for the treatment of

the boundary conditions, as well as in the evaluation of the results obtained

with the double integral method.

This work is intended to be an analysis of the behavior of the double

integral method to solve several physical situations as well as an assessment of

its performance when applied to these cases.

2. Integral Methods

The simple integral methods due to Karman-Pohlhausen, as well as the

double integral method of Volkov (1965), are mathematical techniques to reduce

boundary value problems into an ordinary initial value problem, whose solution

can be frequently expressed in an analytical closed form. As observed by M. N

(1980), the solution of a boundary value problem and initial condition defined

by a partial differential equation by means of an exact analytical method, leads

to a solution that is valid at all points of the domain considered. However, when

this problem is solved by an integral method, the solution is satisfied only in

the average for the considered domain.

The solutions obtained by integral methods are associated with the

choice of the velocity profiles for the case of boundary layer or temperature

in the case of heat transfer problems. However, the choice of these profiles

is not arbitrary, but must meet the boundary conditions of the problem to

be solved, since both integral methods require in their development that such

conditions are satisfied.

In the development of this work, the double integral method will be ap-

plied utilizing only polynomial profiles. This choice is justified because these

profiles are easy to obtain and to manipulate in the integration and differen-

tiation operations of the integral methods. Moreover, this choice allows the

validation of the results obtained here with the work of Goodman (1964). It

should be noted that the utilization of polynomial profiles does not minimizes

the generality of the application of the method, since more sophisticated functi-

ons as exponentials, trigonometric or hyperbolic trigonometric can be expressed

by means of a polynomial by a Taylor series expansion. In order to demons-
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trate the influence of increasing the degree of the polynomial to obtain better

approximations, the problems presented here will be solved with polynomials

of degree two, three and, when convenient, with the profile recommended by

the literature. According to Langford (1973), the use of additional boundary

conditions to obtain high-order de polynomial approximations can inhibit the

precision of the integral methods.

2.1. Algorithm of the double integral method

The application of the double integral method can be systematized th-

rough a simple five steps algorithm which is described below. One should note

that when treating with problems involving temperature dependent properties,

minor changes should be made.

Step 1) A first integration of the heat conduction differential equation is perfor-

med with respect to x inside the domain, that is, the extremes of the

integration are the values at x = 0 and x = x.This first integration is

intended to make the gradient vector explicit at x = 0.

Step 2) The boundary condition at x=0 must be analyzed and, in case it is of the

second kind, it need not to be approximated implicitly via the simple in-

tegral method. Otherwise, a sub-routine to treat the boundary condition

must be used and it is described as follow:

Step 2.1) Sub-Routine to Treat the Boundary Condition

Again the heat conduction differential equation is considered and

the simple integral method algorithm is applied, as can be seen in

Milanez e Ismail (1984). Thus, one can determine implicitly the

gradient vector in the boundary.

Step 3) The temperature profiles that satisfy the boundary conditions of the pro-

blem to be solved are replaced in the equation obtained in the previous

step, and a second integration is performed along the phenomenologi-

cal distance δ(t) thus removing from the conduction equation the partial

derivative respective to the space.

Step 4) An ordinary differential equation for the thermal thickness δ(t) is then

obtained, which is solved with the initial condition for δ(t) = 0.
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Step 5) Once the function δ(t) is known, the temperature distribution is obtained

in function of the time and of the position.

3. Applications of the double integral method

This section deals with the application of double integral method, with

the problems taken from the work of Goodman (1964).Six cases were selected,

which are; semi-infinity body with boundary condition of first, second and third

kind, and the body of finite size, body semi-infinity with generating internal

energy, and finally a study when the thermal properties are not constant with

temperature.

Problem 1) Non homogeneous Dirichlet boundary condition

Consider initially a semi-infinite body which extends along the axis x > 0

with initial condition T (x, 0) = 00C. Furthermore, assume that at its surface,

the boundary condition is T (0, t) = Ts . For this physical system the mathe-

matical model is given by:

∂T

∂t
= α

∂2T

∂x2
(3.1)

The natural boundary conditions of the problem are:

T (0, t) = Ts (3.2)

T (δ, t) = 0 (3.3)

∂T

∂x
(δ, t) = 0 (3.4)

To obtain solutions with cubic temperature profile, a fourth boundary

condition is required. This condition is obtained by deriving partially Eq.(3.3)

with respect to t and evaluating Eq.(3.1) at point (δ, t), so that:

∂2T

∂x2
(δ, t) = 0 (3.5)

This equation is known as the smoothing condition, because it makes

the temperature profile to be equal to the initial temperature:
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T (x, 0) = 0, x > 0 (3.6)

By applying the double integral method in Eq.(3.1):

α

∫ δ

0

∂T

∂x
(x, t)dx − α

∫ δ

0

∂T

∂x
(0, t)dx

=

∫ δ

0

∂

∂t

∫ x

0

T (x, t)dx (3.7)

Calculating the gradient vector in the boundary using the simple integral

method results:

α
∂T

∂x
(0, t) =

∫ δ

0

∂T

∂t
dx (3.8)

Substituting Eq.(3.8) into Eq.(3.7):

∫ δ

0

α
∂T

∂x
dx+

∫ δ

0

∫ δ

0

∂T

∂t
dxdx =

∫ δ

0

∫ x

0

∂T

∂t
dxdx (3.9)

Assuming quadratic and cubic polynomial profiles for the temperature

distribution:

T (x, t) = Ts

(

1−
x

δ(t)

)2

(3.10)

T (x, t) = Ts

(

1−
x

δ(t)

)3

(3.11)

Substituting Eq.(3.10) and Eq.(3.11) in Eq.(3.9), the following ordinary

differential equations are obtained:

6α = δ(t)
dδ

dt
(3.12)

10α = δ(t)
dδ

dt
(3.13)

Solving both ordinary differential equations with the initial condition,

and then substituting the obtained solutions in the respective profiles, they are

completely determined. Table 1 shows the temperature profiles and the calcu-

lation of the heat flow at the surface for the integral and similarity methods.
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Tabela 1: Heat Flux
Method Heat Flux Error

Similarity
√

1
π
Tsk

√

αt
0%

Double Integral(Quadratic Profile)
3

√

20
Tsk

√

αt
2.3%

Double Integral (Cubic Profile)
3

√

20
Tsk

√

αt
18.8%

Simple Integral(Cubic Profile)
√

3
8
Tsk

√

αt
8.5 %

It may be observed that the expression obtained for the heat flow at

the boundary differs of a single constant when the expressions obtained by the

integral methods are compared with the exact analytical solution.

Figure 1 shows the temperature distribution obtained with similarity,

simple and double integral methods with quadratic and cubic profiles. It may

be observed that the double integral method with quadratic profile exhibits

better precision in the temperature profile when compared with the method

of Goodman with cubic profile. In this same figure it may be observed that

the double integral method with cubic profile is almost indistinguishable when

compared with analytical solution.
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Figura 1: Surface Temperature.
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Figura 2: Flux Profile.

The analysis of Figure 2 illustrates the superiority of the double integral

method to describe the heat flow through the body when compared with the

method of Goodman. This best approximation is a consequence of the better
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description of the temperature profile obtained by this method as shown in

Figure 1.

Problem 2 ) Non homogeneous Neumann boundary condition

Consider a semi-infinite body which extends along the axis x > 0, with

initial condition T (0, t) = 00C. Assume that at its surface there is a constant

heat flux of f(t) = 1000 W
m2 . For this physical system the mathematical model

is given by:

∂T

∂t
= α

∂2T

∂x2
(3.14)

The natural boundary conditions of the problem are:

−k
∂T

∂x
= f(t) (3.15)

∂T

∂x
(δ, t) = 0 (3.16)

T (δ, t) = 0, x > 0 (3.17)

And the profile smoothing condition is given by:

∂2T

∂x2
= 0 (3.18)

Assuming quadratic Eq.(3.19) and cubic Eq.(3.20) polynomial profiles

for the temperature distribution:

T (x, t) =
f

2kδ
(δ − x)2 (3.19)

T (x, t) =
f

3kδ2
(δ − x)3 (3.20)

By applying the double integral method in Eq.(3.14) the follow expres-

sion results:

∫ δ

0

α
∂T

∂x
(x, t)dx−

∫ δ

0

f(t)

k
dx =

∫ δ

0

∫ δ

0

∂T

∂t
dxdx (3.21)

Substituting the temperature profiles Eqs.(3.19) and (3.20) in Eq. (3.21),

the following ordinary differential equations result:
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5δ

12

dδ

dt
= α (3.22)

7δ

40

dδ

dt
= α (3.23)

The resolution of differential equations (3.22) and (3.23), with the initial

condition δ(0) = 0 leads to the temperature profiles represented in Table 2 that

also shows the profiles obtained by Goodman (1964) using the simple integral

method and Carslaw e Jaeger (1959) using the similarity method. Both integral

methods differ only of a single numerical constant from the exact analytical

solution in the calculation of the surface temperature.

Tabela 2: Temperature in T(0,t)

Method T(0,t) Error

Similarity
√

4

π

f
√

αt

k
0%

Double Integral(Quadratic Profile)
√

1.2
f
√

αt

k
3.53 %

Double Integral(Cubic Profile)
√

1.26
f
√

αt

k
0.66 %

Simple Integral(Cubic Profile)
√

4

3

f
√

αt

k
2.18 %

Simple Integral(Quadratic Profile)
√

1.5
f
√

αt

k
9 %
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Figura 3: DIM quadratic profile
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Figura 4: DIM cubic profile

Figures 3 and 4 exhibit, the temperature distributions for each of the
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methods mentioned previously. Figure 3 depicts both integral methods, with

quadratic profiles and in Figure 4 the integral methods utilize cubic profiles in

the description of the temperature. As shown in the figures, the double integral

method has greater accuracy in the description of the temperature profile in

regions near the boundary; furthermore the solution obtained by this method

do not crosses the analytical solution, which does not happen with the method

of Goodman.

Problem 3) Robin boundary condition

Consider a semi-infinite body which extends along the axis x > 0 , with

initial condition T (x, 0) = 00C and assume that at its surface a boundary condi-

tion of the Robin type be specified. For this physical system the mathematical

formulation is given by:

∂T

∂t
= α

∂2T

∂x2
(3.24)

T (δ, t) = 0 (3.25)

∂T

∂t
(δ, t) = 0 (3.26)

∂T

∂t
(0, t) = −f(z, t) (3.27)

∂2T

∂x2
(δ, t) = 0 (3.28)

Assuming quadratic Eq.(3.29) and cubic Eq.(3.30) polynomial profiles

for the temperature distribution:

T (x, t) =
f(z, t)

2δ
(δ − x)2 (3.29)

T (x, t) =
f(z, t)

3δ2
(δ − x)3 (3.30)

Performing a change of variables given by Eqs.(3.31) to (3.33), the tem-

perature profiles can be rewritten as function of the surface temperature, as

expressed in Eq.(3.34) and Eq.(3.35).

z(t) = T (0, t) (3.31)
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δ(t) =
2z

f(z, t)
(3.32)

δ(t) =
3z

f(z, t)
(3.33)

After some algebraic manipulations, the temperature profiles can be ex-

pressed as

T (x, t) =
z(t)

δ(t)2
(δ − x)2 = T (0, t)(1−

x

δ
)2 (3.34)

T (x, t) =
z(t)

δ(t)3
(δ − x)2 = T (0, t)(1−

x

δ
)3 (3.35)

Applying the double integral method in the conduction equation, Eq.(3.24),

results:

∫ δ

0

∫ x

0

α
∂2T

∂x2
dxdx =

∫ δ

0

∫ x

0

∂T

∂t
dxdx (3.36)

With some algebraic manipulations

∫ δ

0

α
∂T

∂x
dx+

∫ δ

0

∫ δ

0

∂T

∂t
dxdx =

∫ δ

0

∫ x

0

∂T

∂t
dxdx (3.37)

Substituting the quadratic profile of Eq.(3.34), and the cubic profile of

Eq. (3.35) into Eq.(3.37), the respective ordinary differential equations are

obtained:

d

dt

z3

f2(z, t)
= 3αz (3.38)

d

dt

9z3

f2(z, t)
= 20αz (3.39)

Assuming that the function f(z, t) given by the boundary condition of

Eq.(3.28) is defined as illustrated in Eq. (3.40) and performing the necessary

substitutions, the ordinary differential equations written in the form of Eqs.

(3.38) and (3.39) can be expressed as Eqs. (3.41) and (3.42).

f(z1) =

(

h

k

)

(z0 − z1) (3.40)



132 Santiago & Milanez

3z1f
2(z1)

dz1
dt

− z31f(z1)
df
dz1

dz1
dt

f2(z1)
= 3αz1 (3.41)

27z21f
2(z1)

dz1
dt

− 18z31
df
dz1

dz1
dt

f4(z1)
= 20αz1 (3.42)

The previous differential equations are of the separable type, the resolu-

tion of each one leads respectively to the following relations

4

3

(

h

k

)2

αt =
4

9

(

1−
1

1− z
z0

)

+
4

9

(

1

1− z
z0

− 1

)

+
4

9
ln

(

1−
z

z0

)

(3.43)

4

3

(

h

k

)2

αt = 0.6(
1

(

1− z
z0

)2 − 1) + 0.6 ln

(

1−
z

z0

)

+ 0.6

(

1−
1

1− z
z0

)

(3.44)

The exact analytical solution presented by Carslaw e Jaeger (1959) is :

z

z0
= erfc(

x

2
√

αt
)− exp

(

h

k
+ h2αt

)

erfc(
x

2
√

αt
+

h

k

√

αt) (3.45)

Eqs.(3.43) and Eq.(3.44) must be rewritten in function of two of the

three dimensionless terms below

x

2
√

αt
,
h

k

√

αt,
h

k
x (3.46)

so that they can be compared with the solution presented by Carslaw e Jaeger

(1959).
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Figura 5: DIM quadratic profile
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Figura 6: DIM cubic profile

Figures 5 and 6 show the graph of the exact analytical solution, as well

as the solutions obtained by both integral methods. In the following graphs

the solutions were plotted as function of the variables z
z0

versus log10(
h
k

√

αt)

considering x

2
√

αt
= 0. In Figure 5 the integral methods are utilizing quadratic

approximations. As it may be observed, the double integral method exhibits

little sensitivity respective to the choice of the profile utilized. In Figure 6

the integral methods utilize cubic profiles in the approximations. There is a

significant improvement in the approximation of the simple integral method.

Furthermore, it is impossible to distinguish differences in the solutions obtained

by the methods.

Problem 4)Body of finite dimension

In the problems previously considered, the double integral method was

applied to semi-infinite bodies. The importance of the study of heat transfer

in such geometries is due to the fact that they are able to give the temperature

profile in the initial stages of the transient regime. However, when the function

penetration depth δ(t) reaches the total length of the body being analyzed, it

does not behave as a semi-infinite solid any more, and begins to behave as a

finite body.

The problem considered next, consists of a solid of finite length with

boundary conditions of first and second kinds where the initial stage described

before was reached. Thus it is intended to evaluate the usefulness of the double

integral method in this second stage. The mathematical model of the previous

problem is:

α
∂2T

∂x2
=

∂T

∂t
(3.47)
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∂T

∂x
(0, t) = −

f(t)

k
(3.48)

T (l, t) = 0 (3.49)

∂2T

∂x2
(l, t) = 0 (3.50)

Having the mathematical model to be solved, the temperature profiles

must be assumed for the application of the integral methods. For this second

stage, the penetration depth is not needed and therefore only three de boun-

dary conditions are necessary to obtain the temperature profiles. Goodman

(1964) recommends that the cubic profile to be adopted to satisfy the boun-

dary conditions should be equal to

T (x, t) =

(

3z

2l
−

f

2k

)

(l − x) +
1

2l2

(

f

k
−

z

l

)

(l − x)3 (3.51)

In this profile l is the total thickness of the body, f(t) is the heat flux

assumed constant and z(t) a compact notation for the surface temperature,

that is z(t) = T (0, t). Applying the double integral method in the conduction

equation, the resulting ordinary differential equation is

∫ δ

0

∫ x

0

α
∂2T

∂x2
dxdx =

∫ δ

0

∫ x

0

∂T

∂t
dxdx (3.52)

dz

dt
+

5α

2l
z =

5α

2l

f(t)

k
(3.53)

the solution of the differential equation involves the knowledge of the surface

temperature at the instant of time when the body ceases to behave as a semi-

infinite solid. It is considered that this instant of time is t0 and the tempera-

ture at this instant is z(t0). Given the above considerations, the resolution of

Eq.(3.54) leads to the following expressions

∫ t

t0

d

dt1

(

ze−
5α
2l2

t
)

dt1 =
5α

2l

∫ t

t0

f(t)

k
e−

5α
2l2

tdt1

t >= t0 (3.54)
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z(t) = z(t0)e
( 5α

2l2
(t0 − t)) +

lf(t)

k

[

1− e
5α
2l2 (t0 − t)

]

t >= t0

(3.55)

The determination of the variable z(t0) of Eq.(3.55) is attained by means

of an expression recommended by Goodman (1964), where it is evaluated at

the instant of time t = t0 and δ(t0) = l.

δ(t) =
3z(t)
f(t)
k

(3.56)

With some algebraic manipulations it is possible to show that z(t0) can

be written as

z(t0) =
lf(t0)

3k
(3.57)

Having the above expression, it is possible to calculate the instant of

time t0 with the aid of Table 2 that gives for the double integral method with

cubic profile the following expression

t0 =
l2

11.421α
(3.58)

With the determination of variables t0 and z(t0), Eq.(3.55) can be re-

written as follows

z(t) =
lf(t)

k

[

1− 0.829e−
5αt

2l2

]

(3.59)

After z(t) is determined it may be compared with the exact analytical

solution due to Carslaw e Jaeger (1959) as well as with the approximated

analytical solution due to Goodman (1964). Table 3 gives the expressions

obtained for each one and Figure 7 shows profile of the solutions obtained.
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Figura 7: Body of finite dimension

Tabela 3: Plate with Finite Thickness
Method Profile Solution z(t)

lf(t)
k

Eigenvalue Error

Separation of Variables
[

1−
8

π2 e
−

π2α

4l2
t
]

2.467 0%

Simple Integral

[

1− 0.814e
−

12α
2l2

t
]

2.4 2.71 %

Double Integral

[

1− 0.829e
−

15α
2l2

t
]

2.5 1.33%

Problem 5) Conduction with internal heat generation

Consider a semi-infinite body which extends along the axis x > 0 with

initial condition T (0, t) = 00C and boundary condition given by T (0, t) = 00C

. Furthermore it is assumed that an internal source of heat generation per unit

of time and volume q(t) is specified in the domain. For this physical system,

the associated mathematical model is described by:

∂t

∂t
− α

∂2T

∂x2
=

q(t)

ρc
(3.60)

The boundary conditions for the problem are:

∂T

∂x
(δ, t) = 0 (3.61)
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T (0, t) = 0 (3.62)

∂2T

∂x2
(δ, t) = 0 (3.63)

In order to obtain approximations with the cubic profile, four boundary

conditions are required. To obtain this fourth condition, the conduction equa-

tion is applied at a point far from the boundary where the temperature gradient

is zero, resulting after some algebraic manipulations the following expression

T (δ, t) =
Q(t)

ρc
=

1

ρc

∫ t

0

q(t)dt (3.64)

With the necessary boundary conditions, the quadratic and cubic profiles

are:

T (x, t) =
Q(t)

ρc

[

1−

(

1−
x

δ(t)

)2
]

(3.65)

T (x, t) =
Q(t)

ρc

[

1−

(

1−
x

δ(t)

)3
]

(3.66)

The heat conduction equation can then be written in the form

∂

∂t

[

T (x, t)−
Q(t)

ρc

]

= α
∂2T

∂x2
(3.67)

Applying the double integral method in Eq.(3.67) results:

∫ δ

0

∫ x

0

∂

∂t

[

T (x, t)−
Q(t)

ρc

]

dxdx =

∫ δ

0

∫ x

0

α
∂2T

∂x2
dxdx

(3.68)

Developing this expression, the following differential equations can be

obtained

1

12

d

dt

[

δ(t)2Q(t)
]

= αQ(t) (3.69)

1

20

d

dt

[

δ(t)2Q(t)
]

= αQ(t) (3.70)
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The solution of these equations with the boundary condition δ(0) = 0

gives the respective results

δ(t) =

√

12α
∫ t

0
Q(t1)dt1

Q(t)
(3.71)

δ(t) =

√

20α
∫ t

0
Q(t1)dt1

Q(t1)
(3.72)

With Eq.(3.71) and Eq.(3.72) the quadratic and cubic profiles are com-

pletely determined. Figure 8 shows the results using integral methods with qua-

dratic profiles compared with the numerical solution obtained with the control

volume method. However, as it can be observed in Figure 9, the approxima-

tion is improved when the integral methods are applied using cubic temperature

profiles.
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Figura 8: DIM quadratic profile
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Figura 9: DIM cubic profile

Problem 6) Temperature dependent thermal properties

In many practical applications the properties of the body under study are

temperature dependent which makes the mathematical model more complex.

Due to the difficulties in obtaining an exact analytical solution, in general a nu-

merical solution is used to solve such problems. However the integral methods

allow that approximated analytical solutions can be obtained for this type of

problem. Consider a semi-infinite body where its properties are temperature

dependent, with initial condition T (x, 0) = 00C. Furthermore, assume that at

the boundary a constant temperature equal to is prescribed T (0, t) = Ts. For

this physical system, the associated mathematical model is described by:
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ρc
∂T

∂t
=

∂

∂x

(

k
∂T

∂x

)

(3.73)

T (0, t) = Ts (3.74)

T (δ, t) = 00C (3.75)

∂T

∂x
(δ, t) = 0 (3.76)

∂2T

∂x2
(δ, t) = 0 (3.77)

By assuming that the properties k and ρc are temperature dependent,

the solution of equation Eq.(74) must be carried out by a numerical method.

Thus, in order to obtain an approximated analytical solution using an integral

method, the change of variables proposed by Goodman Goodman (1964) will

be adopted, given by Eq.(3.79).

ν =

∫ T

0

ρcdT (3.78)

Considering Eq.(3.78) the heat conduction equation as well as the boun-

dary conditions can be written as:

∂ν

∂t
=

∂

∂x

[

α(ν)
∂ν

∂x

]

(3.79)

ν(0, t) = νs (3.80)

ν(δ, t) = 0 (3.81)

∂ν

∂x
(δ, t) = 0 (3.82)

∂2ν

∂x2
(δ, t) = 0 (3.83)

Having determined the boundary conditions, the resulting polynomial

profiles are:
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ν(x, t) = νs

[

1−
x

δ(t)

]2

(3.84)

ν(x, t) = νs

[

1−
x

δ(t)

]3

(3.85)

Applying the integral method with quadratic and cubic profiles, the

following ordinary differential equations are obtained

∫ δ

0

∫ x

0

∂ν

∂t
dxdx =

∫ δ

0

∫ x

0

∂

∂x

(

α(v)
∂ν

∂x

)

dxdx (3.86)

d

dt
δ2νs = 12αsνs (3.87)

d

dt
δ2νs = 20αsνs (3.88)

The solution of the previous equations with the condition δ(0) = 0 leads

to the following solutions

δ(t) =

√

12

νs

∫ t

0

νsαsdt (3.89)

δ(t) =

√

20

νs

∫ t

0

νsαsdt (3.90)

Goodman (1964) suggested as an application of the equations above

assuming that the temperature Ts at the surface is prescribed so that νs is

constant. Since αs depends exclusively on νs , αs is a constant. Therefore

Eq.(3.89) and Eq.(3.90) are written as:

δ(t) =
√

12αst (3.91)

δ(t) =
√

20αst (3.92)

Substituting Eq.(3.91) and Eq.(3.92) in the temperature profiles:

ν

νs
=

(

1−
x

√

12αst

)2

(3.93)
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ν

νs
=

(

1−
x

√

20αst

)3

(3.94)

In the present study, the double integral method is being applied to

a solid geometry. Therefore, it may be assumed that the product ρc remains

practically constant with temperature variation in this type of geometry. Thus,

the variation of the thermal properties occurs due to the variation of the thermal

conductivity. By virtue of the change of variables in Eq.3.78, ν is proportional

to T (x, t) , and the thermal conductivity can be written as

k = k0

(

1 + β
T

Ts

)

(3.95)

Considering Eq.(3.96), the thermal diffusivity at the boundary can be

expressed as:

αs =
k0(1 + β)

ρc
(3.96)

Tabela 4: Temperature Profiles

Method Temperature Profile

Simple Integral (Cubic Profile) T
Ts

=

[

1− y
√

6(1+β)

]3

Double Integral (Quadratic Profile) T
Ts

=

[

1− y
√

3(1+β)

]2

Double Integral (Cubic Profile) T
Ts

=

[

1− y
√

5(1+β)

]3

Utilizing the dimensionless parameter of Eq.(3.96) defined by Goodman

(1964), the temperature profiles are written as presented in Table 4 and and

shown in Figure 10.
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Figura 10: Temperature dependent properties.

4. Conclusions

Throughout this paper the double integral method was applied to six

different types of transient heat transfer problems. The analysis of this method

revealed that the double integral method exhibits higher sensitivity respective

to the profile adopted, when applied to a semi-infinite plane geometry with

boundary conditions of first or third kind.

The sensitivity regarding the choice of the profile is connected to the fact

that these two problems are from the mathematics standpoint analogous to the

problem originally solved by Volkov (1965) when developing the method. Howe-

ver, in applications involving semi-infinite body with internal heat generation

or boundary condition of second kind, the double integral method presented a

reduced sensitivity regarding the choice of the profile.

In either case, it was necessary to utilize cubic profiles to obtain good

accuracy in the description of the temperature profile. The major difficulties

in using the double integral method were found in the applications involving

a wall of finite thickness, with boundary conditions of first and second kind.

The adversity in this example is due to the fact that the approximation of the

gradient vector at the surface by an integral relation is no longer necessary.

Besides, the derivation along the phenomenological distance makes no

sense, because the body does not behave as a semi-infinite solid any more.

However, even with all the adversities, the method is able to provide a good
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approximation for the eigenvalue, as well as to the surface temperature. Thus,

this is an approximate analytical method relatively easy to use and capable of

providing good accuracy results when compared to conventional methods.
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